Minimizzazione di Reti Logiche Combinatorie Multi-livello

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minimizzazione di Reti Logiche Combinatorie Multi-livello"

Transcript

1 Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1

2 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni: valutate di norma come il ritardo di propagazione lungo il percorso critico Reti combinatorie a due livelli: si riducono contemporaneamente areae ritardo Reti combinatorie a più livelli: area e ritardo non procedono nella stessa direzione Maurizio Palesi 2

3 Introduzione I circuiti logici combinatori sono molto spesso realizzati come reti multi-livello di porte logiche Aumento dei gradi di libertà per l ottimizzazione Sfruttamento del trade-off area/ritardo Soddisfare i vincoli tecnologici Difficoltà di modeling e ottimizzazione Metodi esatti: praticamente non attuabili Euristiche (2 passi) Ottimizzazione trascurando i vincoli (semplici modelli per area e prestazioni) I vincoli sono presi in considerazione (library binding) Fattorizzazione Maurizio Palesi 3

4 Fattorizzazione Costo: 31 porte a 2 ingressi Ritardo: 5 f = xyzv + xyzv + xyzv + xyzv + xyzv + xyzv + xyzv + xyzv Corrispondente ad un circuito costituito da 8 porte AND a 4 ingressi e 1 porta OR a 8 ingressi Raramente disponibili in una libreria Caratterizzati da ritardi elevati Maurizio Palesi 4

5 Fattorizzazione f = xyzv + xyzv + xyzv + xyzv + xyzv + xyzv + xyzv + xyzv Applicando la proprità distributiva del prodotto rispetto alla somma f = xy(zv + zv) + xy(zv + zv) + xy(zv + zv) + xy(zv + zv) Riapplicando nuovamente la stessa proprietà f = (xy + xy)(zv + zv) + (xy + xy)(zv + zv) Ricordando che (ab + ab) =(ab + ab) i = (xy + xy) j = (zv + zv) f = ij + ij Maurizio Palesi 5

6 Fattorizzazione Costo della rete ancora di 9 porte logiche Ma tutte le porte sono a 2 ingressi Numero di letterali da 32 a 12 Costo: 9 porte a 2 ingressi Ritardo: 4 Maurizio Palesi 6

7 Fattorizzazione La tecnica di fattorizzazione, se applicata manualmente, implica una certa misura di intuito (o di fortuna) da parte del progettista Deve sapere scegliere nel modo migliore i termini rispetto a cui fattorizzare e l ordine Spesso occore effettuare una fase di espansione (Teorema di Shannon) prima di fattorizzare Utilizzo di strumenti di progettazione automatica Maurizio Palesi 7

8 Esempio (1/3) Si supponga di disporre di porte con un massimo di 3 ingressi (ritardo uniforme τ) f = l + c *g*h + a*b *k + g*k + a *b *c *d *e + a*d *e *f + e *g *i + e *j La porta AND a cinque ingressi è realizzata come cascata di due AND a tre ingressi; l OR a otto ingressi realizzato con tre OR in parallelo seguiti da un OR finale Costo: 23 letterali Ritardo: 5 Maurizio Palesi 8

9 Esempio (2/3) Si proceda ora a fattorizzare k fra il 3 e il 4 termine f = l + c *g*h + k (a*b + g) + a *b *c *d *e + a*d *e *f + e *g *i + e *j ; Costo: 22 letterali Ritardo: 5 Si applichi ancora la fattorizzazione questa volta rispetto a e, per i termini dal 4 all ultimo f = l + c *g*h + k (a*b + g) + e *(a *b *c *d + a*d *f +g *i +j ); Costo: 19 letterali Ritardo: 6 Maurizio Palesi 9

10 Esempio (3/3) Infine, si applichi iterativamente la fattorizzazione entro la seconda parentesi, questa volta rispetto a d f = l + c *g*h + k *(a*b + g) + e *(d *(a *b *c + a*f )+g *i +j ) Costo: 18 letterali Ritardo: 7 Ritardo Area Maurizio Palesi 10

11 Obiettivi della Sintesi Nella realizzazione di reti combinatorie a più livelli, più che ricercare un ottimo (che non è sempre definibile in maniera univoca), si cerca una soluzione accettabile in termini di area e ritardo Sarebbe più corretto parlare di sintesi invece che di ottimizzazione. La sintesi può prevedere Minimizzazione dell'area (con vincolo sul ritardo) Minimizzazione del ritardo (con vincolo sull'area) Maurizio Palesi 11

12 Criteri Guida (1/2) Si pone il problema di scegliere rispetto a quale/quali variabili fattorizzare a ogni passo Quali variabili raccogliere a fattor comune? Fra quali termini? Si ricorre a semplici criteri-guida Maurizio Palesi 12

13 Criteri Guida (2/2) Partendo da una forma iniziale (tipicamente, una forma a due livelli) si costruisce una tabella in cui A ogni riga corrisponde uno dei termini prodotto (implicanti) presenti nella espressione Per ogni variabile si introducono due colonne una corrispondente alla forma naturale, una alla forma complementata; In ogni casella si scrive 1 se il letterale compare nell implicante, 0 altrimenti Nell ultima riga della tabella, colonna per colonna, si inserisce la somma aritmetica dei termini della colonna Un semplice indicatore di quanto sia presente il letterale nei diversi implicanti Maurizio Palesi 13

14 Esempio 1 (1/5) Si consideri f = a*c*d + a *b*c + a *b*d + b *c*d Si faccia riferimento a porte a 3 ingressi con ritardo uniforme Costo: 12 letterali Ritardo: 3 Maurizio Palesi 14

15 Esempio 1 (2/5) I letterali di maggior peso sono a, b, c, d Si nota inoltre che c e d compaiono nelle stesse righe Il termine cd è quindi un buon candidato per la fattorizzazione Si estraggono due tabelle Una costituita dalle righe in cui compaiono sia c sia d (estraendo cd dai rispettivi implicanti) e dalle colonne relative alle variabili residue L altra residua costituita da tutte le righe restanti La tabella completa (cioè la funzione) è la somma logica delle due Maurizio Palesi 15

16 Esempio 1 (3/5) Maurizio Palesi 16

17 Esempio 1 (4/5) Dalla tabella di sinistra non risultano ulteriori possibilità di fattorizzazione La tabella corrisponde alla somma dei due termini prodotto che marcano le righe (quindi ad a+b ) La tabella di destra porta a un ulteriore fattorizzazione rispetto al prodotto a b Anche in questo caso si estrae una tabella residua Maurizio Palesi 17

18 Esempio 1 (5/5) Dalla sequenza di passi ora visti si ottiene la forma fattorizzata f = d*c*(a+b ) + a *b*(c +d ) Costo: 8 letterali Ritardo: 3 Maurizio Palesi 18

19 Esempio 2 Maurizio Palesi 19

20 Esempio 3 Maurizio Palesi 20

21 Modelli di Reti Logiche Il comportamento di un circuito combinatorio a n ingressi ed m uscite può essere espresso da un vettore di funzioni Booleane: f i :B n {0,1,*}, i=1,2,...,m Tale funzione, che può essere non completamente specificata, rappresenta una corrispondenza esplicita tra lo spazio degli ingressi primari e lo spazio delle uscite primarie La struttura di un circuito combinatorio multi-livello, in termini di interconnessione di porte logiche, può essere descritta da una rete logica Una rete logica è una struttura che collega dei moduli (porte di I/O e porte logiche) attraverso reti di interconnessione Maurizio Palesi 21

22 Modelli di Reti Logiche (cont.) Una rete logica può essere rappresentata da un DAG (Directed Acyclic Graph) nel quale i vertici corrispondono ai moduli e i lati rappresentano reti a due terminali, nelle quali le reti originali a terminale multiplo sono state ridotte Una rete logica i cui moduli interni corrispondano a porte logiche appartenenti ad una libreria viene chiamata rete logica mappata (bounded or mapped logic network) Il comportamento di un circuito può essere rappresentato attraverso strutture equivalenti. Al contrario, un unico comportamento può essere derivato dalla struttura di un circuito Maurizio Palesi 22

23 Esempio di Rete Logica Comportamento logico di I/O x = ab y = c + ab a b c Rete logica mappata p q x y v a Grafo della rete logica v b v p v x v c v q v y Maurizio Palesi 23

24 Modelli di Reti Logiche Una rete logica non gerarchica rappresentata dal grafo G n (V,E) è costituita da: Un insieme di vertici V partizionato in 3 sotto-insiemi V I vertici relativi a ingressi primari e n i = V I numero degli ingressi primari V O vertici relativi a uscite primarie e n o = V o numero delle uscite primarie V G vertici interni e n g = V G numero dei vertici interni Ogni vertice è etichettato da una variabile Un insieme di funzioni booleane combinatorie scalari associate ai vertici interni Gli invertitori sono impliciti nel modello e non sono rappresentati. In pratica, ogni vertice può fornire segnali di entrambe le polarità (rete logica a doppia polarità) Maurizio Palesi 24

25 Modelli di Reti Logiche Esempio Si consideri la rete logica con variabili di ingresso primarie {a,b,c,d,e}, variabili di uscita primarie {w,x,y,z} descritta dalle seguenti equazioni p = ce + d e q = a + b r = p + a' s = r + b' t = ac + ad + bc + bd + e u = q'c + qc' + qc v = a'd + bd + c'd + ae' w = v x = s y = t z = u Maurizio Palesi 25

26 Modelli di Reti Logiche Esempio - Rappresentazione Costo associato alla rete logica = ( ) letterali = 33 letterali Maurizio Palesi 26

27 Stima dell Area L area occupata da una rete logica multi-livello è proporzionale al numero di porte logiche e alle interconnessioni (wiring) L area delle porte logiche è definibile una volta che si conosca la libreria tecnologica Valutabile parametricamente in base al numero di ingressi In base al numero di porte logiche equivalenti (NAND2) che implementano la corrispondente funzionalità logica e al numero di letterali L area dovuta ai collegamenti è molto più difficile da stimare Proporzionale al numero di letterali Maurizio Palesi 27

28 Stima del Ritardo Ritardo proporzionale al numero di livelli logici e alle interconnessioni Nel caso di bounded network (reti mappate su una libreria tecnologica), il ritardo di ogni singola porta logica è specificato Altrimenti il ritardo è stimato in base al ritardo associato ad ogni vertice (es. ritardo unitario per ogni vertice) Modelli di ritardo più sofisticati tengono conto del fan-out e delle interconnessioni associati ai vertici Ottimizzazione in timing = Ridurre il ritardo associato al percorso più lungo detto percorso critico Maurizio Palesi 28

29 Ottimizzazione Multi-livello: Metodi Metodi esatti Elevata complessità computazionale Non applicabili ai casi reali Metodi approssimati Metodi euristici basati sull applicazione iterativa di trasformazioni che preservano il comportamento di I/O L esecuzione di trasformazioni in qualunque sequenza salvaguarda l equivalenza della rete logica Metodi che differiscono per Tipo delle trasformazioni Selezione e ordine delle trasformazioni Maurizio Palesi 29

30 Ottimizzazione Multi-livello Problema della sintesi multi-livello Trovare un appropriata sequenza di trasformazioni da applicare alla rete logica Una rete logica viene dichiarata ottima in area e ritardo rispetto ad un insieme di trasformazioni quando l aplicazione di queste non può più migliorare la funzione di costo Maurizio Palesi 30

31 Ottimizzazione Multi-livello Le traformazioni Si valutano utilizzando delle cifre di merito In modo da scartare le trasformazioni non convenienti Si applicano in modo iterativo Il procedimento termina quando nessuna ulteriore applicazione di queste la migliora Per ogni trasformazione è definito un algoritmo Dove la trasformazione può essere applicata? Termina quando nessuna trasformazione dello stesso tipo può essere applicabile Gli algoritmi legati a trasformazioni diverse vengono applicati in sequenza Sequenze di applicazione diversa portano a risultati diversi Script di sintesi Maurizio Palesi 31

32 Trasformazioni Algebriche Sweep Eliminazione Decomposizione Estrazione Semplificazione Sostituzione Maurizio Palesi 32

33 Sweep Elimina dalla rete I nodi con un solo ingresso I nodi le cui funzioni danno valore costante Viene richiamata a valle di altre trasformazioni Maurizio Palesi 33

34 Eliminazione L eliminazione di un vertice interno è la sua rimozione dalla rete. La variabile corrispondente al vertice è rimpiazzata dalla corrispondente espressione in tutte le sue occorrenze nella rete logica Eliminazione Maurizio Palesi 34

35 Eliminazione (cont.) Maurizio Palesi 35

36 Decomposizione La decomposizione di un vertice interno è la sostituzione del vertice con due (o più) vertici che formano una sottorete equivalente al vertice originale Decomposizione v = (a + b + c )d + ae j = a + b + c v = jd + ae Maurizio Palesi 36

37 Decomposizione (cont.) Maurizio Palesi 37

38 Estrazione Una sotto-espressione comune a due funzioni associate a due vertici può essere estratta creando un nuovo vertice associato alla sottoespressione p = (c + d)e k = c + d p = ke t = ka + kb + e t = (c + d)(a + b) + e Maurizio Palesi 38

39 Estrazione (cont.) Maurizio Palesi 39

40 Semplificazione Una funzione è ridotta in complessità sfruttando le proprietà della sua rappresentazione. Se la funzione è rappresentata nella forma a due livelli allora le tecniche di ottimizzazione a due livelli possono essere utilizzate. Se l insieme di supporto non cambia allora la trasformazione si dice locale u = q + c Trasformazione locale Maurizio Palesi 40

41 Sostituzione Una funzione è ridotta in complessità utilizzando un ingresso addizionale che non appartiene all insieme di supporto. La trasformazione richiede la creazione di una dipendenza ma può anche portare ad eliminarne altre t = k(a + b) + e Maurizio Palesi 41

42 Sostituzione (cont.) Maurizio Palesi 42

43 Risultato delle Trasformazioni Costo associato alla rete logica trasformata = ( ) letterali = 24 letterali Maurizio Palesi 43

44 Risultato delle Trasformazioni k = c + d q = a + b s = ke + a' + b' t = kq + e u = q c + qc + qc v = jd + ae' w = v x = s y = t z = u Rispetto alla rete logica di riferimento il numero totale dei letterali è stato ridotto da 33 a 24 Maurizio Palesi 44

45 Trasformazioni Booleane Idea di base Associare ad ogni nodo della rete Non solo la funzione booleana locale ma anche un insieme di condizioni di indifferenza locali Si considerano le relazioni tra il singolo nodo e l intera rete Condizioni di indifferenza esterne Di controllabilità di ingresso Di osservabilità di uscita Maurizio Palesi 45

46 Condizioni di Indifferenza Esterne Di controllabilità di ingresso Controllability don t care (CDC in ) Configurazioni di ingresso che non vengono mai prodotte dall ambiente E quindi non vengono mai presentate agli ingressi primari CDC in = x 1 x 2 x 3 x 4 +x 1 x 2 +x 1 x 3 +x 1 x 4 +x 2 x 3 +x 2 x 4 +x 3 x 4 Maurizio Palesi 46

47 Condizioni di Indifferenza Esterne Di osservabilità in uscita Observability don t care (ODC out ) Configurazioni di ingresso corrispondenti a situazioni in cui l uscita non verrà osservata ODC out = [x 1 x 1 x 4 x 4 ] T Maurizio Palesi 47

48 Condizioni di Indifferenza Esterne Insieme complessivo delle condizioni d indifferenza esterne External don t care (DC ext ) DC ext = CDC in ODC out CDC in = x 1 x 2 x 3 x 4 +x 1 x 2 +x 1 x 3 +x 1 x 4 +x 2 x 3 +x 2 x 4 +x 3 x 4 ODC out = [x 1 x 1 x 4 x 4 ] T DC ext =CDC in ODC out =[ x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 4 x 4 x 2 x 3 x 1 x 4 x 2 x 3 x 1 ] Maurizio Palesi 48

49 Insiemi Locali di Condizioni di Indifferenza Mappa di Karnaugh per y Maurizio Palesi 49

50 Insiemi Locali di Condizioni di Indifferenza Non puo mai essere x a+b E possibile definire le seguenti condizioni di indifferenza di controllabilità CDC=x a b = x a xb xa b Maurizio Palesi 50

51 Insieme di Soddisfacibilità L uscita di una funzione non può mai essere diversa dalla valutazione della funzione stessa Per l intera rete G(V,E) si può calcolare l insieme di soddisfacibilità SDC= v x V x f x x è l uscita del generico nodo v x f x è la funzione che genera x Maurizio Palesi 51

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

The Directed Closure Process in Hybrid Social-Information Networks

The Directed Closure Process in Hybrid Social-Information Networks The Directed Closure Process in Hybrid Social-Information Networks with an Analysis of Link Formation on Twitter Dario Nardi Seminario Sistemi Complessi 15 Aprile 2014 Dario Nardi (CAS) 15/4/14 1 / 20

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Guida rapida. Cos è GeoGebra? Notizie in pillole

Guida rapida. Cos è GeoGebra? Notizie in pillole Guida rapida Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Riunisce geometria, algebra, tabelle,

Dettagli

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza Che cosa abbiamo fatto fin ora Introduzione alla rappresentazione della conoscenza ovvero Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi, 2014/2015 Abbiamo trattato:

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli