Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche,

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche,"

Transcript

1 Corso i Lure in Mtemtic Prim prov in itinere i Fisic 2 (Prof. E. Sntovetti) 18 novemre 2016 Nome: L rispost numeric eve essere scritt nell pposito riquro e giustifict cclueno i clcoli reltivi. Prolem 1. Un istriuzione continu i cric vle, in coorinte cilinriche, ρ 0 α r r < ρ(r, z, θ) = 0 r con = 1.2 m. Consierno che l istriuzione i cric è un funzione continu in tutto lo spzio e che il vlore mssimo el cmpo elettrico vle, in moulo, E mx = 180 kv/m, clcolre ρ 0 e α. Clcolre l ifferenz i potenzile tr il punto P 1 i coorinte (/2, 0, 0) e il punto P 2 i coorinte (2, 0, 0). ρ 0 [C/m 3 ] = α [C/m 4 ] = V 1 V 2 [V] = Prolem 2. Tre conenstori sono collegti come ue genertori i tensione come in Figur 1, in cui C 1 = 30 µf, C 2 = 15 µf, = 40 µf, V 1 = 10 V e V 2 = 20 V. Inizilmente i conenstori sono scrichi e gli interruttori s 1 e s 2 sono perti (genertori scollegti). Si clcoli l tensione el punto, in mezzo i conenstori, nelle tre fsi che vvengono un opo l ltr. 1) Si chiue l interruttore s 1. 2) Si pre l interruttore s 1 e poi si chiue l interruttore s 2. 3) Si chiue nche l interruttore s 1 (l interruttore s 2 giá chiuso). V (1) [V] = V (2) [V] = V (3) [V] = Prolem 3. Si consieri il circuito i Figur 2, in cui V 1 = 12 V, V 2 = 15 V e = 20 Ω. Clcolre l corrente erogt l genertore V 1 e l genertore V 2. Clcolre infine qunto ovree vlere l tensione el genertore V 2 ffinché non scorr corrente nel rmo -. i 1 [A] = i 2 [A] = V 2 [V] = 24 4 Prolem 4. Un spir rigi, form i tringolo rettngolo e percors ll corrente i 2 = 3.5 A, gice sul pino i un filo rettilineo infinito in cui scorre un corrente i 1 = 10 A (Figur 3). Il cteto mggiore è prllelo l filo infinito e misur = 30 cm mentre il cteto minore è ortogonle l filo e vle = 18 cm. Se l istnz ell spir l filo vle = 9.0 cm, clcolre l forz che il filo infinito esercit () sul cteto mggiore, () sul cteto minore e (c) su tutt l spir. F 1 [N] = F 2 [N] = F tot [N] = Dti utili: ε 0 = F/m, µ 0 = 4π 10 7 H/m.

2 V 1 V 2 Figur 2 Prolem 3 Figur 1 Prolem i 2 1 i 1 Figur 3 Prolem 4 2

3 Prolem 1 Soluzione L ensità i cric ipene solo r unque c è un perfett simmetri cilinric e possimo pplicre il teorem i Guss per clcolre il cmpo elettrico E, ssumeno che l su irezione si rile (non h componenti z e θ). Dl ftto che l ensità i cric è continu si ricv suito ρ() = ρ 0 α = 0 ρ 0 = α, oppure α = ρ 0 Applichimo il teorem i Guss per r, preneno un cilinro i rggio r e ltezz h (1) Φ S (E) = Q in E 2πrh = 1 ε 0 ε 0 E(r) = ρ 0 ε 0 veno usto l equzione (1). All esterno el cilinro (r > ) imo r 0 ( r 2 r2 3 (ρ 0 αr )2πr hr = 2πh ) ε 0 ( r 2 ) ρ 0 2 α r3 3 Φ S (E) = Q in E 2πrh = 1 (ρ 0 αr )2πr hr = 2πh (ρ 2 ) 0 ε 0 ε 0 0 ε 0 2 α 3 = 2πh 2 ρ 0 3 ε 0 6 E(r) = ρ ε 0 r Derivno l espressione el cmpo entro il cilinro trovimo il mssimo el cmpo elettrico e imponeno che si ugule l to el prolem imo ρ 0 e quini α. E r = ρ ( 0 1 ε 0 2 2r ) = 0 r mx = ρ 0 = 16ε 0E mx 3 E mx = E(r mx ) = 3ρ 0 16ε 0 = C/m 3, α = ρ 0 = C/m 4 L ifferenz i potenzile tr P 1 e P 2 l trovomo integrno il cmpo elettrico r 1 = /2 r 2 = 2, fceno ttenzione i usre le ue espressioni iverse, quno sono entro e fuori el cilinro. ( ) ρ 0 r V 1 V 2 = /2 ε 0 2 r2 2 ρ 0 2 r r + 3 6ε 0 r = ρ 0 2 ( ) 13 6ε ln2 = 8E ( ) mx ln2 = 237 kv. Prolem 2 fse 1 Quno chiuimo l interruttore s 1, imo l serie i C 1 e cui è pplict l ifferenz i potenzile V 1 (il conenstore C 2 rimne scrico). Possimo llor clcolrci l cpcità equivlente e l cric sui ue conenstori (esseno un serie hnno l stess cric). L tensione V srà l tensione i cpi i. C 10 = C 1 C 1 + q 1 = V 1 C 10 = µc V = q 1 = C 1 +C 1 V 1 = 4.29 V. In quest prim fse le criche sui conenstori sono: q 0 = q 1 = C 10 V 1, q 2 = 0 3

4 fse 2 Or si pre l interruttore s 1 e successivmente si chiue l interruttore s 2. Quno l interruttore s 1 viene perto il conenstore C 1 è crico e così rimne, esseno l su rmtur superiore isolt. Aimo poi l serie ei ue conenstori e C 2 cui è pplict quest volt l tensione V 2. Tuttvi quest è or un serie tipic in qunto le criche non possono essere uguli essenoci ell cric che rimne sul conenstore C 1. Inicno le criche in quest secon fse come q q 2 C 2 + q 0 = V 2, q 1 + q 2 = q 0 (2) e l secon equzione viene l ftto che il rmo centrle isolto (quello l potenzile V ) h sempre un cric glole null. D ltr prte l cric su C 1 è quell clcolt prim e unque q 1 = q 1 e lle equzioni (2) possimo ricvre q 2 e q 0 e quini V. q 0 q ( 1 + q 0 = V 2 q 0 = V 2 + q ) ( 1 C0 C 2 V = q 0 = V 2 + q ) 1 C2 = 8.57 V. C 2 C 2 +C 2 C 2 +C 2 In quest secon fse le criche sui conenstori sono: ( q 0 = V 2 + q ) 1 C0 C 2 = µc, q 1 = q 1 = µc, q 2 = q 0 q 1 = µc. C 2 +C 2 fse 3 Si chiuono or tutti e ue gli interruttori e, inicno le criche in quest terz fse con q (e stileno positiv l cric sull rmtur conness con il punto ), possimo scrivere q 0 + q 1 + q 2 = 0, V = q 0, V Sostitueno le criche in termini ei potenzili imo V 1 = q 1 V = C 1V 1 +C 2 V 2 +C 1 +C 2 = 7.06 V. C 1, V V 2 = q 2 C 2 Prolem 3 Prenimo le correnti i mgli come nell figur e scrivimo le equzioni sulle ue mglie V 1 2i 1 i 2 + i 3 = 0 V 2 i 1 3i 2 i 3 = 0 V 2 + i 1 i 2 3i 3 = 0 Il sistem si risolve fcilmente nelle correnti e si ottiene i 1 i 2 V 1 V 2 i 3 i 1 = V 1 = 0.6 A, i 2 = V 2 2V 1 4 i 3 = V 2 + 2V 1 4 L corrente i 1 è proprio l corrente el genertore V 1 mentre l corrente el genertore V 2 vle i 2 + i 3 = V 2 = A. 2 Percé nel rmo - non scorr corrente eve essere i 2 = 0 V 2 = 2V 1 = 24 V. 4

5 Prolem 4 Il filo infinito, percorso ll corrente i 1 prouce un cmpo perpenicolre l pino ell spir tringolre (pino el foglio), uscente e i moulo B(r) = µ 0 i 2π r ove r è l istnz l filo. I iversi trtti rettilinei ell spir srnno unque interessti ll forz i Lplce l cui espressione elementre è F = il B Il cmpo mgnetico prootto l filo infinito è sempre normle ll spir e unque tutti e tre i lti. Il moulo ell forz srà unque il prootto ei mouli, F = ibl, e l irezione è quell inict nell figur (perpenicolre si l cmpo che l lto i filo consierto). Nel cso el lto 1, il cmpo è costnte e unque possimo suito integrre pssno l ll lunghezz el lto F 1 = i 2 B(r = ) = µ 0i 1 i 2 = N. 2π Nel cso el lto 2 invece il cmpo non è costnte m cmi llontnnosi l filo. Doimo llor eseguire un integrle + + µ 0 i 1 i 2 r F 2 = i 2 B(r)r = 2π r = µ 0i 1 i 2 2π ln(r) + = µ ( 0i 1 i 2 2π ln 1 + ) = N. Nel cso el lto 3 infine il proceimento è esttmente nlogo l cso el lto 2 trnne che l `iverso r m possimo senz ltro scrivere l = r sinα = r e unque l forz F 3 vle + F 3 = i 2 B(r)l = µ 0 i 1 i 2 r l 3 2π r = µ 0i 1 i ( ln 1 + ) 2π Quest forz v però scompost lungo le coorinte z e r, rispettivmente lungo il filo e normle l filo F 3z = F = µ ( 0i 1 i 2 2 2π ln 1 + ) F 3r = F = µ ( 0i 1 i 2 2 2π ln 1 + ) L componente z è unque null e rimne solo l componente rile che vle ( F tot = µ 0i 1 i 2 2π µ ( 0i 1 i 2 2π ln 1 + ) = µ 0i 1 i 2 ln 1 + ) 2π 1 α F 3 F 1 i 2 F 2 = N. ttrttiv verso il filo. Il segno meno rene conto el ftto che le ue forze hnno verso opposto. Si può infine notre che l rgomento ell prentesi qur è sempre mggiore i zero perchè ln(1 + x) < x e unque l forz è sempre ttrttiv, tnto i più tnto mggiore è il rpporto /. i 1 5

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Appunti di Elettrotecnica

Appunti di Elettrotecnica Appunti di Elettrotecnic Premess Il presente opuscolo non può e non vuole essere considerto sostitutivo del libro di testo, vuole semplicemente essere un supporto, per rmmentre gli studenti lcuni degli

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

3. Il calcolo a scuola (2): l uso della calcolatrice 1

3. Il calcolo a scuola (2): l uso della calcolatrice 1 Didttic 3. Il clcolo scuol (2): l uso dell clcoltrice 1 Ginfrnco Arrigo 57 1. Clcoli con un sol operzione L prim cos d insegnre d un giovne llievo che voglimo educre ll uso corretto dei moderni mezzi di

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Equilibrio degli elementi articolati

Equilibrio degli elementi articolati UNITÀ F Equilibrio egli elementi rticolti TEORI Elementi rticolti, vincoli interni e gri i libertà Elementi rticolti isosttici: rezioni vincolri rchi tre cerniere 4 Trvi Gerber 5 Elementi reticolri 6 lcolo

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro)

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro) 0.0 Scle di legno 9 0.0 Scle di legno Le scle servono superre le differenze di ltezz. Nelle cse unifmiliri sono sovente costruite in legno. Un scl è definit tle se formt d lmeno tre sclini consecutivi,

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

La saldatura: Pregi e difetti dei collegamenti saldati:

La saldatura: Pregi e difetti dei collegamenti saldati: L sldtur: Pregi e difetti dei collegmenti sldti: Vntggi: sono di rpid esecuzione permettono strutture più leggere consentono l perfett tenut richiedono poche lvorzioni meccniche hnno un bsso costo complessivo

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Terz Suol..........................................................................................................................................

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Progetto LO 100 di Andrea Sacchetti andreasacchetti1965@gmail.com scala 1:4 Tavola 4 S 6061 sp 9% al 31% 1b

Progetto LO 100 di Andrea Sacchetti andreasacchetti1965@gmail.com scala 1:4 Tavola 4 S 6061 sp 9% al 31% 1b tgli d effetture per fcilitre l'sportzione prim del rivestimento del dorso e crere lo spzio per i portionett 1 1 le centine d 1 4 sono di compensto di etull d 4 mm, per le centine d 5 15 si può usre compensto

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners.

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners. CIRCOLARE INFORMATIVA NR. 14 del 30/11/2012 ARGOMENTO: IMPOSTA SOSTITUIVA TFR 2013 Scde il prossimo 16 dicembre il termine per pgre l impost sostitutiv sul TFR. Tle impost rppresent l nticipo di tsse dovute

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

TECNOLOGIE PER L ACQUACOLTURA

TECNOLOGIE PER L ACQUACOLTURA Scuol di specilizzzione in: Allevmento, igiene, ptologi delle specie cqutiche e controllo dei prodotti derivti TECNOLOGIE PER L ACUACOLTURA PROF. MASSIMO LAZZARI Anno ccdemico 007-008 L movimentzione meccnic

Dettagli

Capitolo 6 Oscilloscopio analogico (parte II)

Capitolo 6 Oscilloscopio analogico (parte II) Appunti di Misure Elettriche Cpitolo 6 Oscilloscopio nlogico (prte II) Il tubo rggi ctodici...2 Grigli di controllo...3 Emissione termoelettronic...3 Anodi di ccelerzione e foclizzzione...4 Sistem di deflessione

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

Integrali doppi e tripli

Integrali doppi e tripli negrli oppi e ripli NEGRAL OPP N OORNAE REANGOLAR Supponimo che l funione ( f si efini in un ominio chiuso e limio el pino O Suiviimo il ominio in mnier rbirri in n sooomini rispeivmene i re σ σ σ n e

Dettagli

SISTEMI DI PROTEZIONE PERIMETRALE INVISIBILI PERIMETER

SISTEMI DI PROTEZIONE PERIMETRALE INVISIBILI PERIMETER ITEMI DI PROTEZIONE PERIMETRALE INVIIBILI P R O T E Z I O N I P E R I M E T R A L I I N V I I B I L I Immunità lle conizioni climtiche Neve istemi i protezione PERIMETRALE INVIIBILI Pioggi Grnine I sistemi

Dettagli

Integrazione numerica di funzioni con singolarità

Integrazione numerica di funzioni con singolarità UNIVERSITÀ DEGLI STUDI DELLA CALABRIA Fcoltà di Scienze Mtemtiche, Fisiche e Nturli Corso di Lure in Mtemtic Integrzione numeric di funzioni con singolrità RELATORE Dr. Frncesco Dell Accio CANDIDATO Contrtese

Dettagli

COMITATO REGIONALE CAMPANO SCACCHI c/o Circolo IncontrArci Via Arco 132 80043 S. Anastasia http://www.campaniascacchi.org

COMITATO REGIONALE CAMPANO SCACCHI c/o Circolo IncontrArci Via Arco 132 80043 S. Anastasia http://www.campaniascacchi.org COMITATO REGIONALE CAMPANO SCACCHI c/o Circolo IncontrArci Vi Arco 132 80043 S. Anstsi http://www.cmpnisccchi.org F.S.I. C.O.N.I. ORGANIZZA IL 19 CAMPIONATO REGIONALE A SQUADRE TORNEO OMOLOGABILE PER VARIAZIONI

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

Problemi: dinamica. blocco M: blocco m: i due corpi hanno stressa accelerazione a!!! T + decimali e cifre significative!!

Problemi: dinamica. blocco M: blocco m: i due corpi hanno stressa accelerazione a!!! T + decimali e cifre significative!! Poblemi: inmic. Un blocco i mss M. k scoe su un supeicie oizzontle senz ttito. le blocco è leto meinte un une che pss ttveso un pulei un secono blocco i mss m. k. une e pulei sono pive i mss. Mente il

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

David Acheson 1089 e altri numeri magici

David Acheson 1089 e altri numeri magici Dvid Acheson 1089 e ltri numeri mgici Un viggio sorprendente nell mtemtic Trduzione di Luis Doplicher Chivi di lettur cur di Federico Tione e Lis Vozz indice 1. L mgi del 1089 5 2. Innmorrsi dell geometri

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3)

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3) N. Tre particelle cariche sono poste come in gura ad una distanza d. Le cariche Q e Q 2 = 0 9 C sono tenute ferme mentre la carica Q 3, libera di muoversi, è in equilibrio. Calcolare il valore di Q Anchè

Dettagli

a cura di: ing. Ernesto Grande e.grande@unicas.it http://www.docente.unicas.it/ernesto_grande

a cura di: ing. Ernesto Grande e.grande@unicas.it http://www.docente.unicas.it/ernesto_grande Università degli Studi di Cssino Progetto di Strutture Costruzioni i in Acciio i cur di: ing. Ernesto Grnde e.grnde@unics.it http://www.docente.unics.it/ernesto_grnde t it/ t d Testi consigliti 1. G. Bllio,

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli