Figura 1 Trasformazione proibita dal Secondo Principio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Figura 1 Trasformazione proibita dal Secondo Principio"

Transcript

1 ENUNCIATO DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Si dice sorgente di calore o serbatoio di calore alla temperatura θ un corpo che si trovi uniformemente alla temperatura θ e sia in condizioni di scambiare calore, ma non lavoro, con i corpi che lo circondano. In pratica si tratta di una quantità di sostanza (come ad esempio acqua il cui volume rimane praticamente costante. Il fatto che la temperatura sia fissata e cioè rimanga costante implica che la capacità termica del serbatoio sia molto elevata. Infatti, in questo caso, uno scambio di calore comporta una variazione trascurabile di temperatura. Una approssimazione reale di una sorgente di calore si ottiene con corpi di massa e calore specifico abbastanza alti. Posto questo, l'enunciato del Secondo Principio della Termodinamica nella formulazione di Kelvin è il seguente: È impossibile realizzare una trasformazione il cui unico risultato sia una trasformazione in lavoro di una quantità di calore tratta da unàunica sorgente a temperatura uniforme. È importante specificare che la trasformazione di calore in lavoro non può essere l'unico risultato. Si può convertire completamente una quantità di calore in lavoro, ad esempio, in una espansione isoterma di un gas perfetto. Ma questo non sarebbe l'unico risultato, dato che si ha anche un cambiamento di stato del sistema termodinamico, cioè del gas stesso. Indichiamo in Figura il processo proibito dal Secondo Principio: dopo la trasformazione il sistema è tornato nello stato iniziale, cioè ha compiuto un ciclo, indicato con la traiettoria circolare. Una certa quantità di calore Q è passata dal serbatoio a temperatura θ al sistema e in ragione di questo il sistema ha compiuto il lavoro L=Q sull'ambiente. θ Q Figura Trasformazione proibita dal Secondo Principio L Questa formulazione del Secondo Principio è abbastanza intuitiva. Se il processo in Figura fosse possibile si potrebbero realizzare motori che per funzionare assorbono energia dall'ambiente, senza alcun bisogno di combustibile. Il primo enunciato del Secondo Principio risale al 824 ed è dovuto a Sadi Carnot: è impossibile produrre della potenza motrice a meno che non si disponga contemporaneamente di un corpo caldo e di un corpo freddo. Cioè, per costruire una macchina termica occorrono almeno due sorgenti di calore a temperature diverse. È possibile eseguire un ciclo termodinamico e compiere lavoro con un sistema che scambia calore con due sorgenti a diversa temperatura. Infatti, consideriamo il ciclo compiuto da un gas perfetto di Figura 2 (ciclo di Carnot. Si tratta di:

2 2 una espansione isoterma in cui il sistema assorbe la quantità di calore da un serbatoio a temperatura θ 2 ; 2 3 una espansione adiabatica in cui il sistema si porta alla temperatura più bassa θ ; 3 4 una compressione isoterma in cui il sistema cede la quantità di calore (in valore assoluto a un serbatoio a temperatura θ ; 4 una compressione adiabatica in cui il sistema torna allo stato iniziale. È facile verificare che p V V V 4 2 V 3 V Figura 2 Ciclo di Carnot di un gas ideale. θ 2 >θ L θ Figura 3 Funzionamento di una macchina termica che opera tra due sorgenti di calore

3 In generale, una macchina termica che opera tra due sorgenti di calore (non solo una macchina che compie un ciclo di Carnot funziona in maniera mostrata dalla Figura 2. Essa produce lavoro L>0 assorbendo da un serbatoio a temperatura θ 2 e cedendo a un serbatoio a temperatura θ <θ 2. Il Secondo Principio ci assicura che e sono positivi. Infatti, supponiamo per assurdo che 0, allora il sistema assorbirebbe calore dal serbatoio a temperatura θ. Dunque basta mettere in contatto i due serbatoi e fare fluire la stessa quantità di calore dal serbatoio θ 2 al serbatoio θ. In conclusione, la sorgente θ rimarrebbe inalterata e avremmo come unico risultato la trasformazione di calore tratto dalla sorgente θ 2 in lavoro. Ma ciò contraddice il Secondo Principio. Dunque >0, allora, dato che, dal Primo Principio, =L>0, si ha che > >0. Il Secondo Principio nella formulazione di Clausius si può enunciare nel modo seguente. È impossibile realizzare una trasformazione il cui unico risultato sia un passaggio di una quantità di calore da una sorgente a temperatura più bassa a una sorgente a temperatura più alta. Il processo proibito dall'enunciato di Clausius è schematizzato in Figura 4. L'enunciato di Kelvin (che indicheremo per semplicità K è equivalente all'enunciato di Clausius (che indicheremo con C. Per dimostrarlo, dimostriamo che: K C, dimostrando che non C non K ; successivamente dimostriamo che C K, dimostrando che non K non C θ 2 >θ Q θ Figura 4 Trasformazione proibita dal Secondo Principio (enunciato di Clausius

4 La negazione di K implica la negazione di C. Infatti, supponiamo di poter eseguire il processo di Figura. Allora possiamo dissipare il lavoro L in energia interna di un serbatoio a temperatura θ' >θ. Ma in questo modo otteniamo il processo di Figura 4. 2 La negazione di C implica la negazione di K. Infatti, supponiamo di realizzare il processo di Figura 4. Allora possiamo utilizzare un ciclo di Carnot che operi fra i due serbatoi di calore, utilizzando Q per compiere un lavoro L, cedendo al serbatoio freddo una quantità di calore =Q L. L'unico risultato finale sarebbe quello di trarre la quantità di calore Q dal serbatoio freddo e convertirla integralmente in lavoro. TEOREMA DI CARNOT Supponiamo di disporre di un sistema termodinamico S che compie un ciclo scambiando calore con due serbatoi. S assorbe dal serbatoio caldo e cede al serbatoio freddo. come descritto in Figura 3, compiendo lavoro positivo. Il rendimento è definito da: η= L = ( Supponiamo di avere un secondo sistema S' che scambi con il serbatoio caldo e Q ' con il serbatoio freddo, ad ogni ciclo. Il rendimento del ciclo sarà dunque η'= L ' = Q ' (2 Supponiamo che S' compia un ciclo reversibile, cioè che il ciclo di S' possa essere invertito in modo che compiendo il lavoro L' sul sistema si possa assorbire esattamente Q ' dal serbatoio freddo e cedere esattamente al serbatoio freddo. Possiamo facilmente dimostrare dal Secondo Principio che vale: η' η (3 Sappiamo bene che possiamo approssimare un numero reale con un numero razionale con una precisione grande a piacere. Quindi possiamo scrivere, con una precisione grande a piacere: = N con N, N ' interi positivi (4 N ' Posto questo, facciamo compiere N cicli al sistema S e N' cicli inversi al sistema S'. In tal modo il sistema S+S' assorbe complessivamente dal serbatoio caldo la quantità: N N ' =0 (5 Dunque il serbatoio caldo rimane invariato. Al serbatoio freddo viene ceduto complessivamente: N N ' Q ' 0 (6 La quantità di calore ceduta deve essere non negativa, altrimenti saremmo nella situazione di Figura, proibita da K. Combinando la (4 con la (6 si ottiene: N N ' Q ' N N ' Q '

5 Q ' Q' (7 Confrontando la (7 con le espressioni ( e (2 dei rendimenti otteniamo la (3. Ora, se anche S compie un ciclo reversibile, possiamo invertire I ruoli di S e S' nella dimostrazione e dimostrare che: η η' (8 Dalla (8 e dalla (3 segue: η=η' (9 Dunque abbiamo dimostrato il Teorema di Carnot: Tutti i cicli reversibili tra due sorgenti di calore date hanno lo stesso rendimento. Il rendimento di un ciclo reversibile è strettamente maggiore di qualunque ciclo non reversibile operante tra le due stesse sorgenti. Un esempio di ciclo reversibile è il ciclo di Carnot di un gas perfetto, mostrato in Figura 2. Il ciclo può essere percorso in senso inverso (ciclo frigorifero, nel qual caso il calore prima ceduto viene ora assorbito e viceversa, il lavoro prima fatto dal sistema sull'ambiente viene ora fatto dall'ambiente sul sistema. TEMPERATURA ASSOLUTA Dal Teorema di Carnot abbiamo che tutti i cicli reversibili tra due sorgenti di calore hanno lo stesso rendimento, cioè lo stesso rapporto tra i calori scambiati, indipendentemente dal tipo di sistema termodinamico. Il rendimento dipende solo: (i dal fatto che il ciclo sia reversibile; (ii dalle temperature delle due sorgenti. Allora possiamo scrivere: Q ceduto =una funzione delle temperature delle sorgenti Q assorbito Supponiamo di disporre di una scala di temperatura empirica con cui misurare le temperature t 0, t e t 2 di tre sorgenti. Ora, consideriamo due macchine reversibili che lavorano nel modo seguente. Una che assorba dal serbatoio t 2 e ceda Q 0 a un serbatoio di riferimento t 0, da cui segue: = f (t Q 0, t 2 0 (0 Una che assorba dal serbatoio t e ceda la stessa quantità Q 0 a un serbatoio di riferimento t 0, da cui segue: = f (t Q 0, t 0 (

6 Se ora facciamo lavorare le due macchine contemporaneamente, con la seconda che compie un ciclo inverso, abbiamo realizzato una macchina che scambia calore solamente con le sorgenti t e t 2 Dunque: = f (t, t 2 (2 Combinando la (0, ( e (2: f (t, t 2 = f (t 0, t 2 (3 f (t 0, t Quindi: = g(t 2 (4 g(t Concludiamo che il calore scambiato è proporzionale a una funzione della temperatura empirica. Allora possiamo definire una scala di temperatura termodinamica, indicando la temperatura misurata in questa scala con T, in modo che: = T 2 (5 T Cioè, il rapporto tra le quantità di calore scambiate in un ciclo reversibile tra due serbatoi è uguale al rapporto tra le temperature termodinamiche dei due serbatoi. Questa scala di temperatura è assoluta, nel senso che è definita dal Teorema di Carnot, ed è indipendente dal sistema termometrico scelto, purché il sistema compia un ciclo reversibile. La (5 definisce la temperatura assoluta a meno di una costante. Per fissarla consideriamo il cilco di Carnot di un gas perfetto. Con le notazioni di Figura 2, abbiamo, dalle trasformazioni isoterme: =n R θ 2 log( V 2 V (6 =n Rθ 2 log( V 3 V 4 (7 Dalle trasformazioni adiabatiche risulta invece: θ 2 V γ γ 2 =θ V 3 (8 θ 2 V γ γ =θ V 4 (9 Dividendo membro a membro le (8 e (9 segue: V 2 V = V 3 V 4 (20 Allora, dividendo membro a membro le (6 e (7 e usando la (20 segue: = θ 2 θ (2 Dalla (5 e dalla (2 segue: T 2 = θ 2 (22 T θ La temperatura assoluta è proporzionale alla temperatura del termometro a gas perfetto. Definiamo la scala di temperatura assoluta nel modo seguente: T =273.6 Q Q 3 (K (23

7 dove Q è il calore scambiato con un generico serbatoio e Q 3 il calore scambiato con un serbatoio alla temperatura del punto triplo dell'acqua. Con la definizione (23 la scala termodinamica assoluta di temperatura coincide con la scala di temperatura del termometro a gas perfetto. D'ora in poi misureremo la temperatura utilizzando la scala assoluta. Una conseguenza importante della definizione di scala termodinamica assoluta di temperatura: dalla (5 segue che il rendimento di un ciclo reversibile tra due sorgenti, a temperature T e T 2, con T 2 >T, risulta: η rev = T T 2 (24

Macchine termiche e frigoriferi

Macchine termiche e frigoriferi Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

IL CICLO DI CARNOT. Scambi di energia durante il ciclo

IL CICLO DI CARNOT. Scambi di energia durante il ciclo IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi

Dettagli

Secondo principio della termodinamica: perché????

Secondo principio della termodinamica: perché???? Secondo principio della termodinamica: perché???? Primo principio: bilancio degli scambi energetici con l ambiente, ma non dà nessuna spiegazione del fatto che in natura alcune trasformazioni procedono

Dettagli

Cap 21- Entropia e II Legge della Termodinamica. Entropia

Cap 21- Entropia e II Legge della Termodinamica. Entropia N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

Termodinamica. secondo principio. ovvero. principio della impossibilità

Termodinamica. secondo principio. ovvero. principio della impossibilità ermodinamica secondo principio ovvero principio della impossibilità Il verso privilegiato delle trasformazioni di energia: non si crea energia dal nulla Il primo principio può essere enunciato sotto forma

Dettagli

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI Consideriamo un gas contenuto in un recipiente dalle pareti adiabatiche dotato di un pistone in grado di muoversi senza attriti (v. figura). Espansione e compressione

Dettagli

F - SECONDO PRINCIPIO

F - SECONDO PRINCIPIO F - SECONDO PRINCIPIO MACCHINA TERMICA APPARATO CHE CONVERTE CALORE (CEDUTO DALL'AMBIENTE ESTERNO AL SISTEMA TERMODINAMICO) IN LAVORO (FATTO DAL SISTEMA TERMODINAMICO E UTILIZZABILE DEL MONDO ESTERNO)

Dettagli

La macchina termica. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

La macchina termica. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 La macchina termica Universita' di Udine 1 La macchina termica Un insieme di trasformazioni che parta da uno stato e vi ritorni costituisce una macchina termica un ciclo termodinamico Universita' di Udine

Dettagli

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013 Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine

Dettagli

Macchine Termiche: Guida schematica agli argomenti trattati a lezione

Macchine Termiche: Guida schematica agli argomenti trattati a lezione Macchine Termiche: Guida schematica agli argomenti trattati a lezione Dott. Corso Fisica I per Chimica Industriale a.a. 2014-2015 Testo di riferimento: (FLMP) Ferrari, Luci, Mariani, Pellissetto, Fisica

Dettagli

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità

Dettagli

UNITA' 7 SOMMARIO ATTENZIONE

UNITA' 7 SOMMARIO ATTENZIONE U.7/0 UNITA' 7 SOMMARIO U.7 IL SECONDO PRINCIPIO DELLA TERMODINAMICA 7.1. Introduzione 7.2. Serbatoi e motori termici 7.3. Macchine frigorifere e pompe di calore 7.4. Secondo principio della Termodinamica

Dettagli

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica Primo principio- 1 - TERMODINAMICA ENERGIA INTERNA DI UN SISTEMA Ad ogni sistema fisico possiamo associare varie forme di energia, l energia cinetica delle molecole di cui è formato, energia potenziale,

Dettagli

ferma e permane indefinitamente in quiete

ferma e permane indefinitamente in quiete econdo Principio della Termodinamica 1) un pendolo oscilla nell aria di una stanza: dopo un certo tempo il pendolo si ferma e permane indefinitamente in quiete 2) due corpi a temperatura diversa sono posti

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

I PRINCIPI DELLA TERMODINAMICA

I PRINCIPI DELLA TERMODINAMICA Il diagramma - I RINCII DLLA TRMODINAMICA Un sistema termodinamico è una quantità di materia racchiusa all interno di una superficie chiusa, che può scambiare energia con l ambiente esterno. Lo stato di

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di

Dettagli

Trasformazioni reversibili e irreversibili:

Trasformazioni reversibili e irreversibili: rasformazioni reversibili e irreversibili: Esempi di trasformazioni irreversibili: - un gas compresso si espande spontaneamente in uno spazio vuoto - la neve fonde al sole - un farmaco si scioglie nel

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

FISICA. Termodinamica SECONDO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica

FISICA. Termodinamica SECONDO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica FISICA Termodinamica SECONDO PRINCIPIO DELLA TERMODINAMICA Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica IL VERSO PRIVILEGIATO DELLE TRASFORMAZIONI DI ENERGIA Il concetto fondamentale

Dettagli

PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA

PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA SISTEMA In termodinamica si intende per sistema una qualsiasi porzione della realtà fisica che viene posta come oggetto di studio Possono essere sistemi: una cellula il cilindro di un motore una cella

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (4 Giugno - 8 Giugno 2012) Sintesi Abbiamo formulato il primo principio della termodinamica che regola gli scambi di calore, la

Dettagli

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente. PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova

Dettagli

Studia le leggi con cui i corpi scambiano (cedono/assorbono) lavoro e calore con l'ambiente che li circonda.

Studia le leggi con cui i corpi scambiano (cedono/assorbono) lavoro e calore con l'ambiente che li circonda. 1 La termodinamica, scienza nata all'inizio del XIX secolo, si occupa degli scambi energetici fra un sistema e l'ambiente esterno con cui può interagire, con particolare riguardo alle trasformazioni di

Dettagli

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche. 16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la ERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la circonda e può influenzarne il comportamento ( ambiente

Dettagli

Motore di Stirling. Scopo dell esperienza

Motore di Stirling. Scopo dell esperienza Motore di Stirling Scopo dell esperienza Lo scopo dell esperienza è duplice: calcolare il rendimento del motore in seguito alla realizzazione di un ciclo termico determinare il potere refrigerante e calorifico

Dettagli

dallo stato 1 allo stato 2 è uguale all integrale

dallo stato 1 allo stato 2 è uguale all integrale Capitolo 13 L entropia 167 QUESITI E PROBLEMI 1 La grandezza fisica entropia può assumere valori solo positivi (vero/falso). Se sono determinati lo stato iniziale e lo stato finale di un sistema fisico,

Dettagli

ESERCIZIO (12) ( ) ( ) J ( ) ( )

ESERCIZIO (12) ( ) ( ) J ( ) ( ) onsideriamo una mole di gas perfetto monoatomico che compie il ciclo di figura (motore di Stirling), composto da due isoterme ( e ) e ESEIZIO (1) due trasformazioni a volume costante ( e ). alcolare: il

Dettagli

PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO)

PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO) CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO Consideriamo, in modo approssimato, il ciclo termodinamico di un motore a quattro tempi. In figura è mostrato il cilindro entro cui scorre il pistone,

Dettagli

Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA

Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA AA 2015-2016 Temperatura Temperatura misura oggettiva della sensazione di caldo e freddo Grandezza intensiva Misura la direzione del trasferimento

Dettagli

Calore, lavoro e trasformazioni termodinamiche (1)

Calore, lavoro e trasformazioni termodinamiche (1) Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)

Dettagli

CALORIMETRIA E TERMODINAMICA. G. Roberti

CALORIMETRIA E TERMODINAMICA. G. Roberti CALORIMETRIA E TERMODINAMICA G. Roberti 422. A due corpi, alla stessa temperatura, viene fornita la stessa quantità di calore. Al termine del riscaldamento i due corpi avranno ancora pari temperatura se:

Dettagli

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2.

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2. Compito intercorso Fisica II ICI 1 giugno 2006 1 Due recipienti uguali, isolati termicamente dall'ambiente esterno, sono connessi da un condotto con un rubinetto, inizialmente chiuso. Uno dei recipienti

Dettagli

Termodinamica: Temperatura e Calore. Temperatura e Calore 1

Termodinamica: Temperatura e Calore. Temperatura e Calore 1 Termodinamica: Temperatura e Calore Temperatura e Calore 1 Ricordiamo che: A. Pastore Fisica con Elementi di Matematica (O-Z) - 2 Farmacia - A.A. 2015-2016 Introduzione al Problema PROBLEMA: studiare un

Dettagli

CALORIMETRO DELLE mescolanze

CALORIMETRO DELLE mescolanze CALORIMETRO DELLE mescolanze Scopo dell esperienza è la misurazione del calore specifico di un corpo solido. Il funzionamento del calorimetro si basa sugli scambi di energia, sotto forma di calore, che

Dettagli

Se due oggetti A e B sono in equilibrio termico con un terzo oggetto C, allora A e B sono in equilibrio termico tra di loro.

Se due oggetti A e B sono in equilibrio termico con un terzo oggetto C, allora A e B sono in equilibrio termico tra di loro. Lezione 7 - pag.1 Lezione 7: Le leggi della termodinamica 7.1. Che cosa è la termodinamica La parola termodinamica significa, alla lettera, dinamica dei fenomeni termici. È un settore della fisica che

Dettagli

Corso di FISICA TECNICA I

Corso di FISICA TECNICA I Università degli Studi di Parma Facoltà di Architettura Corso di FISICA TECNICA I Prof. Angelo Farina Anno Accademico 2002-2003 Venerdì 15/11/2002 ore 10:30-12:30 Trascritta da: Laura Giovanelli, matricola

Dettagli

Frigorifero CICLO FRIGORIFERO-TEORIA L = Q C - Q F. Coefficiente di prestazione

Frigorifero CICLO FRIGORIFERO-TEORIA L = Q C - Q F. Coefficiente di prestazione Frigorifero CICLO FRIGORIFERO-TEORIA Frigorifero: dispositivo a funzionamento ciclico composto da: (Fig. 1) un insieme di sorgenti di calore ad alta temperatura, T i, un insieme di sorgenti a più bassa

Dettagli

Programma svolto a.s. 2015/2016. Materia: fisica

Programma svolto a.s. 2015/2016. Materia: fisica Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);

Dettagli

Capacità termica e calore specifico

Capacità termica e calore specifico Calori specifici Capacità termica e calore specifico Il calore si trasferisce da un corpo ad un altro fintanto che i corpi sono a temperature differenti. Potremo scrivere quindi: Q = C ΔT = C (T f T i

Dettagli

Trasformazione di calore in lavoro: le macchine termiche

Trasformazione di calore in lavoro: le macchine termiche 1 rasformazione di calore in lavoro: le macchine termiche Lo schema di una macchina termica Nello studio delle trasformazioni termodinamiche abbiamo visto che se forniamo calore a un gas contenuto in un

Dettagli

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore Sistemi termodinamici Sistema: regione dello spazio oggetto delle nostre indagini. Ambiente: tutto ciò che circonda un sistema. Universo: sistema + ambiente Sistema aperto: sistema che consente scambi

Dettagli

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme.

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme. PROGRAMMA PREVISTO Testo di riferimento: Fisica Percorsi e metodi Vol. 2 (J. D. Wilson, A. J. Buffa) Le unità didattiche a fondo chiaro sono irrinunciabili, le unità didattiche a fondo scuro potranno essere

Dettagli

CAPITOLO 5: SISTEMA SEMPLICE ED EQUAZIONE DI GIBBS

CAPITOLO 5: SISTEMA SEMPLICE ED EQUAZIONE DI GIBBS CAPITOLO 5: SISTEMA SEMPLICE ED EQUAZIONE DI GIBBS SISTEMA SEMPLICE Si definisce sistema semplice un sistema che: 1. ha come unico parametro il volume; 2. in equilibrio stabile, può essere suddiviso in

Dettagli

Lezione 9 Termodinamica

Lezione 9 Termodinamica Argomenti della lezione: Lezione 9 Termodinamica introduzione misura della temperatura dilatazione termica calore / capacità termica, calore specifico, calore latente calore e lavoro primo principio della

Dettagli

Insegnante: Prof.ssa La Salandra Incoronata

Insegnante: Prof.ssa La Salandra Incoronata LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata TERMODINAMICA: LE LEGGIDEI GAS IDEALI E LA LORO INTERPRETAZIONE

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica La termodinamica In molte reazioni viene prodotto o assorbito del calore. Altre reazioni possono essere usate per produrre del lavoro: il motore a scoppio produce energia meccanica sfruttando la reazioni

Dettagli

1 Ripasso di Termodinamica

1 Ripasso di Termodinamica Definizioni Il gas ideale Il primo principio della termodinamica Espansione libera di un gas ideale Energia interna Calori specifici Trasformazioni adiabatiche Il secondo principio della termodinamica

Dettagli

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore.

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore. Serie 5: Termodinamica V FISICA II liceo Esercizio 1 Primo principio Un cilindro contiene 4 mol di un gas(= sistema) monoatomico a temperatura iniziale di 27 C. Il gas viene compresso effettuano su di

Dettagli

TERMODINAMICA. Il sistema è il corpo o l insieme dei corpi sotto esame.

TERMODINAMICA. Il sistema è il corpo o l insieme dei corpi sotto esame. TERMODINAMICA SISTEMI TERMODINAMICI Il sistema è il corpo o l insieme dei corpi sotto esame. L ambiente esterno è l insieme di tutti i corpi che possono interagire con il sistema. Tipi di sistemi termodinamici

Dettagli

Libro di testo di riferimento dei capitoli sotto elencati: P. Mazzoldi, M. Nigro, C. Voci Fisica Volume I, II Edizione, 2008 EdiSES

Libro di testo di riferimento dei capitoli sotto elencati: P. Mazzoldi, M. Nigro, C. Voci Fisica Volume I, II Edizione, 2008 EdiSES PROGRAMMA DEL CORSO DI FISICA 1 PER INGEGNERIA BIOMEDICA, DELL INFORMAZIONE, ELETTRONICA E INFORMATICA (CANALE 3) Anno Accademico 2015-2016 Prof. Giampiero Naletto Libro di testo di riferimento dei capitoli

Dettagli

Ciclo Otto (Motore a Benzina)

Ciclo Otto (Motore a Benzina) Ciclo Otto (Motore a Benzina) Cicli Termodinamici - 1 p 3 p 2 > O 2 3 Trasformazione Adiabatica Dati Generali m, p 1, V 1, V 1 /V 2, T 1, T 3 m RT1 1 L 2 = ( V2 / V1 ) 1 k ( ) 2 3 = m cv T3 T2 > 0 m RT3

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica 1 Il primo principio della termodinamica Il primo principio della termodinamica Nelle lezioni precedenti abbiamo visto che per far innalzare la temperatura di un sistema vi sono due possibilità: fornendo

Dettagli

Motori e cicli termodinamici

Motori e cicli termodinamici Motori e cicli termodinamici 1. Motore a scoppio 2. Motore diesel 3. Frigoriferi 4. Centrali elettriche XVIII - 0 Trasformazioni Trasformazioni reversibili (quasistatiche): Ciascun passo della trasformazione

Dettagli

Temperatura e calore. Principi della termodinamica Temperatura Calore Gas ideali

Temperatura e calore. Principi della termodinamica Temperatura Calore Gas ideali Temperatura e calore Principi della termodinamica Temperatura Calore Gas ideali Termodinamica Termodinamica branca della fisica che descrive le trasformazioni subite da un sistema in seguito a processi

Dettagli

8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l)

8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l) ermodinamica Un gas monoatomico compie il ciclo mostrato nella figura sotto, dove le trasformazioni, sono isobare e le trasformazioni e sono isocore. apendo che l, p 8atm, 6 l, p atm. alcolare il rendimento

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI problemi cap.9 9.1 (a) Assimiliamo l aria a un gas perfetto con calori specifici costanti a temperatura ambiente: Trasformazione 1-2: compressione isoentropica. Trasformazione 2-3: somministrazione

Dettagli

Qualche spunto di riflessione sul secondo principio della termodinamica, l entropia e le macchine termiche

Qualche spunto di riflessione sul secondo principio della termodinamica, l entropia e le macchine termiche Qualche spunto di riflessione sul secondo principio della termodinamica, l entropia e le macchine termiche 1 Il secondo principio Il secondo principio della termodinamica descrive una fondamentale asimmetria

Dettagli

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo Il lavoro IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo Il lavoro è una grandezza scalare, ed è definito dal prodotto di forza per spostamento. L unità di misura

Dettagli

La temperatura e il calore. Documento riadattato da MyZanichelli.it Isabella Soletta Febbraio 2012 Parte 2/3

La temperatura e il calore. Documento riadattato da MyZanichelli.it Isabella Soletta Febbraio 2012 Parte 2/3 La temperatura e il calore Documento riadattato da MyZanichelli.it Isabella Soletta Febbraio 2012 Parte 2/3 Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti

Dettagli

Secondo principio della termodinamica

Secondo principio della termodinamica econdo principio della termodinamica ) Concetti di base ) Primo principio della termodinamica 3) ECONDO PRINCIPIO DELL TERMODINMIC 4) tati di equilibrio stabile 5) Diagramma energia-entropia 6) Lavoro,

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica 1-2014/15 Emanuele Fabbiani 21 febbraio 2015 1 Termodinamica 1.1 Esercizio 1 Una bolla di aria di volume V = 20 cm 3 si trova sul fondo di un lago di profondità h = 40 m dove la temperatura

Dettagli

Esercizi di termologia

Esercizi di termologia Esercizi di termologia L. Paolucci 4 dicembre 2009 Sommario Termologia: esercizi e problemi con soluzioni. Per la classe seconda. Anno Scolastico 2009/0. Versione: v Si ricordi che cal 4,86. Quindi il

Dettagli

Matilde Del Pio - Arianna Luise 3G MISURA DELL'ENTROPIA

Matilde Del Pio - Arianna Luise 3G MISURA DELL'ENTROPIA Matilde Del Pio - Arianna Luise 3G 04-05- 13 Materiale: Un fornello a gas o elettrico; 250cc di acqua nel bicchiere ; un termometro tra 0C a 100C ; un termometro da parete; un cilindro graduato; un becker;

Dettagli

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1 ermologia Paolo Bagnaia - CF - 3 - Esercizi di termologia e termodinamica 1 Esercizio Un cubetto di ghiaccio di 150 g alla temeratura di 0 C è gettato in unreciiente, i che contiene 300 g di acqua alla

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale.

Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale. Anno scolastico: 2012-2013 Docente: Paola Carcano FISICA 2D Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale. Le forze: le interazioni fondamentali;

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Lezione 10 Termodinamica

Lezione 10 Termodinamica rgomenti della lezione: Lezione 0 ermodinamica relazione di Mayer trasformazioni adiabatiche trasformazioni isoterme macchine termiche ciclo di arnot secondo riiio della termodinamica cenni sull entroia

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1

PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1 PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa. Il funzionamento di una macchina a vapore puo essere approssimato a quello di una macchina di Carnot, che assorbe calore alla temperatura 2 della

Dettagli

Termodinamica: Temperatura e Calore. 05/12/2014 Temperatura e Calore 1

Termodinamica: Temperatura e Calore. 05/12/2014 Temperatura e Calore 1 Termodinamica: Temperatura e Calore 05/12/2014 Temperatura e Calore 1 Ricordiamo che: A. Pastore Fisica con Elementi di Matematica (O-Z) - 2 Farmacia - A.A. 2014-2015 Introduzione al Problema PROBLEMA:

Dettagli

1.Pressione di un Gas

1.Pressione di un Gas 1.Pressione di un Gas Un gas è formato da molecole che si muovono in modo disordinato, urtandosi fra loro e urtando contro le pareti del recipiente che le contiene. Durante gli urti, le molecole esercitano

Dettagli

TERMOLOGIA & TERMODINAMICA I

TERMOLOGIA & TERMODINAMICA I TERMOLOGIA & TERMODINAMICA I 1 Meccanica: studia il moto dei corpi e le cause che lo genera Grandezze meccaniche: massa, velocità, accelerazione, forza, energia Struttura atomica dei gas: particelle tutte

Dettagli

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS CAPITOLO 2 CICLO BRAYTON TURBINE A GAS 1 CICLO BRAYTON IL CICLO TERMODINAMICO BRAYTON E COMPOSTO DA QUATTRO TRASFORMAZIONI PRINCIPALI (COMPRESSIONE, RISCALDAMENTO, ESPANSIONE E RAFFREDDAMENTO), PIÙ ALTRE

Dettagli

CICLI DI MOTORI A GAS

CICLI DI MOTORI A GAS CAPIOLO 6 CICLI DI MOORI A GAS Appunti di ermodinamica Applicata esto modificato il /6/2 alle 4: Cicli di Motori a Gas Cicli ideali caratteristici di motori che utilizzano un gas come fluido operativo

Dettagli

Lezione 4: Termodinamica. Seminario didattico

Lezione 4: Termodinamica. Seminario didattico Lezione 4: Termodinamica Seminario didattico Esercizio n 1 Un vaso di massa 150g in rame (calore specifico 0,0923 cal/g K) contiene 220g di acqua, entrambi alla temperatura di 20,0 C. Un cilindro di 300g

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

2) Primo principio della Termodinamica

2) Primo principio della Termodinamica 2) Primo principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

La misura della temperatura

La misura della temperatura Calore e temperatura 1. La misura della temperatura 2. La dilatazione termica 3. La legge fondamentale della termologia 4. Il calore latente 5. La propagazione del calore La misura della temperatura La

Dettagli

Seconda legge della termodinamica

Seconda legge della termodinamica Seconda legge della termodinamica In natura tutti i processi devono soddisfare il principio di conservazione dell energia (e quindi anche la a legge della termodinamica) ma non tutti i processi che conservano

Dettagli

1 - Richiamo del primo principio della termodinamica

1 - Richiamo del primo principio della termodinamica Luciano BAAIA Introduzione al secondo principio della termodinamica - Richiamo del primo principio della termodinamica Il contenuto del primo principio della termodinamica é il seguente: per far variare

Dettagli

CAPITOLO 4 CICLO FRIGORIFERO

CAPITOLO 4 CICLO FRIGORIFERO CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO

Dettagli

PDF Compressor Pro. La termodinamica. Prof Giovanni Ianne

PDF Compressor Pro. La termodinamica. Prof Giovanni Ianne La termodinamica Prof Giovanni Ianne Atomi e molecole La molecola è il «grano» più piccolo da cui è costituita una sostanza. A ogni atomo corrisponde un elemento semplice, non ulteriormente scomponibile

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Corso di Fisica Generale 1 (mod. B) Esercitazione Giovedì 9 giugno 2011

Corso di Fisica Generale 1 (mod. B) Esercitazione Giovedì 9 giugno 2011 Corso di Fisica Generale 1 (mod. B) Esercitazione Giovedì 9 giugno 2011 Esercizio 1. Due moli di un gas ideale biatomico passano dallo stato termodinamico A, Ta = 400 K, allo stato B, Tb = 300 K, tramite

Dettagli

7. IL SECONDO PRINCIPIO DELLA TERMODINAMICA

7. IL SECONDO PRINCIPIO DELLA TERMODINAMICA 7. IL SECONDO PRINCIPIO DELLA ERMODINAMICA 7. Introduzione Nel definire i concetti di grandezza di stato e di scambio, si è dimostrato come le quantità di energia scambiate da un sistema non siano indipendenti

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli