Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua"

Transcript

1 Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede meda dal Paese d proveeza? Nazoe (X) Altezza () Totale CINA ITALIA FRANCIA SVEZIA Totale I questo caso lo studo rguarda l assocazoe tra u carattere quattatvo () e u carattere qualtatvo (X). L aals della dpedeza può essere codotta cofrotado le dstrbuzo del carattere corrspodeza delle dverse modaltà del carattere X. (carattere quattatvo) è dpedete meda da X (carattere qualtatvo) se tutte le mede codzoate della varable soo fra loro ugual e ugual qud ache alla meda margale: /X per og =,2,,k Cosderado la scomposzoe della varaza s può trodurre l seguete dce relatvo d dpedeza meda: ( = ) r 2 2 σ X. et X 2 c σ 2 ( j ). j j = η η = X X 0 perfettadpedeza meda d da X η = perfetta dpedeza meda d da X. Meda geerale d : ( 62 5) ( 67 2) ( 7 ) ( 82 9) j.j j= = 73,9 N Mede d codzoate alle modaltà d X

2 ( 62 5) ( 67 ) ( 7 ) ( 82 0) CINA j j= CINA = 6 7. ( 62 0) ( 67 ) ( 7 ) ( 82 3) ITA 2j j= ITA = 77, 5 2. ( 62 0) ( 67 0) ( 7 ) ( 82 ) FRA 3j j= FRA = 80, 5 3. ( 62 0) ( 67 0) ( 7 ) ( 8) SVE j j= SVE = 79, Calcolo del umeratore dell dce: ( = ) r 2 = X. (, ) (,, ) , 73, , 3 73, 9 3 = 989, 02. Calcolo del deomatore dell dce: ( ) c 2 j= = j. j (, ) (, ) , , 9 9 = 393, 8 5. Calcolo dell dce: ( = ) r 2 2 σ X. et X 2 c σ 2 ( j ). j j = 989, 02 η 393, 8 0, 7 Il valore dell dce dca u grado d dpedeza meda abbastaza elevato

3 ESERCIZIO 2: Da u collettvo d 20 studet della facoltà d ecooma soo stat rlevat vot otteut ella prova scrtta e orale dell esame d statstca S calcol la cocordaza o la dscordaza tra due caratter medate l calcolo della covaraza. Le votazo soo rportate ella seguete tabella. Studete Prova scrtta Prova orale La covaraza tra due caratter quattatv è defta come la meda de prodott degl scostamet delle varabl X e dalle rspettve mede: cov, ( ) = ( ) ( ) Quest dce msura la cocordaza o la dscordaza tra due caratter quattatv. È defta sull seme de umer real ed è postva se al umeratore prevalgoo prodott degl scostamet cocord (tutt e due postv o tutt e due egatv), metre è egatva se prevalgoo prodott degl scostamet dscord. Il umeratore della covaraza è detto codevaza. Se due caratter soo statstcamete dpedet la loro covaraza è zero. Tuttava, se la covaraza è ulla, o è detto che due caratter sao dpedet. Ifatt, la covaraza s aulla se prodott degl scostamet dalla meda s compesao tra loro, ma cò può avvere ache se tra due caratter sussste ua relazoe d dpedeza o d tpo leare.. Meda voto scrtto , Meda voto orale ,

4 X * - - (- )(- ) ,75-2, -8, ,75 3,6 27, ,75 5,6 32, ,75 0,6, ,75 2,6 7, ,75 -, -2, ,75-2, -, ,75 0,6, ,25-0, 0, 50-0,25-0, 0, ,25 0,6 -, ,25-0, 0, ,25 0,6 -, ,25 -,, ,25 2,6-8, ,25,6-5, ,25-2, 7, ,25 0,6 -, ,25 -,, ,25-6, 27,2 = 0 ( ) ( ) = = cov, = 3, 55 Formula alteratva per la covaraza: cov (, ) = ( ) ( ) = Meda de prodott: 0 522, Calcolo della covaraza co la formula alteratva: cov, = 522, 05 2, 25 2, = 3, 55

5 ESERCIZIO 3: Le quattà d precptazo e le temperature mede regstrate 0 stazo meteorologche soo state le seguet: stazoe meteorologca Precptazo Temperatura Determare co l metodo de mm quadratca la retta d regressoe relatva alla quattà d precptazoe () fuzoe della temperatura meda (X). Commetare l valore del coeffcete d regressoe otteuto. F ora abbamo llustrato alcu dc grado d msurare la relazoe statstca esstete tra due caratter. Quado s utlzzao due o pù caratter quattatv s può cercare d dvduare ua fuzoe che descrva modo dettaglato la relazoe che emerge tra dat. Se ua delle varabl è cosderata dpedete dall altra s utlzzerà u modello d regressoe. Tale modello può avere dvers scop: descrttvo, terpretatvo e prevsvo. La sua mportaza all tero della teora statstca derva dalla sua semplctà utà a ua formalzzazoe rgorosa che cosetoo d rcercare, a partre da dat osservat e da assuzo larga msura verfcabl, ua relazoe statstca tra la varable dpedete e le altre varabl dpedet (chamate ache varabl esplcatve). Ua relazoe statstca tra ua varable dpedete X e ua varable dpede può essere descrtta dall equazoe: = α + β X + ε cu α+βx defsce l cotrbuto della varable esplcatva al valore della varable dpedete metre ε rappreseta l cotrbuto d tutt gl altr fattor grado d fluezare la rsposta (varable dpedete ). Il modello d regressoe leare s dce semplce quado s cosdera ua sola varable esplcatva (o dpedete). Per cascua osservazoe s ha = α + β + ε dove α e β corrspodoo all tercetta e al coeffcete agolare d ua retta sul pao e soo chamat coeffcet d regressoe. Occorre a questo puto defre u metodo d stma de coeffcet d regressoe. I altr term, occorre dvduare ua retta che per og resttusca u valore d che sa pù vco possble a valor osservat. Il metodo de mm quadrat cosste el rcercare le stme d α e β medate a e b che redoo mma la somma de quadrat de resdu e (dffereza tra l valore osservato e l valore forto dalla retta d regressoe ˆ). Le stme de MINIMI QUADRATI de coeffcet d regressoe soo date da: b ( ) ( ) = = 2 dev ( ) = ( ) ( ) cod, cov, var a = b ˆ = a + b

6 X * (- ) (- ) , 9, ,, ,9 0, , 6, ,9 5, , 26,0 26 7,, ,9 8, ,9 3, ,9 3,6 Tot 20,9 Calcolo della meda d : , 9 Calcolo della meda d : Calcolo della covaraza tra e : cov, = 9, 7, 9 73 = 76 Calcolo della varaza d : 20, 9 var ( ) 2, 09 0 Stma della retta d regressoe: calcolo d a e b. cov, 76 b =, 56 var 2, 09 a = b = 73, 56, 9 = 289, 9 ˆ = a + b ˆ = 289, 9, 56 All aumetare d ua utà della temperatura meda (varable X) corrspode ua rduzoe della quattà d precptazoe () par a,56.

7

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Regressione. Modelli statistici. Esempio: le automobili si vendono a peso? Esempio: le automobili si vendono a peso? prezzo=a+b*(peso-500)+errore

Regressione. Modelli statistici. Esempio: le automobili si vendono a peso? Esempio: le automobili si vendono a peso? prezzo=a+b*(peso-500)+errore Modell statstc Regressoe Ccchtell Cap. 0 La relazoe tra varabl può essere studata per mezzo d modell statstc varable (es. peso) Quato c s dscosta da u valore tpco modello varabl (peso-altezza) Quato c

Dettagli

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU 3 Varabltà 3 varabltà Seza devazoe dalla orma l progresso o è possble (Frak Zappa) 68 Statstca - 9CFU 3 Varabltà 3. varabltà Defzo Varabltà E l atttude d u feomeo ad assumere dverse modaltà. Essa è msurata

Dettagli

Analisi statistiche bivariate

Analisi statistiche bivariate Aals statstche bvarate Aals coguta d due caratter (varabl) osservat per ua utà statstca (ad es. peso ed altezza d studet) Rappresetazoe de dat tabelle elecazoe completa delle modaltà a doppa etrata grafc

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale .09.06 Statstca Maura Mezzett maura.mezzett@uroma.t Soo dpedet caratter X e? A B Totale X 0 0 0 0 0 0 3 0 0 0 Totale 40 0 50 .09.06 Soo dpedet caratter X e? A B C Totale X 40 0 0 40 0 40 0 60 Totale 40

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Formulario e tavole. Complementi per il corso di Statistica Medica

Formulario e tavole. Complementi per il corso di Statistica Medica Complemet per l corso d Statstca Medca Formularo e tavole Ne è cosetto l uso all esame scrtto, ma og Studete deve cosultare solo l propro formularo, e essu altro materale! Statstca Descrttva destà ampea

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia Tabelle Statstche Massmo Alfoso Russo Dpartmeto d Sceze Ecoomche, Matematche e Statstche Uverstà d Fogga STATISTICA I - 2009 - Fogga Cocett d base Serazoe Dat d tpo quattatvo. Sere Dat d tpo qualtatvo;

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:

Dettagli

Marco Riani - Analisi delle statistiche di vendita 1

Marco Riani - Analisi delle statistiche di vendita 1 ORARIO LEZIONI ANALISI DELLE STATISTICHE DI VENDITA Marco Ra mra@upr.t http://www.ra.t Mercoledì 3 aula Lauree Mercoledì 4 6 aula Lauree Govedì 3 Eserctazoe Semar? LIBRI DI TESTO Teora Ra M., Laur F. 8,

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

= = stimatori degli indici statistici di variabilità. Definizione della varianza campionaria. Definizione dello scarto quadratico medio.

= = stimatori degli indici statistici di variabilità. Definizione della varianza campionaria. Definizione dello scarto quadratico medio. regressoe- M. Maravalle dell'aqula - A.A. 3-'4 Uverstà scarto stadard devazoe stadard stmator degl dc statstc d varabltà varaza σ scarto quadratco medo rage {ma-m} σ Defzoe della varaza campoara,..., σ

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Appunti: elementi di Statistica

Appunti: elementi di Statistica Uverstà d Ude, Facoltà d Sceze della Forazoe Corso d Laurea Sceze e Tecologe Multedal Corso d Mateatca e Statstca (Gorgo T. Bag) Apput: eleet d Statstca. INTENSITÀ, FREQUENZA ASSOLUTA E RELATIVA.. L aals

Dettagli

Capitolo 2 APPROSSIMAZIONI DI DATI E FUNZIONI CON MATHCAD

Capitolo 2 APPROSSIMAZIONI DI DATI E FUNZIONI CON MATHCAD Captolo APPROSSIMAZIONI DI DATI E FUNZIONI CON MATHCAD A. M. Ferrar - Apput d LPCAC SOMMARIO. APPROSSIMAZIONE DI DATI E FUNZIONI... 3. Itroduzoe... 3. I crter d scelta... 4.. Osservazo... 5. LE CURVE DI

Dettagli

= Pr{Y > X}. un campione casuale semplice (c.c.s.) di dimensione n x da X e Y1, Y2

= Pr{Y > X}. un campione casuale semplice (c.c.s.) di dimensione n x da X e Y1, Y2 STATISTICA, ao LXVI,., 2006 INTERVALLI DI CONFIDENZA NON PARAMETRICI PER L AREA SOTTESA ALLA CURVA ROC Gafraco Admar. INTRODUZIONE I ambto sataro, gl esam dagostc vegoo comuemete utlzzat co l obettvo d

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

SCHEDA DIDATTICA N 5

SCHEDA DIDATTICA N 5 FACOLTA DI INGEGNEIA COSO DI LAUEA IN INGEGNEIA CIVILE COSO DI IDOLOGIA POF. PASQUALE VESACE SCHEDA DIDATTICA N 5 MOMENTI DELLE VAIABILI CASUALI E STIMA DEI PAAMETI A.A. 0-3 Momet delle varabl casual La

Dettagli

FORMULARIO DI RIFERIMENTO PER IL CALCOLO DELLE INCERTEZZE DI MISURA. F.Silvestrin, V.Talamini

FORMULARIO DI RIFERIMENTO PER IL CALCOLO DELLE INCERTEZZE DI MISURA. F.Silvestrin, V.Talamini FORMULARIO DI RIFERIMENTO PER IL CALCOLO DELLE INCERTEZZE DI MISURA F.Slvestr, V.Talam Ne calcol fatt per valutare le certezze d msura s farà rfermeto al presete formularo rportado umer delle formule usate

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Sommario. Facoltà di Economia francesco mola. Distribuzioni (cont.) Distribuzioni di frequenza. Distribuzioni Distribuzioni di quantità

Sommario. Facoltà di Economia francesco mola. Distribuzioni (cont.) Distribuzioni di frequenza. Distribuzioni Distribuzioni di quantità Corso d Statstca Facoltà d Ecooma fracesco mola a.a. 2-2 2 Sommaro Dstrbuzo d frequeza Rappresetazo grafche Dagramm a barre Istogramm Fuzoe d rpartzoe emprca Lezoe 2 lez2_2-2 statstca-fracesco mola 2 Dstrbuzo

Dettagli

APPUNTI di FISICA SPERIMENTALE

APPUNTI di FISICA SPERIMENTALE APPUNTI d FISICA SPERIMENTALE Igegera Elettrca e Meccaca 008-009 premessa: l metodo spermetale msurazoe d gradezze fsche caratterstche degl strumet d msura sstem d utà d msura aals dmesoale aals delle

Dettagli

Elementi di Statistica descrittiva Parte II

Elementi di Statistica descrittiva Parte II Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv

Dettagli

Capitolo 4 Le Misure di Centralità

Capitolo 4 Le Misure di Centralità Captolo 4 Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo

Dettagli

Sommario. Corso di Statistica Economia e Commercio. Distribuzioni (cont Distribuzioni di frequenza. Distribuzioni

Sommario. Corso di Statistica Economia e Commercio. Distribuzioni (cont Distribuzioni di frequenza. Distribuzioni Corso d Statstca Ecooma e Commerco Lezoe a.a. - Fracesco Mola z z z Sommaro Dstrbuzo d frequeza Rappresetazo grafche Dagramm a barre Istogramm Fuzoe d rpartzoe emprca a.a. - statstca-fracesco mola Dstrbuzo

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X Prof.ssa Emauela Baudo Fabrza De Berard VARIABILI ALEATORIE DISCRETE E DISTRIBUZIONI DI PROBABILITA Def. S dce varable aleatora dscreta X ua varable che può assumere valor X, X,... X corrspodet ad evet

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. ESEMPIO 3 I uer dc de prezz e delle produzo Da geao a dcebre prezz de quattro prodott soo auetat del: (,48 ) 4,8% assuedo che le quattà vedute sao quelle d dcebre. I due dc (Laspeyres e Paasche) dao luogo

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze Esercz d Statstca per gl studet d Sceze Poltche, Uverstà d Freze Esercz svolt da ua selezoe d compt degl Esam scrtt d Statstca del 999 e del 000 VERSIONE PROVVISORIA APRILE 00 A cura d L. Matroe F.Meall

Dettagli

Analisi della Dipendenza. Analisi della Dipendenza

Analisi della Dipendenza. Analisi della Dipendenza Aals della Dedeza Assocazoe Aals della Dedeza Pro. laudo alu - Facoltà d Sceze della Formazoe - A.A. 007/08 Quado le due varabl osservate o soo etrambe uattatve o ha seso arlare d covarazoe o d correlazoe.

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

ammontare del carattere posseduto dalle i unità più povere.

ammontare del carattere posseduto dalle i unità più povere. Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe

Dettagli

Le 7 fasi dell AMD (PAG.6 M.Fraire-Metodi di AMD CISU, Roma 1994)

Le 7 fasi dell AMD (PAG.6 M.Fraire-Metodi di AMD CISU, Roma 1994) !(Breve rchamo alle lezo ) " I passato l applcazoe ua tecca statstca multvarata cossteva stetcamete tabella e at potes moello e tecca statstca multvarata output e rsultat Ogg l amplars e camp applcazoe

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metod Statstc per le decso d mpresa (Note ddattche) Bruo Chadotto 5. Campo casual e dstrbuzo campoare - Campo casual Nel Cap. 3 d queste ote s è avuto modo d dstguere

Dettagli

Autori. Versione 2.0. Giorgio Della Rocca (*) Marco Di Zio (*) Orietta Luzi (*) Giorgia Simeoni (*) (*) ISTAT - Servizio MTS (**) ISTAT - Servizio PSM

Autori. Versione 2.0. Giorgio Della Rocca (*) Marco Di Zio (*) Orietta Luzi (*) Giorgia Simeoni (*) (*) ISTAT - Servizio MTS (**) ISTAT - Servizio PSM IDEA (Idces for Data Edtg Assessmet) - Sstema per la valutazoe degl effett d procedure d cotrollo e correzoe de dat e per l calcolo degl dcator SIDI Versoe 2.0 Autor Gorgo Della Rocca (*) Marco D Zo (*)

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Sono misure sintetiche che consentono il passaggio da una pluralità di informazioni a una sola modalità Nella famiglia delle medie si distinguono:

Sono misure sintetiche che consentono il passaggio da una pluralità di informazioni a una sola modalità Nella famiglia delle medie si distinguono: Marlea Pllat - Semar d Statsta (SVIC) "Le mede" Le mede Soo msure stethe he osetoo l passaggo da ua pluraltà d formazo a ua sola modaltà Nella famgla delle mede s dstguoo: mede lashe o d poszoe determate

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA aratoetta Rugger Dpartmeto d Sceze statstche e matematche S.Vaell Uverstà degl stud d Palermo Prefazoe Questa dspesa è stata creata per gl studet della Facoltà d Ecooma d Palermo

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

VARIABILI CASUALI O ALEATORIE

VARIABILI CASUALI O ALEATORIE VARIABILI CASUALI O ALEATORIE Cosderamo seguet esem: S lac tre volte ua moeta: l umero d "teste" che s ossoo resetare è uo de seguet : 0 o o o. Gl evet soo comatbl e ecessar. ossamo schematzzare rsultat

Dettagli

Corrente elettrica. q i t

Corrente elettrica. q i t Correte elettrca La correte elettrca u coduttore metallco chuso è u movmeto ordato d elettro d coduzoe (le sole carche lbere preset all tero d u metallo, o vcolate a rspettv atom) el campo elettrco geerato

Dettagli

«MANLIO ROSSI-DORIA»

«MANLIO ROSSI-DORIA» «MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà

Dettagli

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore)

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore) /0/00 ANOVA (ANaly Of VArace U cao d tudo Coro d Stattca per l prea I put vedta d u azeda oo clafcat bae all ubcazoe (cetro, ecetro, perfera Prof. A. Regol a.a. 00-0 Sulla bae delle oervazo capoare vuole

Dettagli

METODOLOGIA SPERIMENTALE IN AGRICOLTURA

METODOLOGIA SPERIMENTALE IN AGRICOLTURA METODOLOGIA SPERIMENTALE IN AGRICOLTURA LABORATORIO DI BIOMETRIA CON R (http://www.r-project.org/) APPUNTI DALLE LEZIONI (bozze Settembre 005) DOCENTE Adrea Oofr Dpartmeto d Sceze Agroambetal e della Produzoe

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

2. CAMPIONAMENTO CASUALE SEMPLICE 2.1 INTRODUZIONE

2. CAMPIONAMENTO CASUALE SEMPLICE 2.1 INTRODUZIONE . CAMPIOAMETO CASUALE SEMPLICE. ITRODUZIOE Sebbee o sa molto dffuso ella pratca delle dag, l campoameto casuale semplce rappreseta l aturale puto d parteza per lo studo d tutt gl altr dseg campoar. S cosder

Dettagli

DIPARTIMENTO DI ECONOMIA

DIPARTIMENTO DI ECONOMIA UNIVERITÀ POLITECNICA DELLE ARCHE DIPARTIENTO DI ECONOIA IL CAP: IL CAO DELL ITALIA GIUEPPE RICCIARDO LAONICA QUADERNO DI RICERCA. 56 arzo 006 Comtato scetfco: Reato Balducc arco Crvell arco Gallegat Alberto

Dettagli

è detta soluzione di una ODE se essa riduce l equazione ad una identità quando viene sostituita nell equazione.

è detta soluzione di una ODE se essa riduce l equazione ad una identità quando viene sostituita nell equazione. EQUAZIONI DIFFERENZIALI ORDINARIE Itroduzoe Ua equazoe derezale è u equazoe ce covolge ua o pù dervate d ua uzoe cogta. Se tutte le dervate soo calcolate rspetto ad ua sola varable dpedete l equazoe s

Dettagli

La seguente tabella mostra la distribuzione doppia rispetto al Numero di stanze (Y) e al Numero di componenti (X) di un collettivo di 104 famiglie.

La seguente tabella mostra la distribuzione doppia rispetto al Numero di stanze (Y) e al Numero di componenti (X) di un collettivo di 104 famiglie. Esercazoe IX: Le dsrbuzo doppe Eserczo La seguee abella mosra la dsrbuzoe doppa rspeo al Numero d saze (Y e al Numero d compoe (X d u collevo d 04 famgle. Numero Numero d saze compoe 4 Toale 0 6 4 8 0

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli