Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli"

Transcript

1 Esercitazioi di Statistica Dott. Dailo Alui Fegatelli Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M 3 Costruire la tabella di frequeze assolute a doppia etrata. X F M Esercizio : Sia data la seguete distribuzioe doppia (cogiuta) uitaria dei caratteri X = Fuzioalit`a del prodotto (difettoso, o difettoso) e X = Stadio del processo produttivo (I, II, III): X X I II No I III No III No II II No III I No I No II No I III III. idicare la atura dei caratteri;. idicare il umero di modalità e di uità delle distribuzioi margiali di X e X ; 3. determiare il umero di uità e di coppie di modalità;

2 4. costruire la distribuzioe cogiuta di frequeza (tabella di cotigeza) determiado le frequeze cogiute assolute e le frequeze assolute margiali; 5. costruire la distribuzioe di frequeze assolute cumulate e la distribuzioe di frequeze relative cumulate per il carattere opportuo.. I caratteri soo qualitativi, i particolare X è omiale dicotomico metre X è ordiale.. X ha due modalità (, No difettoso); X ha tre modalità (I, II,III) e soo rilevate su 4 uità 3. Le uità soo 4 metre il umero delle coppie di modalità è pari a 6, otteuto dal prodotto del umero di livelli dei due caratteri 4. Fuzioalità/Processo I II III Totale 3 7 No 3 7 Totale Ha seso calcolare le frequeze cumulate per il carattere ordiale X date da X N j F j I 5 5/4=0.36 II 9 9/4=0.64 III 4 4/4= Esercizio 3: La seguete tabella riporta il umero di impiegati i u certo comue per settore (X) e geere (). X\ M F Agricoltura Idustria Servizi Calcolare:. le distribuzioi di frequeze margiali assolute i, j ;. le frequeze relative cogiute f ij ; 3. le distribuzioi di frequeza margiali relative f i, f j.. Per ciascua modalit`a x i del carattere X, la frequeza margiale i si ottiee sommado le frequeze cogiute che si trovao sulla riga corrispodete. Aalogamete le frequeze margiali j per ciascua modalit`a y j del carattere, si ottegoo sommado le frequeze cogiute che si trovao sulla coloa corrispodete, i.. j = = j 3 i ij ij

3 X\ M F Totale Agricoltura =60 Idustria Servizi Totale Le frequeze relative cogiute si ottegoo dividedo le frequeze assolute cogiute per la umerosit`a = 0860 come da tabella sotto f ij = ij / X\ M F Agricoltura 400/0860= Idustria Servizi Per ciascua modalit`a, le frequeze margiali relative fi_, f_j si ottegoo i modo aalogo rispetto alle frequeze margiali assolute (puto ): X\ M F Totale Agricoltura Idustria Servizi Totale Esercizio 4. Data la seguete distribuzioe doppia di frequeze X y y y 3 y 4 x x x calcolare:. le distribuzioi di frequeze assolute margiali dei due caratteri;. le distribuzioi relative codizioate (profili riga e coloa); 3. i caratteri soo idipedeti?. le distribuzioi margiali per i due caratteri risultao X i i x y 8

4 x 33 y x 3 y y le distribuzioi relative codizioate risultao - Profili riga X y y y 3 y 4 x x x Profili coloa X y y y 3 y 4 x x x I caratteri soo idipedeti i quato le distribuzioi relative codizioate di u carattere rispetto alle modalità dell'altro soo tra loro uguali.

5 Esercizio 5. Data la seguete distribuzioe doppia delle variabili X (umero dipedeti) e (fatturato, i migliaia di euro) su di u collettivo di aziede X < > 500 < > calcolare:. quate aziede hao u fatturato compreso tra 00 e 500;. quate aziede hao u umero di dipedeti superiore a 5 ed u fatturato superiore a 500; 3. tra le aziede co fatturato iferiore a 50, qual è la percetuale di aziede co u umero di dipedeti compreso tra 3 e 5?; 4. tra le aziede co u umero di dipedeti superiore a 5, qual è la percetuale di aziede co u fatturato superiore a 00?; 5. le distribuzioi di frequeze assolute per i caratteri X e ; 6. le distribuzioi relative codizioate (profili riga e coloa); 7. le medie codizioate del carattere rispetto alle modalità del carattere X (si cosideri come estremo superiore dell ultima classe 000); 8. i caratteri X e soo idipedeti?. Quate aziede hao u fatturato compreso tra 00 e 500? 0. Quate aziede hao u umero di dipedeti superiore a 5 ed u fatturato superiore a 500? Tra le aziede co fatturato iferiore a 50, qual è la percetuale di aziede co u umero di dipedeti compreso tra 3 e 5? (60/60)*00 = 37.5% 4. Tra le aziede co u umero di dipedeti superiore a 5, qual è la percetuale di aziede co u fatturato superiore a 00? [(40+30)/0]*00 = 63.64% 5. le distribuzioi margiali risultao X i i < 3 60 < > > le distribuzioi relative codizioate risultao - per riga

6 < > 500 < > per coloa < > 500 < > le medie codizioate soo pari a x y X=x < > I caratteri o soo idipedeti. Esercizio 6. Co riferimeto alla distribuzioe di u collettivo di idividui secodo i caratteri X ed X M F A 4 6 B 4 9 C 5 5. calcolare le frequeze teoriche sotto l ipotesi di idipedeza tra i due caratteri;. calcolare le frequeze sotto l ipotesi di perfetta dipedeza tra i due caratteri.. Sotto l'ipotesi di idipedeza, le frequeze cogiute ij soo date da ij = i j / X M F

7 A B C La tabella di frequeze o è quadrata duque o può sussistere iterdipedeza perfetta tra i due caratteri. Si può solo avere dipedeza perfetta di da X i quato il carattere ha u umero iferiore di modalità. U esempio di tale dipedeza è dato dalle segueti frequeze X M F A B C Esercizio 7. La tabella di frequeza sottostate riporta la distribuzioe di 800 studeti secodo il voto coseguito all esame di Diritto Privato () e secodo la frequeza delle lezioi al corso (X): Voto [8,0] [,3] [4,6] [7,8] [9,30] Totale Frequetazioe = Si Frequetazioe = No Totale Calcolare: : Calcolare le medie codizioate : Calcolare il rapporto di correlazioe (idice η di Pearso). La media codizioata di u carattere codizioata alla modalità i-esima del carattere X è: k yi = y jij i. j Nel caso di rappresetazioi i classe può essere approssimata cosiderado il valore cetrale della classe. Quidi per prima cosa riportiamo la tabella di parteza co l idicazioe per dei valori cetrali delle classi: Voto Totale Frequetazioe = Si

8 Frequetazioe = No Totale Quidi la media codizioata di dato che X=Si è pari a: y X Si Si 5 j y j ij = [(9*43)+(*79)+(5*85)+(7.5*85)+(9.5*60)]/35 = 4.96 Metre, la media codizioata di dato che X=Si è pari a: 5 yx No y jij = [(9*66)+(*63)+(5*07)+(7.5*48)+(9.5*64)]/448 = 3.94 No j Si dirà che la compoete è idipedete i media da X se al variare delle modalità di X le medie codizioate di X soo uguali tra loro (e quidi uguali alla media geerale). I questo caso quidi o si ha idipedeza i media tra i due caratteri.. Per valutare quata parte della variabilità totale dei voti è attribuibile alla dipedeza del voto medio dalla frequeza alle lezioi, si utilizza il rapporto di correlazioe (idice η di Pearso) il quale è basato sulla proprietà di scomposizioe della deviaza: Dove: Dev TOT () Dev INT () k j k j h ( y j y). j h i ( y y ) Dev EST () ( yi y) i. i j Dev TOT () = Dev INT () + Dev EST () i ij La media del carattere è data da: e cioè: k y y j. j j h i y. i i y = [(9*09)+(*4)+(5*9)+(7.5*33)+(9.5*4)]/800 = (4.96* *448)/800 = 4.39 La deviaza totale è quidi: Dev TOT () = (9-4.39) *09 + (-4.39) *4 + (5-4.39) *9 + ( ) *33 + ( ) *4 = Dev INT () = (9-4.96)^*43 + (-4.96)^*79 + (5-4.96)^*85 + ( )^*85 + ( )^*60 + (9-3.94)^*66 + (-3.94)^*63 + (5-3.94)^*07 + ( )^*48 + ( )^*64 = Dev EST () = ( ) *35 + ( ) *448 = (Piccole imprecisioi ei valori dovute alle approssimazioi )

9 Il rapporto di correlazioe sarà quidi dato da: Dev Dev () () EST X TOT 0.0 Quidi il.% della variabilità del carattere voto all esame è spiegato dal suo dipedere i media dalla frequeza alle lezioi. Esercizio 8. Per ciascua delle segueti distribuzioi, forire il grafico di dispersioe degli scostameti dalla media, calcolare la covariaza e il coefficiete di correlazioe lieare tra i caratteri X e. x y x y x y

10 prima distribuzioe x i x i - x y i y i - y x i y i x i y i Media di X: x = 60 / 6 = Media di : y = 58 / 6= Mometo secodo di x: x ( ) = å x i = 68 / 6 =03 Variaza di X: s X = x ( ) - x =03-00 = 3 Scarto quadratico medio di X: s X = s X = 3 Mometo secodo di : y ( ) = 570 / 6 = 95 Variaza di : s = 95 ( 58 / 6) =.5 i= Scarto quadratico medio di : σ = σ =. 5 Covariaza: X= xi yi xy = 580 / / 6 = 0 Correlazioe: / = = 0 - secoda distribuzioe: ρ X = terza distribuzioe: ρ X = i X = X X 3 0.5

11 Esercizio 9. Su 5 uità statistiche soo stati osservati due caratteri X e co le segueti realizzazioi: - I caratteri X e soo idipedeti? - I caratteri X e soo icorrelati? X 3 3. Distribuzioe di frequeze relative di codizioate ai diversi valori di X X I caratteri o soo idipedeti.. x i y i x i y i x i y i

12 Media di X: x = 9 / 5 Media di : y = Mometo secodo di x: x ( ) =9 / 5 Variaza di X: σ X =9/5 (9/5) =4/5 Scarto quadratico medio di X: σ X = σ X = 4/5 Mometo secodo di : y ( ) = / 5 Variaza di : σ =/5 = /5 Scarto quadratico medio di : Covariaza: σ = σ = /5 s X = åx i y i - xy =8 / 5-9 / 5 = 0 0 Correlazioe: ρ X =σ X /(σ X σ )= 4/5 /5 =0 Esercizio 0. Date le segueti statistiche descrittive sui valori dei caratteri X ed rilevati su ua popolazioe x y x i y i x i y i calcolare il coefficiete di correlazioe. Mometo secodo di x: x ( ) =45 / 5 = 9 Variaza di X: σ X =9 5 =4 Scarto quadratico medio di X: σ X = σ X = Mometo secodo di : y ( ) = 63 / 5 =4.6 Variaza di : σ =4.6 =3.6 Scarto quadratico medio di : σ = σ =.9 Covariaza: X = xi yi xy = = 3.4 Correlazioe: ρ X =σ X /(σ X σ )=3. 4 / (.9)=0. 9

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y.

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y. DIPENDENZA O CONNESSIONE Due caratteri X e Y cogiutamete cosiderati si dicoo tra loro coessi quado le modalità di u carattere ifluezao il maifestarsi delle modalità dell altro. Ovvero quado la coosceza

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

Soluzioni esercizi Capitolo 7

Soluzioni esercizi Capitolo 7 Soluzioi esercizi Capitolo 7 Quado si valuta la relazioe fra due variabili, occorre prestare particolare attezioe al fatto che i modelli statistici specifici per ogi scala di misura siao applicabili: i

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica è sorta i tempi atichissimi co i cesimeti: storico quello di Augusto che, secodo la tradizioe cristiaa coivolse Maria e Giuseppe, giusto alla ascita di Gesù. Solo el

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

Complementi di Matematica e Statistica

Complementi di Matematica e Statistica Uiversità di Bologa Sede di Forlì Ao Accademico 009-00 Complemeti di Matematica e Statistica (Alessadro Lubisco) Aalisi delle compoeti pricipali INDICE Idice... i Aalisi delle compoeti pricipali... Premessa...

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

(DA COMPLETARE!!) Esercizi per il corso di Calcolo delle Probabilità e Statistica Matematica per Scienze dell Informazione

(DA COMPLETARE!!) Esercizi per il corso di Calcolo delle Probabilità e Statistica Matematica per Scienze dell Informazione (DA COMPLETARE!!) Esercizi per il corso di Calcolo delle Probabilità e Statistica Matematica per Scieze dell Iformazioe NOTA Quado i problemi soo formulati el liguaggio ordiario, teere presete che la soluzioe

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

Elementi di statistica descrittiva Andrea Sambusetti e-mail: sambuset@mat.uniroma1.it URL: http://www.mat.uniroma1.it/people/sambusetti

Elementi di statistica descrittiva Andrea Sambusetti e-mail: sambuset@mat.uniroma1.it URL: http://www.mat.uniroma1.it/people/sambusetti APPENDICE A Elemeti di statistica descrittiva Adrea Sambusetti e-mail: sambuset@mat.uiroma1.it URL: http://www.mat.uiroma1.it/people/sambusetti La statistica descrittiva ha lo scopo di aalizzare e iterpretare

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALIASTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI TESI DI LAUREA IL METODO DELLE COPULE: ifereza,

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L)

Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L) Prova di trazioe UNI 55/86 556/79 Macchia di prova coloe traversa mobile provio cella di carico morsetti basameto Viee imposto uo spostameto alla traversa e si misura il carico applicato (F) Si misura

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ARGOMENTI TRATTATI: VARIABILI CASUALI DISCRETE VARIABILI CASUALI CONTINUE DISEGUAGLIANZA DI TCHEBYCHEFF TEOREMA DEL LIMITE CENTRALE

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

ANALISI STATISTICA DEI DATI

ANALISI STATISTICA DEI DATI AALISI STATISTICA DEI DATI STATISTICA E PROBABILITA' Misura di ua gradezza fisica Errori dovuti a: Strumeti di misura Parametri o cotrollabili da sperimetatore da valore vero gradezza varia da misura a

Dettagli

Appunti di matematica Percorso

Appunti di matematica Percorso Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA iteret: www.cedamscuola.it e-mail:

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

*PDF da scaricare. Statistica Medica. Sommario. http://nfs.unipv.it/ Disegno della ricerca. Raccolta dei dati. Analisi dei dati

*PDF da scaricare. Statistica Medica. Sommario. http://nfs.unipv.it/ Disegno della ricerca. Raccolta dei dati. Analisi dei dati *PDF da scaricare Uiversità degli Studi di Pavia Dipartimeto di Scieze Saitarie Applicate Via Bassi - 7 PAVIA Statistica Medica INDIRIZZO ONLINE http://fs.uipv.it/ >Didattica >Materiale didattico >Medicia

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità 1 Elemeti di calcolo delle probabilità 5 1. Itroduzioe La statistica è ua scieza, strumetale ad altre, cocerete la determiazioe dei metodi scietifici da seguire per raccogliere, elaborare e valutare i

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7 Allegato La deteriazioe dei costi stadardizzati per i lavori pubblici: ua proposta etodologica basata sulle icideze percetuali delle copoeti di lavorazioi prevaleti La deteriazioe dei costi stadardizzati

Dettagli

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia Itroduzioe Metodi diretti Elimiazioe di Gauss Decomposizioe LU Casi particolari Metodi Iterativi Geeralità e covergeza Metodi di base Cei sui metodi basati sul gradiete Cei sui metodi multigriglia 1 Itroduzioe

Dettagli

Indici COMIT Metodologia di calcolo

Indici COMIT Metodologia di calcolo Il presete documeto riassume le regole fodametali per il calcolo e la gestioe degli idici elaborati da Itesa Sapaolo per l itero Mercato Telematico Azioario italiao (MTA) ed il vecchio Nuovo Mercato. Gli

Dettagli

INFERENZA SU UNA O DUE MEDIE CON IL TEST

INFERENZA SU UNA O DUE MEDIE CON IL TEST CAPITOLO VI INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT 6.. Dalla popolazioe ifiita al campioe piccolo: la distribuzioe t di studet 6.. Cofroto tra ua media osservata e ua media attesa co calcolo

Dettagli

PROGRAMMA RISPARMIO ENERGETICO EFFICIENTAMENTO ENERGETICO DEGLI EDIFICI PRIVATI

PROGRAMMA RISPARMIO ENERGETICO EFFICIENTAMENTO ENERGETICO DEGLI EDIFICI PRIVATI COMUNE DI VIGGIANO Provicia di Poteza 0975 61142 Fax 0975 61137 Partita IVA 00182930768 C.C.P. 14378855 PROGRAMMA RISPARMIO ENERGETICO EFFICIENTAMENTO ENERGETICO DEGLI EDIFICI PRIVATI Azioe A2 BANDO PER

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA aa 2009-2010 Operazioi statistiche elemetari Spesso ci si preseta il problema del cofroto tra dati Ad esempio, possiamo voler cofrotare feomei [ecoomici]

Dettagli

Sistemi Intelligenti Introduzione all inferenza statistica

Sistemi Intelligenti Introduzione all inferenza statistica Sistemi Itelligeti Itroduzioe all ifereza statistica Alberto Borghese Uiversità degli Studi di Milao Laboratory of Applied Itelliget Systems (AIS-Lab) Dipartimeto di Scieze dell Iformazioe borghese@di.uimi.it

Dettagli

TECNICHE DI ANALISI DEI DATI IN ECOLOGIA

TECNICHE DI ANALISI DEI DATI IN ECOLOGIA TECNICHE DI ANALISI DEI DATI IN ECOLOGIA Michele Scardi Dipartimeto di Biologia Uiversità di Roma Tor Vergata Via della Ricerca Scietifica 0033 Roma e-mail: mscardi@mclik.it home page: http://www.mare-et.com/mscardi

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

CAPITOLO ZERO ELEMENTI DI STATISTICA DESCRITTIVA 1 Introduzione Il termine statistica venne introdotto nel diciassettesimo secolo col significato di

CAPITOLO ZERO ELEMENTI DI STATISTICA DESCRITTIVA 1 Introduzione Il termine statistica venne introdotto nel diciassettesimo secolo col significato di CAPITOLO ZERO ELEMENTI DI STATISTICA DESCRITTIVA Itroduzioe Il termie statistica vee itrodotto el diciassettesimo secolo col sigificato di scieza dello stato, volta a raccogliere e ordiare iformazioi utili

Dettagli

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007 Tecica delle misurazioi applicate Esame del 4 dicembre 7 Problema 1. Il propulsore Mod. WEC viee prodotto da ACME Ic. mediate u processo automatizzato: dati storici cofermao che la lavorazioe di ogi elemeto

Dettagli

UNIVERSITÀ POLITECNICA DELLE MARCHE Dipartimento di Economia. Variabili Casuali. Giulio Palomba

UNIVERSITÀ POLITECNICA DELLE MARCHE Dipartimento di Economia. Variabili Casuali. Giulio Palomba UNIVERSITÀ POLITECNICA DELLE MARCHE Dipartimeto di Ecoomia Variabili Casuali Giulio Palomba Variabili casuali Idice Itroduzioe 5 Variabili casuali discrete 7. Variabile casuale degeere....................

Dettagli

Scritto da Per. Ind. Bruno Orsini Venerdì 21 Giugno 2013 17:41 - Ultimo aggiornamento Domenica 23 Giugno 2013 08:55

Scritto da Per. Ind. Bruno Orsini Venerdì 21 Giugno 2013 17:41 - Ultimo aggiornamento Domenica 23 Giugno 2013 08:55 La Norma CEI 0-21, la uova regola tecica di coessioe BT Per quato riguarda gli impiati elettrici, oltre alle prescrizioi della Norma CEI 64-8 e successive variati, occorre teere i cosiderazioe u ulteriore

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

L impianto elettrico nei servizi condominiali

L impianto elettrico nei servizi condominiali OBIETTIVO PROFEIONE L impiato elettrico ei servizi codomiiali Il codomiio cosiderato è costituito da quattro piai fuori terra co due scale itere; per ogi scala si hao due appartameti al primo e secodo

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K 1 Matematica Fiaziaria Uiversità degli Studi La Sapieza Facoltà di Ecoomia Ao accademico 212-13 Matematica Fiaziaria Caale D - K Capitolo 3 Ammortameto di prestiti idivisi Atoio Aibali Atoio Aibali a.a.

Dettagli

Capitolo 6 Teoremi limite classici

Capitolo 6 Teoremi limite classici Capitolo 6 Teoremi limite classici Abstract I Teoremi limite classici, la legge dei gradi umeri e il teorema limite cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

MOTO UNIFORME NEI CANALI A PELO LIBERO

MOTO UNIFORME NEI CANALI A PELO LIBERO Carlo Gregoretti Idraulica capitolo 8 0 Nov. 08 64 MT UNIFRME NEI CANALI A PEL LIBER 8. Leggi di moto uiforme per caali a sezioi compatte Ua correte i u caale di sezioe costate tede ad assumere u regime

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

Lezione 2 - Operazioni sugli eventi. Assiomi della probabilità. -Intro ad excel OPERAZIONI SUGLI EVENTI ALETORI ASSIOMI DELLA PROBABILITÀ

Lezione 2 - Operazioni sugli eventi. Assiomi della probabilità. -Intro ad excel OPERAZIONI SUGLI EVENTI ALETORI ASSIOMI DELLA PROBABILITÀ Lezioe 2 - Operazioi sugli eveti. ssiomi della probabilità. -Itro ad excel 1 OERZIONI SUGLI EVENTI LETORI SSIOMI DELL ROILITÀ GRUO MT06 Dip. Matematica, Uiversità di Milao - robabilità e Statistica per

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Dispense di probabilità e statistica *

Dispense di probabilità e statistica * IFORMATICA E STATISTICA PER OTTICA E OPTOMETRIA Dispese di probabilità e statistica * Daiele Motaio Uiversità degli Studi del Saleto e-mail: daiele.motaio@le.if.it web: http://www.le.if.it/~motai/ Questa

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Complessità Computazionale

Complessità Computazionale Uiversità degli studi di Messia Facoltà di Igegeria Corso di Laurea i Igegeria Iformatica e delle Telecomuicazioi Fodameti di Iformatica II Prof. D. Brueo Complessità Computazioale La Nozioe di Algoritmo

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Movimento nominale e perturbato

Movimento nominale e perturbato Fodameti di Automatica. Stabilità itera o alla Lyauov Fodameti di Automatica AYSb FTPb AYSct Igegeria delle Telecomuicazioi e Igegeria Fisica. Stabilità itera o alla Lyauov Stefao Mala Fodameti di Automatica

Dettagli

! CRITERI DI VALUTAZIONE E REGOLE DI PRIORITA! SCHEDULING A MACCHINA SINGOLA (m=1) ! SCHEDULING MACCHINE IN SERIE (m 3)

! CRITERI DI VALUTAZIONE E REGOLE DI PRIORITA! SCHEDULING A MACCHINA SINGOLA (m=1) ! SCHEDULING MACCHINE IN SERIE (m 3) CORSO DI GESTIONE DELLA PRODUZIONE INDUSTRIALE PROF. ING. GIOVANNI MUMMOLO PROGRAMMAZIONE OPERATIVA Schedulig PROBLEMI DI SCHEDULING! CRITERI DI VALUTAZIONE E REGOLE DI PRIORITA! SCHEDULING A MACCHINA

Dettagli