INTRODUZIONE ALL ANALISI MATEMATICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTRODUZIONE ALL ANALISI MATEMATICA"

Transcript

1 INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche

2 Intervallo Un intervallo di estremi a e b è un insieme di valori numerici compresi tra a e b è limitato se a e b sono due valori finiti è illimitato se a e/o b sono infiniti è chiuso se gli estremi sono inclusi nell intervallo è aperto se gli estremi sono esclusi

3 [a;b[ è un intervallo limitato di estremi a e b, chiuso a sinistra, aperto a destra ]a;b] è un intervallo limitato di estremi a e b, aperto a sinistra, chiuso a destra [a;+ [ è un intervallo illimitato a destra, chiuso a sinistra, di estremo a.

4 Intorno di un punto c Si dice intorno completo di un punto c un qualsiasi intervallo aperto che contiene il punto c es: intorno di 5: ]2; 8[ Si dice intorno destro di un punto c un qualsiasi intervallo aperto a destra che contiene il punto c come estremo sinistro es: intorno destro di 5: [5; 12[

5 Si dice intorno sinistro di un punto c un qualsiasi intervallo aperto a sinistra che contiene il punto c come estremo destro es: intorno sinistro di 5: ]-10; 5] Si dice intorno circolare di un punto c un qualsiasi intervallo del tipo ]c-δ ; c+δ[ es: intorno circolare di 5: ]1; 9[ il punto c deve stare sempre nel mezzo tra i due estremi

6 Intorno di + E un qualsiasi intervallo illimitato superiormente [M; + [ oppure M { cioè del tipo: intorno di + + ]M; + [

7 Intorno di - E un qualsiasi intervallo illimitato inferiormente cioè del tipo: ]- ; N[ N { - intorno di - oppure ]- ; N]

8 Esercizi scrivi un intorno completo di 4 scrivi un intorno destro di 8 scrivi un intorno sinistro di -7 scrivi un intorno circolare di 6 scrivi un intorno circolare di -10 scrivi un intorno di + scrivi un intorno di -

9 Funzione Una funzione è una legge che ad ogni elemento dell insieme di partenza associa un solo elemento dell insieme di arrivo f(x) x y insieme di partenza insieme di arrivo x è l elemento dell insieme di partenza e si chiama anche variabile indipendente; y è l elemento dell insieme di arrivo e si chiama anche variabile dipendente; f(x) è la funzione. Una funzione si dice a variabili reali se l insieme di partenza e di arrivo sono insiemi di numeri reali.

10 FUNZIONI

11 FUNZIONI analitica empirica

12 FUNZIONI empirica analitica algebrica trascendente

13 FUNZIONI empirica analitica algebrica razionale trascendente irrazionale intera fratta

14 FUNZIONI empirica analitica algebrica trascendente esponenziale logaritmica goniometrica razionale irrazionale intera fratta

15 FUNZIONI empirica analitica algebrica trascendente esponenziale logaritmica goniometrica razionale irrazionale intera fratta

16 FUNZIONI empirica analitica algebrica trascendente esponenziale logaritmica goniometrica razionale irrazionale intera fratta

17 FUNZIONI empirica analitica algebrica trascendente esponenziale logaritmica goniometrica razionale irrazionale intera fratta

18 F. EMPIRICA: è il risultato di una raccolta di dati o di un esperimento reale F. ANALITICA: contiene formule matematiche F. ALGEBRICA: contiene le sole operazioni di somma, sottrazione, prodotto, divisione e potenza y= 3x + 2 F. TRASCENDENTE: può essere di tre tipi: esponenziale: la x è nell esponente di una potenza y=3x+1 logaritmica: la x è nell argomento e/o nella base di un logaritmo y = log(3x-4) y = logx 4 goniometrica: la x compare nell argomento di seno, coseno, tangente. y = sen(x-7) y = cos(x)

19 F. RAZIONALE: la x non compare sotto radice F. IRRAZIONALE: la x compare sotto radice: indice pari: l indice della radice è un numero pari indice dispari: l indice della radice è un numero dispari F. INTERA: la x non compare nel denominatore di una frazione F. FRATTA: la x compare nel denominatore di una frazione

20 Riassumendo: NO NO NO NO CONTIENE FORMULE MATEMATICHE? SI CONTIENE LOGARITMI, ESPONENZIALI O ELEMENTI DI TRIGONOMETRIA CON LA X NELL' ARGOMENTO O NELLA BASE dell'esponente? CONTIENE RADICI CON LA X NEL RADICANDO? CONTIENE DELLE FRAZIONI CON LA X NEL DENOMINATORE? Logaritmica SI Esponenziale Goniometrica Indice pari SI Indice dispari SI

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta. Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Il corso prevede 3 ore settimanali Sono previste 2 verifiche scritte nel trimestre e 3 nel pentamestre PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Testo in adozione:

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA

ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO LICEO ARTISTICO - Dipartimento di Matematica e Fisica MATEMATICA Finalità della Matematica nel triennio è di proseguire e ampliare il processo di preparazione

Dettagli

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte.

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. Tutorial di Barberis Paola - 2009 Definizioni: FUNZIONE e DOMINIO LA FUNZIONE

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia matematica preventivo consuntivo 95 0 titolo modulo 4.1 Disequazioni 4.2 Funzioni 4.3 Goniometria e trigonometria

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

FUNZIONI LA FUNZIONE E UNA LEGGE CHE LEGA DUE VARIABILI X E Y IN MODO CHE PER OGNI VALORE DI X CORRISPONDA UNO ED UN SOLO VALORE DI Y

FUNZIONI LA FUNZIONE E UNA LEGGE CHE LEGA DUE VARIABILI X E Y IN MODO CHE PER OGNI VALORE DI X CORRISPONDA UNO ED UN SOLO VALORE DI Y FUNZIONI LA FUNZIONE E UNA LEGGE CHE LEGA DUE VARIABILI X E Y IN MODO CHE PER OGNI VALORE DI X CORRISPONDA UNO ED UN SOLO VALORE DI Y y=f(x) Prof. Paola Barberis [ progetto: Chiara Cicognini - V^TGA -2009

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Stampa Preventivo. A.S Pagina 1 di 7

Stampa Preventivo. A.S Pagina 1 di 7 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 7 Insegnante URSIC CLAUDIA Classe 4AST Materia matematica preventivo consuntivo 132 titolo modulo 4.1ST DISEQUAZIONI 4.2ST FUNZIONI 4.3ST FUNZ. ESPONENZIALI

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

Operazioni e proprietà. Potenze e proprietà. Operazioni e proprietà. Potenze ad esponente negativo. I prodotti notevoli

Operazioni e proprietà. Potenze e proprietà. Operazioni e proprietà. Potenze ad esponente negativo. I prodotti notevoli ITT DON BOSCO CURRICOLO VERTICALE DI MATEMATICA A.S. 2016/17 PRIMO BIENNIO COMPETENZE: OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE PRIMA 1) Saper utilizzare tecniche e procedure di calcolo aritmetico;

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali.

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali. PROF GIOVANNI IANNE L INSIEME DEI NUMERI REALI DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali DEFINIZIONE DI INTERVALLO L intervallo è un particolare insieme

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore

I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore CONOSCENZE indirizzo CLASSICO I LICEO CLASSICO Le equazioni e le disequazioni di II grado e di grado superiore Equazioni di secondo grado incomplete; equazioni di secondo grado complete; formula risolutiva

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

PROGRAMMI SVOLTI MATEMATICA APPLICATA

PROGRAMMI SVOLTI MATEMATICA APPLICATA ISTITUTO TECNICO COMMERCIALE E GEOMETRI LUIGI EINAUDI MURAVERA ANNO SCOLASTICO 2015/2016 PROGRAMMI SVOLTI MATEMATICA APPLICATA CLASSE PRIMA SEZIONE A DOCENTE: PROF. ENRICO SEDDA Rivisitazione prerequisiti

Dettagli

TEMATICA 3 - GONIOMETRIA E TRIGONOMETRIA

TEMATICA 3 - GONIOMETRIA E TRIGONOMETRIA Docente Materia Classe Cristina Frescura Matematica 4B Programmazione Consuntiva Anno Scolastico 2012-2013 Data 5 giugno 2013 Obiettivi Cognitivi Nota bene: gli obiettivi minimi sono sottolineati U.D.

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

CLASSE 1 A O.M.T. Anno scolastico 2009/10

CLASSE 1 A O.M.T. Anno scolastico 2009/10 CLASSE 1 A O.M.T. Anno scolastico 2009/10 Testo: M.Scovenna A.Moretti - Appunti di Algebra 1 - Ed. Cedam ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA Cap. 1 (da pag.11) Cap. 2 (fino a pag 94) - Ordinamento,

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.

ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016. B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO COD. Progr.Prev. PAGINA: 1 PROGRAMMA CONSUNTIVO A.S. 2014/2015 SCUOLA Civico Liceo Linguistico A. Manzoni DOCENTE: Roberto Galimberti MATERIA: Matematica Classe 5 a Sezione F CONTENUTI DISCIPLINARI SVOLTI

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Sallustio Bandini. Programma di Matematica Classe 1^ A Tur a.s Prof.ssa Bruna Lopraino

Sallustio Bandini. Programma di Matematica Classe 1^ A Tur a.s Prof.ssa Bruna Lopraino Classe 1^ A Tur a.s. 2015-2016 Prof.ssa Bruna Lopraino Modulo 1: Gli insiemi numerici I Numeri naturali: L insieme dei numeri naturali e le operazioni su esso definite, proprietà delle operazioni, Le potenze

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali} GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

Programma Didattico Annuale

Programma Didattico Annuale LICEO STATALE SCIENTIFICO - LINGUISTICO - CLASSICO GALILEO GALILEI - LEGNANO PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori

Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori Corso Matematica per le Superiori Corso Online MATEMATICA PER LE SUPERIORI Accademia Domani Via Pietro Blaserna, 101-00146 ROMA (RM) info@accademiadomani.it Programma Generale del Corso Matematica per

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Programma di Matematica IB,a.a.2015/2016

Programma di Matematica IB,a.a.2015/2016 Programma di Matematica IB,a.a.2015/2016 Liceo Scientifico M. Malpighi prof. Lorenzo Asti Algebra I numeri razionali Le operazioni in Q Le potenze con esponente positivo e negativo Monomi e polinomi I

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO ISTITUTO ISTRUZIONE SUPERIORE Via Silvestri, 301 00164 ROMA - Via Silvestri, 301 Tel. 06/121127660 Fax

Dettagli

DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte.

DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte. DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte. Tutorial di Barberis Paola agg 2015 FUNZIONE e DOMINIO LA FUNZIONE

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 7 Insegnante MIANI LUCIO Classe 4LTS Materia matematica preventivo consuntivo 96 0 titolo modulo 1. Funzione esponenziale e logaritmica 2. Le coniche 3. Disequazioni

Dettagli

Matematica per le scienze sociali Elementi di base. Francesco Lagona

Matematica per le scienze sociali Elementi di base. Francesco Lagona Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Funzioni, equazioni e disequazioni esponenziali. Funzioni, equazioni e disequazioni logaritmiche

Funzioni, equazioni e disequazioni esponenziali. Funzioni, equazioni e disequazioni logaritmiche Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 4^ I a.s. 2015/16 - Docente: Marcella Cotroneo Libri di testo : L. Sasso "Nuova Matematica a colori 3" e "Nuova Matematica a colori

Dettagli

matematica classe terza Liceo scientifico

matematica classe terza Liceo scientifico LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Programma del corso di Matematica per Tecnologia della Produzione Animale

Programma del corso di Matematica per Tecnologia della Produzione Animale Programma del corso di Matematica per Tecnologia della Produzione Animale Anno Accademico 2016/2017 3 agosto 2016 Il corso ha come scopo l acquisizione di conoscenze di matematica di base. A partire dai

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ =

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ = CLASSE 5^ C LICEO SCIENTIFICO 2 Gennaio 25 Studio di funzioni e continuità (Recupero per assenti). Determina i valori dei parametri reali a e b in modo che la funzione = passi per il punto 2;, abbia come

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

PROGRAMMAZIONE PREVENTIVA a.s

PROGRAMMAZIONE PREVENTIVA a.s PROGRAMMAZIONE PREVENTIVA a.s. 2009-2010 Insegnante Classe Materia preventivo Battistella Fulvia 5ST matematica 132 titolo set ott nov dic gen feb mar apr mag giu prev 5.1 TRIGONOMETRIA x x x 20 5.2 CALCOLO

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016

RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio,

Dettagli

Capitolo 9 (9.2, Serie: 1,..., 18).

Capitolo 9 (9.2, Serie: 1,..., 18). Universitá degli Studi di Bari Corso di Laurea in Biotecnologie per l innovazione di Processi e Prodotti Programma dettagliato di MATEMATICA ED ELEMENTI DI STATISTICA- A.A. 2014/2015 Prof. Mario Coclite

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

1 EQUAZIONI E FUNZIONI ESPONENZIALI E LOGARITMICHE

1 EQUAZIONI E FUNZIONI ESPONENZIALI E LOGARITMICHE INDICE DELLE UFC N. DENOMINAZIONE 1 EQUAZIONI E FUNZIONI ESPONENZIALI E LOGARITMICHE 2 GONIOMETRIA E TRIGONOMETRIA 3 SUCCESSIONI E PROGRESSIONI 4 STUDIO DI FUNZIONI: DOMINIO E LIMITI n.b. Solo per l anno

Dettagli