Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi"

Transcript

1 Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta avant d 3 gradn e n seguto ndetregga d 1 gradno Salta avant d 5 gradn e n seguto ndetregga d 3 gradn Salta avant d 7 gradn e n seguto ndetregga d 5 gradn... Qual gradn compres tra l 2000-esmo e l 2017-esmo (estrem nclus non vsterà l canguro? In generale su qual gradn non metterà ma pede? Dmostrazone. Il canguro avanza secondo la sequenza Se raggruppamo termn due a due ottenamo (3 1 (5 3 ( = da cu appare charo che tutt gradn par vengono vstat. Smlmente se raggruppamo termn due a due escludendo l prmo ottenamo 3 ( 1 5 ( 3 7 ( = da cu s vede che anche gradn nella forma 4k 3 vengono vstat. Gl unc esclus sono tutt e sol quell della forma 4k 1, pertanto l canguro non vsta l 2001-esmo, l 2005-esmo, l 2009-esmo, l 2013-esmo e l 2017-esmo gradno. 2. Settantasettesette. Un numero è composto da 77 cfre decmal tutte ugual a 7. Qual è l resto della sua dvsone per 101? Dmostrazone. Sa N l numero composto da 77 cfre 7. Sfruttando la base decmale ottenamo N = Ora notamo che (mod (mod (mod (mod 101 Pertanto N = 7( ( (mod 101 qund resto della dvsone d N per 101 è Quadrat nascost (1. Sano a, b nter postv. Se 132ab e 63ab 2 sono entrambe quadrat perfett, qual è l mnmo valore d a b? Dmostrazone. Se 63ab 2 è un quadrato allora anche 63a deve esserlo; poché 63 = l mnmo valore d a che rende 63a un quadrato è a = 7. Passando al secondo numero e sosttuendo trovamo 132ab = b. Poché 132 = l mnmo valore d b che rende 132ab = b un quadrato perfetto è b = = 231. Qund a b = 238 (effettvamente 63ab 2 = e 132ab = Quadrat nascost (2. Trovare l unco prmo p per cu 11p 1 è un quadrato perfetto. Dmostrazone. 11p 1 è un quadrato perfetto se esste un n ntero tale che n 2 = 11p 1. Questa stessa espressone s può scrvere nella forma 11p = n 2 1 = (n 1(n 1. Poché però p è prmo, la sua fattorzzazone contene solo 2 element; c sono due possbltà: la prma è {n 1, n 1} = {1, n 2 1}, l che mplca n = 0 o n = 2, nessuna delle qual è ammessa poché 11 (n 2 1 e qund (n 2 1 > 11. Consderamo allora la seconda possble fattorzzazone, per cu {n 1, n 1} = {11, p}; s può avere n 1 = 11 e qund n 1 = 9, che però non è prmo e qund non va bene; oppure s può avere n 1 = 11 e qund n 1 = 13, che è prmo. La soluzone è qund p = 13. 1

2 5. Potenze mpressonant (1. Determnare la cfra delle untà d Dmostrazone. È suffcente scrvere l espansone n base 10 d 2137 ed elevarla ad una potenza qualsas per verfcare che la cfra delle untà del rsultato dpende solo dalla cfra delle untà della base (7 nel nostro caso. Ora cerchamo la perodctà della cfra delle untà delle potenze d 7: 7 1 = 7, 7 2 = 49, 7 3 = 343, 7 4 = 2401 e, sccome abbamo ottenuto 1, da qu n avant s rpeterà la sequenza 7, 9, 3, 1. Pertanto l perodo con cu s rpetono è 4, poché (4 la cfra delle untà cercata è Potenze mpressonant (2. Determnare la cfra delle untà d dove compaono esattamente cento 3. Dmostrazone. Analogamente a prma studamo l perodo delle potenze d 3: 3 1 = 3, 3 2 = 9, 3 3 = 27, 3 4 = 81, qund l perodo è 4. Pertanto samo nteressat a determnare la congruenza modulo 4 dell esponente d 3, ovvero E = dove compaono 99 numer 3. Osservamo che E = ( (mod 4 dove la penultma congruenza segue dal fatto che l esponente d 1 è scuramente dspar. Abbamo qund ottenuto che novantanove 3 all esponente del numero fornto nel problema sono congru a 3 modulo 4, ne segue che la cfra rchesta dal problema è la terza nel perodo delle potenze d 3, ovvero Prm nascost (1. Per qual valor nter d n l numero n 2 14n 24 è prmo? Dmostrazone. È suffcente fattorzzare N = n2 14n 24 = (n 2(n 12 e notare che tale numero è prmo se e solo se uno de suo due fattor è 1 o 1 e l altro è un prmo (con segno adeguato. Basta analzzare quattro cas: n 2 = 1 = n = 3 = 3 12 = 9 = N = 9 non accettable n 2 = 1 = n = 1 = 1 12 = 11 = N = 11 accettable n 12 = 1 = n = 13 = 13 2 = 11 = N = 11 accettable n 12 = 1 = n = 11 = 11 2 = 9 = N = 9 non accettable Qund gl unc valor d n per cu N è prmo sono n = 1, Prm nascost (2. Trovare l pù grande ntero n tale che tutt numer n 1, n 3, n 7, n 9, n 13 e n 15 sano prm. Dmostrazone. L ntero cercato è n = 4. Infatt, per n = 1 l numero n3 = 4 non è prmo, per n = 2 l numero n 7 = 9 non è prmo, per n = 3 l numero n 3 = 4 non è prmo. Per n > 4 tutt numer sono maggor d 5 e almeno uno è dvsble per 5. Infatt, numer 1, 3, 7, 9, 13, 15, se dvs per 5, danno come rest della dvsone 1, 3, 2, 4, 3, 0, ovvero tutt possbl rest. Pertanto numer n 1, n 3, n 7, n 9, n 13, n 15 danno tutt possbl rest d una dvsone per 5 e almeno uno d quest è dvsble per 5 e qund non è prmo. Per n = 4, nvece, ottenamo numer prm 5, 7, 11, 13, 17, Soluzon ntere. Qual numer nter n rsolvono l equazone (n 2 n 1 (n2 = 1? Dmostrazone. Se a, b sono numer nter (anche negatv l equazone della forma a b = 1 ha soluzon se e solo se a = 1, a = 1 e b è par oppure b = 0 e a 0. Consderamo var cas: (n 2 n 1 = 1 = n = 1, 2 entrambe accettabl (n 2 n 1 = 1 = n = 0, 1. Se n = 0 l esponente è par e la soluzone è accettable, mentre se n = 1 l esponente è dspar e la soluzone non è accettable n 2 = 0 = n = 2 = = 5 0 è accettable I valor d n cercat sono n = 2, 1, 0, Iperbole. Qual coppe d numer natural (a, b appartengono al grafco dell perbole a 2 4b 2 = 45? Dmostrazone. Scomponendo ottenamo (a 2b(a 2b = 45 = Rcordando che a, b sono natural segue che a 2b deve essere maggore d a 2b, pertanto cas da consderare sono: a 2b = 45, a 2b = 1 = (a, b = (23, 11 a 2b = 15, a 2b = 3 = (a, b = (9, 3 a 2b = 9, a 2b = 5 = (a, b = (7, 1 2

3 11. Terne occulte. Determnare tutte le terne d numer natural (p, n, m con p prmo tal che p n 144 = m 2. Dmostrazone. S ottene faclmente che p n = (m 12(m 12. Scuramente non può essere m 12 = 1, altrment m 12 < 0, mentre se m 12 = 1 s ottene la soluzone (5, 2, 13. Altrment, poché p è un prmo, due fattor a destra devono essere potenze (n generale dstnte del prmo p. Sano p h = m 12 e p k = m 12, allora p h p k = 24 = p k (p h k 1 = 24, qund le unche possbltà per p k sono p k = 2, 3, 4, 8. Dal caso p k = 3 s ottene la soluzone (3, 4, 15, mentre dal caso p k = 8 s ottene la soluzone (2, 8, 20; gl altr cas non portano a soluzon accettabl. 12. Dvsbltà (1. Sa n un ntero dspar. Mostrare che 8 dvde n 2 1. Dmostrazone. Poché n è dspar, s può scrvere nella forma n = 2k 1 per un certo ntero k. Qund avremo n 2 1 = (2k = 4k 2 4k = 4k(k 1. Dato che k e k 1 sono due nter consecutv, uno de due sarà par e qund anche l loro prodotto lo sarà. Dunque 2 dvde k(k 1, da cu 8 dvde 4k(k Dvsbltà (2. Provare che 3 6n 2 6n è dvsble per 35 per qualsas ntero n. Dmostrazone. Sa N = 3 6n 2 6n ; sappamo che 35 = mcm(5, 7, qund per dmostrare che 35 N basta dmostrare che 5 N e 7 N. Innaztutto s ha e qund 5 N. Allo stesso modo e qund 7 N. N = 3 6n 2 6n = 9 3n 4 3n 4 3n 4 3n (mod 5 0 (mod 5 N = 3 6n 2 6n = 27 2n 8 2n ( 1 2n 1 2n (mod 7 1 n 1 n (mod 7 0 (mod Combnazon vncent. Mschare le cfre {1, 2, 3, 4, 5, 6, 7, 8} per creare un numero dvsble per 11. Dmostrazone. Il trucco è creare una sequenza d numer che, sottratt a coppe, dano una sere d 1 e 1 che alla fne s annullno a vcenda. È facle trovare = = 0. Qund una soluzone è Il numero magco. Se camb la ma ultma cfra con un 9 e la ma prma cfra con un 5 trovera l quadrato d un terzo della ma nona parte. Un ultmo ndzo: sono un numero d 3 cfre. Ch sono? Dmostrazone. Sa n l numero che stamo cercando e sa y la sua seconda cfra. Allora ( n2 = y. Nel membro d destra deve esserc l quadrato d un numero ntero e qund trovamo 529, da cu y = 2. Dunque n = 23, ovvero n = Dofanto. L nfanza d Dofanto occupò un sesto della sua vta, la govnezza un dodcesmo ed egl fu celbe per un settmo della sua vta. Ebbe un fglo cnque ann dopo essers sposato, l quale vsse la metà degl ann del padre e Dofanto stesso morì 4 ann dopo d lu. A che età morì Dofanto? Dmostrazone. Sa x l età d Dofanto. Allora da cu ovvero 3 28 x = 9 e x = 84. x 4 (( x 5 = 1 2 x, ( 1 2 ( x = 9, 7 3

4 17. Queston d dfferenze. Dat a, b, c, d nter mostrare che 12 (a b(a c(a d(b c(b d(c d. Dmostrazone. Mostrare la dvsbltà per 12 equvale a mostrare separatamente che N = (a b(a c(a d(b c(b d(c d è multplo d 3 e d 4 (osservamo che nella scrttura d N compaono tutte le possbl dfferenze tra a, b, c, d a meno dell ordne. Dvsbltà per 3. Le class d congruenza modulo 3 sono 0, 1, 2, sccome ognuno tra a, b, c, d apparterrà ad esattamente una d esse avremo almeno due numer nella stessa classe d equvalenza. Pertanto la loro dfferenza è un multplo d 3 e anche N sarà un multplo d 3. Dvsbltà per 4. Le class d equvalenza modulo 4 sono 0, 1, 2, 3. Se almeno due tra a, b, c, d appartengono alla stessa classe d equvalenza allora N è multplo d 4, altrment a, b, c, d devono stare necessaramente n class d equvalenza dverse. A meno dell ordne delle dfferenze ottenamo N (3 2(3 1(3 0(2 1(2 0( (mod 4. Qund n tutt cas N è dvsble per 4. Pertanto N è dvsble per Estremamente quadrato. Mostrare che se n 2 1 è un ntero, allora è un quadrato perfetto. Dmostrazone. Se n 2 1 è ntero, allora 28n 2 1 deve essere l quadrato perfetto d un numero dspar 28n 2 1 = (2m n 2 1 = 4m 2 4m 1 7n 2 = m(m 1 Pochè al prmo membro compare l prodotto tra un prmo e un quadrato perfetto sa hanno due possbltà: m = a 2 e m 1 = 7b 2 : questo è mpossble poché dovrebbe essere 7b 2 a 2 = 1 ma tramte resdu quadratc modulo 4 rsulta mpossble. m = 7c 2 e m 1 = d 2 : segue n 2 1 = 2 2(2m 1 = 4m 4 = 4(m 1 = 4d 2 = (2d IMO 1974/3. Provare che n ( 2n1 2k1 2 3k non è dvsble per 5 per nessun n 0. Dmostrazone. Sa a = 8 allora (1 a 2n1 = 2n1 ( 2n 1 1 2n1 a = 1 2n1 effettuando la sosttuzone = 2k 1 sull ndce della sommatora ottenamo: 1 2n1 =1 ( 2n 1 a = 1 n =1 ( 2n 1 a 2k1 = 1 a 2k 1 ( 2n 1 n a ( 2n 1 a 2k 2k 1 Chamamo ora s = 1 e t = n ( 2n1 2k1 a 2k (osservamo che t è propro l espressone a cu samo nteressat. La relazone precedente dvene (1a 2n1 = sat e con passagg analogh s ottene anche (1 a 2n1 = s at. Moltplcando membro a membro le due relazon trovate s ottene (rcordando a = 8: 7 2n1 = s 2 8t 2. Se per assurdo fosse t 0 (mod 5 allora 7 2n1 s 2 (mod 5, tuttava cò è mpossble perchè 7 2k1 2, 3 (mod 5 mentre resdu quadratc modulo 5 sono 0, 1, 1. Pertanto t = n ( 2n1 2k1 a 2k non è ma dvsble per Congruenze a tappeto. Determnare per quant nter n 2 la congruenza x 25 x (mod n è vera per ogn x. Dmostrazone. Per l Teorema Cnese del Resto s ha: (m, n = 1 x 25 x (mod mn x 25 x (mod m x 25 x (mod n Qund possamo lmtarc a cercare prm p tal che x 25 x (mod p r con r 1. Se fosse r > 1 allora 0 (p r 1 25 p r 1 (mod p r ma cò è mpossble perché p r 1 0 (mod p r. Qund r = 1 e possamo semplfcare la relazone nel seguente modo x 24 1 (mod p. Per l Pccolo Teorema d Fermat (p 1 24 e questo porta a p = 2, 3, 5, 7, 13. Tutt numer n cercat sono qund l prodotto d uno o pù de prm trovat, ovvero = = 31. 4

5 21. IMO 1988/6. Sano a, b nter postv tal che ab 1 dvde a 2 b 2, mostrare che a2 b 2 ab1 è un quadrato perfetto. Dmostrazone. Per assurdo supponamo essta k = a2 b 2 ab1 che non sa un quadrato perfetto. Tra tutte le possbl soluzon consderamo la soluzone (A, B tale che A B sa l mnmo possble e senza perdta d generaltà sa A B. Sosttuamo A con x nella relazone nzale ed ottenamo un equzone d secondo grado x 2 (kbx (B 2 k = 0 avente una radce uguale ad A. L altra radce è ottenble tramte le formule d Vète (o relazon radc-coeffcent x 2 = kb A = B2 k A. Dalla prma equazone s vede che x 2 è ntero e dalla seconda che è non nullo, se lo fosse s avrebbe k = B 2 ma no abbamo supposto che k non sa un quadrato perfetto. Inoltre x 2 non può essere negatvo perché altrment s avrebbe kbx 2 > k x 2 2 kbx 2 (B 2 k > x 2 2 k B 2 k > x 2 2 B 2 > 0 che è una contraddzone. Infne, rcordando A B abbamo: x 2 2 = B2 k A < A x 2 2 B < A B che contraddce la mnmaltà della coppa (A, B. Tale assurdo è dervato dal fatto d aver supposto nzalmente l esstenza d un k non quadrato perfetto tale che k = a2 b 2 ab1. 5

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1 Rud Mathematc Numero 07-000-06. Edtorale.... Problem.... Ancora sulle blance.... Estrazon del lotto... 3. Soluzon e Note... 3. [06]... 3.. Problema dell'oste... 3.. Blance...3 4. Paraphernala Mathematca...3

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Appunti delle lezioni di Laboratorio di Strumentazione e Misura

Appunti delle lezioni di Laboratorio di Strumentazione e Misura Sergo Frasca Appunt delle lezon d Laboratoro d Strumentazone e Msura Dpartmento d Fsca Unverstà d Roma La Sapenza Museo del Dpartmento d Fsca dell'unverstà La Sapenza Versone 5 ottobre 004 Versone aggornata

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle Appunt d amp Elettromagnetc aptolo 8 parte I nee d trasmssone Introduone... Equaon de telegrafst... 3 Parametr per untà d lunghea... 7 Soluone nel domno della frequena... 7 soluone delle equaon de telegrafst...

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale.

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale. . ll metodo del fattore d scala globale Il progetto d un sstema d controllo dgtale può avvalers del cosddetto metodo del fattore d scala globale (FSG), attraverso l quale è possble stablre una corrspondenza

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1 ENERGIA CINETICA Teorema de energa cnetca Defnzone Per un punto P dotato d massa m e veoctà v, s defnsce energa cnetca a seguente quanttà scaare non negatva T := mv. () Defnzone Per un sstema dscreto d

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

2. Le soluzioni elettrolitiche

2. Le soluzioni elettrolitiche . Le soluzon elettroltche Classfcazone degl elettrolt: 1) soluzon elettroltche ) solvent onc: a) sal fus b) lqud onc 3) elettrolt sold Struttura del solvente Interazone one/solvente Interazone one/one

Dettagli

Generatori di Numeri Pseudocasuali

Generatori di Numeri Pseudocasuali CORSO DI LAUREA MAGISTRALE INGEGNERIA DELLE TECNOLOGIE DELLA COMUNICAZIONE E DELL INFORMAZIONE Generator d Numer Pseudocasual Dego Belvedere, Alessandro Brugnola, Alessa Vennarn Prof. Francesca Merola

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Unità Didattica N 29. Campo magnetico variabile

Unità Didattica N 29. Campo magnetico variabile Untà Ddattca N 29 Campo magnetco varable 1) Il flusso del vettore B 2) Esperenze d Faraday sulle corrent ndotte 3) Legge d Faraday-Newmann-Lenz 4) Corrent d Foucoult 5) Il fenomeno dell'autonduzone 6)

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli