Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli"

Transcript

1 Esercitazioi di Statistica Dott. Dailo Alui Fegatelli Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M 3 Costruire la tabella di frequeze assolute a doppia etrata. X F M Esercizio : Sia data la seguete distribuzioe doppia (cogiuta) uitaria dei caratteri X = Fuzioalit`a del prodotto (difettoso, o difettoso) e X = Stadio del processo produttivo (I, II, III): X X I II No I III No III No II II No III I No I No II No I III III. idicare la atura dei caratteri;. idicare il umero di modalità e di uità delle distribuzioi margiali di X e X ; 3. determiare il umero di uità e di coppie di modalità;

2 4. costruire la distribuzioe cogiuta di frequeza (tabella di cotigeza) determiado le frequeze cogiute assolute e le frequeze assolute margiali; 5. costruire la distribuzioe di frequeze assolute cumulate e la distribuzioe di frequeze relative cumulate per il carattere opportuo.. I caratteri soo qualitativi, i particolare X è omiale dicotomico metre X è ordiale.. X ha due modalità (, No difettoso); X ha tre modalità (I, II,III) e soo rilevate su 4 uità 3. Le uità soo 4 metre il umero delle coppie di modalità è pari a 6, otteuto dal prodotto del umero di livelli dei due caratteri 4. Fuzioalità/Processo I II III Totale 3 7 No 3 7 Totale Ha seso calcolare le frequeze cumulate per il carattere ordiale X date da X N j F j I 5 5/4=0.36 II 9 9/4=0.64 III 4 4/4= Esercizio 3: La seguete tabella riporta il umero di impiegati i u certo comue per settore (X) e geere (). X\ M F Agricoltura Idustria Servizi Calcolare:. le distribuzioi di frequeze margiali assolute i, j ;. le frequeze relative cogiute f ij ; 3. le distribuzioi di frequeza margiali relative f i, f j.. Per ciascua modalit`a x i del carattere X, la frequeza margiale i si ottiee sommado le frequeze cogiute che si trovao sulla riga corrispodete. Aalogamete le frequeze margiali j per ciascua modalit`a y j del carattere, si ottegoo sommado le frequeze cogiute che si trovao sulla coloa corrispodete, i.. j = = j 3 i ij ij

3 X\ M F Totale Agricoltura =60 Idustria Servizi Totale Le frequeze relative cogiute si ottegoo dividedo le frequeze assolute cogiute per la umerosit`a = 0860 come da tabella sotto f ij = ij / X\ M F Agricoltura 400/0860= Idustria Servizi Per ciascua modalit`a, le frequeze margiali relative fi_, f_j si ottegoo i modo aalogo rispetto alle frequeze margiali assolute (puto ): X\ M F Totale Agricoltura Idustria Servizi Totale Esercizio 4. Data la seguete distribuzioe doppia di frequeze X y y y 3 y 4 x x x calcolare:. le distribuzioi di frequeze assolute margiali dei due caratteri;. le distribuzioi relative codizioate (profili riga e coloa); 3. i caratteri soo idipedeti?. le distribuzioi margiali per i due caratteri risultao X i i x y 8

4 x 33 y x 3 y y le distribuzioi relative codizioate risultao - Profili riga X y y y 3 y 4 x x x Profili coloa X y y y 3 y 4 x x x I caratteri soo idipedeti i quato le distribuzioi relative codizioate di u carattere rispetto alle modalità dell'altro soo tra loro uguali.

5 Esercizio 5. Data la seguete distribuzioe doppia delle variabili X (umero dipedeti) e (fatturato, i migliaia di euro) su di u collettivo di aziede X < > 500 < > calcolare:. quate aziede hao u fatturato compreso tra 00 e 500;. quate aziede hao u umero di dipedeti superiore a 5 ed u fatturato superiore a 500; 3. tra le aziede co fatturato iferiore a 50, qual è la percetuale di aziede co u umero di dipedeti compreso tra 3 e 5?; 4. tra le aziede co u umero di dipedeti superiore a 5, qual è la percetuale di aziede co u fatturato superiore a 00?; 5. le distribuzioi di frequeze assolute per i caratteri X e ; 6. le distribuzioi relative codizioate (profili riga e coloa); 7. le medie codizioate del carattere rispetto alle modalità del carattere X (si cosideri come estremo superiore dell ultima classe 000); 8. i caratteri X e soo idipedeti?. Quate aziede hao u fatturato compreso tra 00 e 500? 0. Quate aziede hao u umero di dipedeti superiore a 5 ed u fatturato superiore a 500? Tra le aziede co fatturato iferiore a 50, qual è la percetuale di aziede co u umero di dipedeti compreso tra 3 e 5? (60/60)*00 = 37.5% 4. Tra le aziede co u umero di dipedeti superiore a 5, qual è la percetuale di aziede co u fatturato superiore a 00? [(40+30)/0]*00 = 63.64% 5. le distribuzioi margiali risultao X i i < 3 60 < > > le distribuzioi relative codizioate risultao - per riga

6 < > 500 < > per coloa < > 500 < > le medie codizioate soo pari a x y X=x < > I caratteri o soo idipedeti. Esercizio 6. Co riferimeto alla distribuzioe di u collettivo di idividui secodo i caratteri X ed X M F A 4 6 B 4 9 C 5 5. calcolare le frequeze teoriche sotto l ipotesi di idipedeza tra i due caratteri;. calcolare le frequeze sotto l ipotesi di perfetta dipedeza tra i due caratteri.. Sotto l'ipotesi di idipedeza, le frequeze cogiute ij soo date da ij = i j / X M F

7 A B C La tabella di frequeze o è quadrata duque o può sussistere iterdipedeza perfetta tra i due caratteri. Si può solo avere dipedeza perfetta di da X i quato il carattere ha u umero iferiore di modalità. U esempio di tale dipedeza è dato dalle segueti frequeze X M F A B C Esercizio 7. La tabella di frequeza sottostate riporta la distribuzioe di 800 studeti secodo il voto coseguito all esame di Diritto Privato () e secodo la frequeza delle lezioi al corso (X): Voto [8,0] [,3] [4,6] [7,8] [9,30] Totale Frequetazioe = Si Frequetazioe = No Totale Calcolare: : Calcolare le medie codizioate : Calcolare il rapporto di correlazioe (idice η di Pearso). La media codizioata di u carattere codizioata alla modalità i-esima del carattere X è: k yi = y jij i. j Nel caso di rappresetazioi i classe può essere approssimata cosiderado il valore cetrale della classe. Quidi per prima cosa riportiamo la tabella di parteza co l idicazioe per dei valori cetrali delle classi: Voto Totale Frequetazioe = Si

8 Frequetazioe = No Totale Quidi la media codizioata di dato che X=Si è pari a: y X Si Si 5 j y j ij = [(9*43)+(*79)+(5*85)+(7.5*85)+(9.5*60)]/35 = 4.96 Metre, la media codizioata di dato che X=Si è pari a: 5 yx No y jij = [(9*66)+(*63)+(5*07)+(7.5*48)+(9.5*64)]/448 = 3.94 No j Si dirà che la compoete è idipedete i media da X se al variare delle modalità di X le medie codizioate di X soo uguali tra loro (e quidi uguali alla media geerale). I questo caso quidi o si ha idipedeza i media tra i due caratteri.. Per valutare quata parte della variabilità totale dei voti è attribuibile alla dipedeza del voto medio dalla frequeza alle lezioi, si utilizza il rapporto di correlazioe (idice η di Pearso) il quale è basato sulla proprietà di scomposizioe della deviaza: Dove: Dev TOT () Dev INT () k j k j h ( y j y). j h i ( y y ) Dev EST () ( yi y) i. i j Dev TOT () = Dev INT () + Dev EST () i ij La media del carattere è data da: e cioè: k y y j. j j h i y. i i y = [(9*09)+(*4)+(5*9)+(7.5*33)+(9.5*4)]/800 = (4.96* *448)/800 = 4.39 La deviaza totale è quidi: Dev TOT () = (9-4.39) *09 + (-4.39) *4 + (5-4.39) *9 + ( ) *33 + ( ) *4 = Dev INT () = (9-4.96)^*43 + (-4.96)^*79 + (5-4.96)^*85 + ( )^*85 + ( )^*60 + (9-3.94)^*66 + (-3.94)^*63 + (5-3.94)^*07 + ( )^*48 + ( )^*64 = Dev EST () = ( ) *35 + ( ) *448 = (Piccole imprecisioi ei valori dovute alle approssimazioi )

9 Il rapporto di correlazioe sarà quidi dato da: Dev Dev () () EST X TOT 0.0 Quidi il.% della variabilità del carattere voto all esame è spiegato dal suo dipedere i media dalla frequeza alle lezioi. Esercizio 8. Per ciascua delle segueti distribuzioi, forire il grafico di dispersioe degli scostameti dalla media, calcolare la covariaza e il coefficiete di correlazioe lieare tra i caratteri X e. x y x y x y

10 prima distribuzioe x i x i - x y i y i - y x i y i x i y i Media di X: x = 60 / 6 = Media di : y = 58 / 6= Mometo secodo di x: x ( ) = å x i = 68 / 6 =03 Variaza di X: s X = x ( ) - x =03-00 = 3 Scarto quadratico medio di X: s X = s X = 3 Mometo secodo di : y ( ) = 570 / 6 = 95 Variaza di : s = 95 ( 58 / 6) =.5 i= Scarto quadratico medio di : σ = σ =. 5 Covariaza: X= xi yi xy = 580 / / 6 = 0 Correlazioe: / = = 0 - secoda distribuzioe: ρ X = terza distribuzioe: ρ X = i X = X X 3 0.5

11 Esercizio 9. Su 5 uità statistiche soo stati osservati due caratteri X e co le segueti realizzazioi: - I caratteri X e soo idipedeti? - I caratteri X e soo icorrelati? X 3 3. Distribuzioe di frequeze relative di codizioate ai diversi valori di X X I caratteri o soo idipedeti.. x i y i x i y i x i y i

12 Media di X: x = 9 / 5 Media di : y = Mometo secodo di x: x ( ) =9 / 5 Variaza di X: σ X =9/5 (9/5) =4/5 Scarto quadratico medio di X: σ X = σ X = 4/5 Mometo secodo di : y ( ) = / 5 Variaza di : σ =/5 = /5 Scarto quadratico medio di : Covariaza: σ = σ = /5 s X = åx i y i - xy =8 / 5-9 / 5 = 0 0 Correlazioe: ρ X =σ X /(σ X σ )= 4/5 /5 =0 Esercizio 0. Date le segueti statistiche descrittive sui valori dei caratteri X ed rilevati su ua popolazioe x y x i y i x i y i calcolare il coefficiete di correlazioe. Mometo secodo di x: x ( ) =45 / 5 = 9 Variaza di X: σ X =9 5 =4 Scarto quadratico medio di X: σ X = σ X = Mometo secodo di : y ( ) = 63 / 5 =4.6 Variaza di : σ =4.6 =3.6 Scarto quadratico medio di : σ = σ =.9 Covariaza: X = xi yi xy = = 3.4 Correlazioe: ρ X =σ X /(σ X σ )=3. 4 / (.9)=0. 9

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Relazioni statistiche

Relazioni statistiche Relazioi statistiche Idipedeza: asseza di qualsiasi relazioe tra due caratteri I caso di preseza di u legame, questo può essere di: Coessioe: relazioe reciproca tra due caratteri qualitativi Dipedeza:

Dettagli

Tavole di Contingenza Connessione

Tavole di Contingenza Connessione Tavole di Cotigeza Coessioe Ua tavola di cotigeza per due geerici feomei X e Y è ua rappresetazioe simbolica di ua tabella a doppia etrata y 1 y y j y k x 1 11 1 1j 1k 1 x 1 j k x i i1 i ik i x h h1 h

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

2.2 - La dipendenza assoluta e parametrica

2.2 - La dipendenza assoluta e parametrica . - La dipedeza assoluta e parametrica Tabelle a doppia etrata X\Y Y Y Y j Y c X j c. X j c. X i i i ij X k k k kj...j ic i. kc k..c.. per i assegato: i. c ij j per j assegato:.j k ij i k c ij i j.....

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

Lo studio della relazione lineare tra due variabili

Lo studio della relazione lineare tra due variabili Lo studio della relazioe lieare tra due variabili X e caratteri etrambi quatitativi X variabile idipedete variabile dipedete * f ( ) f(): espressioe fuzioale che descrive la legge di dipedeza di da X 1

Dettagli

La correlazione e la regressione. Antonello Maruotti

La correlazione e la regressione. Antonello Maruotti La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Appunti di Probabilità e Statistica. a.a. 2014/2015 C.d.L. Informatica Bioinformatica I. Oliva. 1 Indici statistici. Lezione 2

Appunti di Probabilità e Statistica. a.a. 2014/2015 C.d.L. Informatica Bioinformatica I. Oliva. 1 Indici statistici. Lezione 2 Apputi di Probabilità e Statistica a.a. 2014/2015 C.d.L. Iformatica Bioiformatica I. Oliva Lezioe 2 1 Idici statistici Idici statistici Idici di posizioe Idici di variabilità Idici di forma medie aalitiche

Dettagli

Scheda n.6: legame tra due variabili; correlazione e regressione

Scheda n.6: legame tra due variabili; correlazione e regressione Scheda.6: legame tra due variabili; correlazioe e regressioe October 26, 2008 Covariaza e coefficiete di correlazioe Date due v.a. X ed Y, chiamiamo covariaza il umero Cov (X, Y ) = E [(X E [X]) (Y E [Y

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136 Esercitazioe 0 ESERCIZIO arco e Giulio hao due egozi i viale dei Giardii. arco vede libri, Giulio vede elettroica, tra cui tablet. arco e Giulio, avedo a disposizioe il umero di libri veduti ed il umero

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y.

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y. DIPENDENZA O CONNESSIONE Due caratteri X e Y cogiutamete cosiderati si dicoo tra loro coessi quado le modalità di u carattere ifluezao il maifestarsi delle modalità dell altro. Ovvero quado la coosceza

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

STATISTICA: esercizi svolti sulla DIPENDENZA IN MEDIA

STATISTICA: esercizi svolti sulla DIPENDENZA IN MEDIA STATISTICA: esercizi svolti sulla DIPEDEZA I MEDIA 1 1 LA DIPEDEZA I MEDIA 2 1 LA DIPEDEZA I MEDIA 1. La popolazione in migliaia di unità occupata in Piemonte nel 1985 per reddito annuo Y (migliaia di

Dettagli

METODOLOGIA DELLA RICERCA EMPIRICA SULLA SOCIETA E LA FAMIGLIA

METODOLOGIA DELLA RICERCA EMPIRICA SULLA SOCIETA E LA FAMIGLIA METODOLOGIA DELLA RICERCA EMPIRICA SULLA SOCIETA E LA FAMIGLIA Elemeti di statistica descrittiva Dispesa ad uso degli studeti A cura di Gia Carlo Blagiardo e Michela Cameletti Idice 1. Statistica descrittiva

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Lezione 8. Statistica sociale Laurea specialistica in Progettazione e gestione del turismo culturale

Lezione 8. Statistica sociale Laurea specialistica in Progettazione e gestione del turismo culturale Statistica sociale Laurea specialistica i Progettazioe e gestioe del turismo culturale Lezioe 8 Itroduzioe all aalisi aalisi statistica dei dati (2) Gialuca Domiutti Si presetao quidi alcue misure statistiche

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

Soluzioni esercizi Capitolo 7

Soluzioni esercizi Capitolo 7 Soluzioi esercizi Capitolo 7 Quado si valuta la relazioe fra due variabili, occorre prestare particolare attezioe al fatto che i modelli statistici specifici per ogi scala di misura siao applicabili: i

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terzi) STUDIO DELLE DISTRIBUZIONI SEMPLICI Esercitazioe. Data la segete distribzioe di freqeza: X 0- -2 2-3 3-5 5-0 0-5 5-25 N 44 35 22 58 60 06 02 a) calcolare le freqeze

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

Regressione e correlazione

Regressione e correlazione Regressioe e correlazioe Regressioe e correlazioe I molti casi si osservao gradezze che tedoo a covariare, ma () Se c è ua relazioe di dipedeza fra due variabili, ovvero se il valore di ua variabile (dipedete)

Dettagli

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso.

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso. LA INTERPOLAZIONE Appartameti veduti el 006 da u agezia immobiliare di Treviso. superficie (mq) prezzo (k ) segue 10 160 45 70 80 95 85 110 64 98 106 140 10 170 50 80 100 150 90 15 115 165 140 165 98 145

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

R D IG L O S S A R I O

R D IG L O S S A R I O A p p rofodimeti di s t a t i s t i c a 1 Variabili qualitative e variabili quatitative Nell ambito di ua ricerca statistica le uità statistiche o vegoo osservate ella loro globalità ma solo per alcue

Dettagli

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

Parte V La descrizione dei fenomeni attraverso la statistica

Parte V La descrizione dei fenomeni attraverso la statistica 64 Parte V La descrizioe dei feomei attraverso la statistica Dai capitoli presedeti è stato possibile verificare l importaza odale che il sistema iformativo detiee elle scelte di piaificazioe territoriale.

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n 98 Covergeza i probabilità Si dice che la successioe X coverge i probabilità alla v.a. X e si scrive: se, per qualsiasi ε > 0, si ha: X p X oppure plim X = X limp( X X < ε)= Covergeza i media quadratica

Dettagli

Soluzioni Esercizi Capitolo 3

Soluzioni Esercizi Capitolo 3 Soluzioi Esercizi Capitolo 3 Esercizio 1 a. I u mazzo di carte fracesi lo spazio campioario è costituito da 52 elemeti. Nel caso dell'estrazioe di u fate, il umero di eveti favorevoli è 4, per cui la probabilità

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Domande di teoria. Esercizi

Domande di teoria. Esercizi Chiorri, C. (01). Fodameti di psicometria - Risposte e soluzioi Capitolo 11 1 omade di teoria 1. Vedi pp. 97-301. Vedi pp. 301-30 3. Vedi p. 30. Vedi pp. 30-307 5. Vedi p. 309 6. Vedi p. 309-31 7. Vedi

Dettagli

Figura 1. Prima pagina del New York Times del 16 Aprile 1912.

Figura 1. Prima pagina del New York Times del 16 Aprile 1912. Figura 1. Prima pagia del New York Times del 16 Aprile 1912. Aalisi cogiuta di più feomei Siora ci siamo occupati dello studio di distribuzioi per sigoli feomei statistici. Ne abbiamo studiato alcui valori

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la

Dettagli

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

PARAMETRI CARATTERISTICI DEI FUNZIONAMENTI A VUOTO (A REGIME) E DI CORTO CIRCUITO (A REGIME)

PARAMETRI CARATTERISTICI DEI FUNZIONAMENTI A VUOTO (A REGIME) E DI CORTO CIRCUITO (A REGIME) l trasformatore PARAMETR CARATTERSTC DE FUNONAMENT A UOTO (A REGME) E D CORTO CRCUTO (A REGME) FUNONAMENTO A UOTO (a tesioe primaria omiale e a frequeza omiale) Da misure eseguite sul trasformatore a vuoto

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica è sorta i tempi atichissimi co i cesimeti: storico quello di Augusto che, secodo la tradizioe cristiaa coivolse Maria e Giuseppe, giusto alla ascita di Gesù. Solo el

Dettagli

Statistica inferenziale e mercati azionari

Statistica inferenziale e mercati azionari Statistica ifereziale e mercati azioari Di Cristiao Armellii, cristiao.armellii@alice.it Dalla statistica ifereziale sappiamo che se m = media del campioe s = scarto quadratico medio del campioe = umerosità

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Distribuzioni per unità

Distribuzioni per unità Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa ota si occupa dell illustrazioe

Dettagli

Analisi di bilancio per indici

Analisi di bilancio per indici Esercitazioi svolte 2015 Scuola Duemila 1 Esercitazioe. 9 Aalisi di bilacio per idici Laura Mottii COMPETENZE ABILITÀ CONOSCENZE Compredere i dati del bilacio d esercizio attraverso l aalisi degli idici

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli L'ALGORITMO DI STURM Michele Impedovo, Simoe Pavaelli Lettera P.RI.ST.EM, 10, dicembre 1993 Questo lavoro asce dalla collaborazioe tra u isegate e uo studete; lo studete ha curato iteramete la costruzioe

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Carte di controllo per attributi

Carte di controllo per attributi Carte di cotrollo per attributi Il cotrollo per variabili o sempre è effettuabile misurazioi troppo difficili o costose troppe variabili che defiiscoo qualità di u prodotto le caratteristiche dei prodotti

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

ELEMENTI STATISTICA METODOLOGICA DISTRIBUZIONI DI PROBABILITA STATISTICA INFERENZIALE

ELEMENTI STATISTICA METODOLOGICA DISTRIBUZIONI DI PROBABILITA STATISTICA INFERENZIALE ELEMENTI DI STATISTICA METODOLOGICA DISTRIBUZIONI DI PROBABILITA STATISTICA INFERENZIALE SABO STATISTICA Il puto di parteza per la statistica è il: Feomeo: fatto che si verifica e che viee osservato; può

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 5 luglio 2012

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 5 luglio 2012 Politecico di Milao - Scuola di Igegeria Idustriale II Prova i Itiere di Statistica per Igegeria Eergetica 5 luglio 2012 c I diritti d autore soo riservati. Ogi sfruttameto commerciale o autorizzato sarà

Dettagli

Complementi di Matematica e Statistica

Complementi di Matematica e Statistica Uiversità di Bologa Sede di Forlì Ao Accademico 009-00 Complemeti di Matematica e Statistica (Alessadro Lubisco) Aalisi delle compoeti pricipali INDICE Idice... i Aalisi delle compoeti pricipali... Premessa...

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli

Sistemi di Elaborazione delle Informazioni

Sistemi di Elaborazione delle Informazioni Sistemi di Elaborazioe delle Iformazioi Uiv. degli studi Federico II di Napoli Prof. Atoio Fratii Caratteristiche statiche e diamiche di u strumeto di misura E importate specificare le caratteristiche

Dettagli

Mole e Numero di Avogadro

Mole e Numero di Avogadro Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità)

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità) Il cemeto armato: metodo alle tesioi ammissibili Uità 5 Flessioe semplice retta e sforzo ormale Il cetro di pressioe risulta estero al occiolo (e > X ) (grade eccetricità) 0L asse eutro taglia la sezioe,

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Lezione 6. Risposta in frequenza

Lezione 6. Risposta in frequenza Lezioe 6 Risposta i frequeza Risposta siusoidale Cosideriamo u eerico sistema diamico lieare, di fuzioe di trasferimeto G(s): U G(s) Y Fi. : U sistema diamico lieare ed impoiamo il seuete adameto siusoidale

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli