ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2011"

Transcript

1 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il candidato risolva uno di du problmi 5 di qusiti in cui si articola il qustionario. PROBLEMA Sia f la funzion dfinita sull insim R di numri rali da f () ln 4 sia la sua rapprsntazion grafica nl sistma di rifrimnto Oy.. Si dtrmini il limit di f () pr ch tnd a a. Si calcoli f () f ( ) si spighi prché dal risultato si può ddurr ch il punto A(; ln 4) è cntro di simmtria di.. Si provi ch, pr tutti i rali m, l quazion f () m ammtt una una sola soluzion in R. Sia la soluzion dll quazion f () ; pr qual valor di m il numro è soluzion dll quazion f () m?. Si provi ch, pr tutti gli rali, è: f () ln 4. Si provi altrsì ch la rtta r di quazion y ln 4 la rtta s di quazion y ln 4 sono asintoti di ch è intramnt compr- sa nlla striscia piana dlimitata da r da s. 4. Posto I () [f () ln 4]d, si calcoli: lim I (). Qual è il significato gomtrico dl risultato ottnuto? PROBLEMA Pr il progtto di una piscina, un archittto si ispira all funzioni f g dfinit, pr tutti gli rali, da: f () 6 g () sn.. Si studino l funzioni f g s n disgnino i rispttivi grafici in un convnint sistma di rifrimnto cartsiano Oy. Si considrino i punti dl grafico di g a tangnt orizzontal la cui ascissa è comprsa nll intrvallo [ ; ] s n indichino l coordinat.. L archittto rapprsnta la suprfici libra dll acqua nlla piscina con la rgion R dlimitata dai grafici di f di g sull intrvallo [; 4]. Si calcoli l ara di R.. Ai bordi dlla piscina, ni punti di intrszion dl contorno di R con l rtt y 5 y 5, l archittto progtta di collocar di fari pr illuminar la suprfici dll acqua. Si calcolino l asciss di tali punti (è sufficint un approssimazion a mno di ). 4. In ogni punto di R a distanza dall ass y, la misura dlla profondità dll acqua nlla piscina è data da h() 5. Qual sarà il volum d acqua nlla piscina? Quanti litri d acqua saranno ncssari pr rimpir la piscina s tutt l misur sono sprss in mtri? QUESTIONARIO Silvia, ch ha frquntato un indirizzo sprimntal di lico scintifico, sta dicndo a una sua amica ch la gomtria uclida non è più vra prché pr dscrivr la raltà dl mondo ch ci circonda occorrono modlli di gomtria non uclida. Silvia ha ragion? Si motivi la risposta. Si trovi il punto dlla curva y più vicino al punto di coordinat (4; ). Zanichlli Editor,

2 Sia R la rgion dlimitata, pr [; ], dalla curva y sn dall ass sia W il solido ottnuto dalla rotazion di R attorno all ass y. Si calcoli il volum di W. Il numro dll combinazioni di n oggtti a 4 a 4 è ugual al numro dll combinazioni dgli stssi oggtti a a. Si trovi n. In una dll su opr G. Galili fa porr da Salviati, uno di prsonaggi, la sgunt qustion riguardant l insim N di numri naturali («i numri tutti»). Dic Salviati: «...s io dirò, i numri tutti, comprndndo i quadrati i non quadrati, ssr più ch i quadrati soli, dirò proposizion vrissima: non è così?». Com si può rispondr all intrrogativo posto con quali argomntazioni? Di tutti i coni inscritti in una sfra di raggio cm, qual è qullo di suprfici latral massima? Un tst d sam consta di dici domand, pr ciascuna dll quali si dv scglir l unica risposta corrtta fra quattro altrnativ. Qual è la probabilità ch, rispondndo a caso all dici domand, almno du rispost risultino corrtt? In ch cosa consist il problma dlla quadratura dl crchio? Prché è citato così spsso? Si provi ch, nllo spazio ordinario a tr dimnsioni, il luogo gomtrico di punti quidistanti dai tr vrtici di un triangolo rttangolo è la rtta prpndicolar al piano dl triangolo passant pr il punto mdio dll ipotnusa. Nlla figura sotto, dnotati con I, II III, sono disgnati tr grafici. Uno di ssi è il grafico di una funzion f, un altro lo è dlla funzion drivata f l altro ancora di f. Qual dll sgunti altrnativ idntifica corrttamnt ciascuno di tr grafici? Si motivi la risposta. f f f A I II III B I III II C II III I D III II I E III I II Figura. Durata massima dlla prova: 6 or. È consntito soltanto l uso di calcolatrici non programmabili. Non è consntito lasciar l Istituto prima ch siano trascors or dalla dttatura dl tma. Zanichlli Editor,

3 SOLUZIONE DELLA PROVA D ESAME CORSO SPERIMENTALE P.N.I. PROBLEMA. La funzion f () ln 4 di grafico ha dominio R. Dtrminiamo i limiti agli strmi dl dominio: lim ln 4, lim ln 4. Calcoliamo f () f ( ): f () f ( ) ln 4 ln 4 ln 4 (ln 4 ). Dal risultato si dduc ch: f () f ( ) ln 4 ( ). Prtanto il punto (ln 4 ; ) è mdio tra i du punti (; f ()) ( ; f ( )) appartnnti al grafico, con R. Sgu allora ch il punto A(ln 4 ; ) è cntro di simmtria pr il grafico pr dfinizion di simmtria cntral di una curva risptto a un punto. Il punto A è il punto intrszion con l ass y.. Data l quazion f () m, considriamo la funzion g() f () m, con m ral. La funzion g è continua in R; agli strmi dl suo dominio i limiti valgono: lim ln 4 m, lim ln 4 m. Prtanto, fissato m, sistrà un intrvallo limitato chiuso ai cui strmi la funzion assum sgno opposto. Allora val il torma di sistnza dgli zri: sist almno un punto in tal intrvallo in cui la funzion g() f () m si annulla quindi f () m. Inoltr la funzion è drivabil in R pr qualsiasi valor di m risulta: g () ( ). ( ) S n dduc ch la funzion è strttamnt crscnt in R; pr il primo torma di unicità dllo zro, pr tutti i rali m, la funzion g() f () m ammtt uno un solo zro in R quindi l quazion f () m ammtt una una sola radic in R. S è la soluzion dll quazion f (), pr sostituzion risulta: f (). Inoltr, pr quanto visto al punto dl problma, val: f () f () (ln 4 ) f () (ln 4 ) f () (ln 4 ) ln4. Si dduc allora ch è soluzion di f () m quando m ln4. Zanichlli Editor,

4 . Dalla rlazion dl punto, f () f ( ) (ln 4 ), splicitiamo f () sostituiamo l sprssion corrispondnt a f ( ): f () (ln 4 ) f ( ) (ln 4 ) ln 4 ln4ln 4 ln 4. Pr tutti gli rali val allora: f () ln 4. Dtrminiamo ora gli vntuali asintoti obliqui dlla funzion f sprssa nlla forma appna trovata f () ln 4 ; calcoliamo i sgunti limiti: lim f (), lim f ( ln 4 ) lim, lim (f () ) ln 4; lim f (), lim f ( ln 4 ) lim, lim (f () ) ln 4. La funzion ha asintoto obliquo dstro r di quazion yln4, asintoto obliquo sinistro s di quazion y ln 4. Rapprsntiamo nlla figura il grafico dlla funzion. Confrontiamo ora l quazion di f scritta nlla forma f () ln 4, con l quazion dlla rtta r, y r ln 4, risulta: ln 4 ln 4, R f () y r. Analogamnt raffrontiamo l quazion di f scritta nlla forma Figura. f () ln 4, con l quazion dlla rtta s, y s ln 4, si ricava: ln 4 ln 4, R f () y s. In conclusion il grafico è intramnt comprso nlla striscia piana dlimitata da r da s. 4. Considriamo l intgral I () [f () ln 4]d, con, sostitundo l sprssion dlla funzion f () ln 4 : I () ln 4 ln 4 d d. Calcoliamo il limit dll intgral: lim I () lim d 4 Zanichlli Editor,

5 poniamo t, da cui d t d: t lim dt t (t ) poiché t (t ) t, risulta: t lim t t dt lim [ln t ln(t )] lim ln t t lim ln ln lnln 4. Il limit lim I (), con I () [ f() ln 4]d, rapprsnta l ara dlla rgion di piano comprsa tra l ass y, il grafico la rtta r (figura ). Tal suprfici misura quindi ln 4. y ln4+ A Γ PROBLEMA. Studiamo la funzion f() 6: ha dominio nl campo ral; f ( ) 6 f(), prtanto il corrispondnt grafico è simmtrico risptto all origin dl sistma cartsiano; l intrszioni con gli assi sono (; ), (4; ), ( 4; ). Valutiamo il sgno dlla funzion ponndo ( 6) :, Figura Dal quadro dl sgno (figura 4) si dduc: f() pr 4 4, f() pr 4 4. r O Figura. ln4 Valutiamo il comportamnto dlla funzion agli strmi dl dominio: non sistono asintoti vrticali poiché la funzion non ha punti di discontinuità; inoltr risulta: lim ( 6), lim 6, prtanto la funzion non ha asintoti orizzontali, né obliqui. Studiamo la drivata prima il suo sgno: f () 6, f () 6 4 4, f () 6 4 4, 5 Zanichlli Editor,

6 f () Figura 5. Dal quadro dl sgno dlla drivata prima (figura 5) si ricava ch la funzion ha un massimo pr 4 un minimo pr 4. L corrispondnti ordinat valgono: f , f , 9 gli strmi rlativi dlla funzion sono quindi: M 4 ; 8 9, M 4, 8 9. Calcoliamo infin la drivata sconda: f () 6. Essa si annulla pr, è positiva pr, ngativa pr : la funzion ha un flsso pr, ha concavità vrso l alto pr, vrso il basso pr. Nlla figura 6 è riportato il grafico di f() 6. Considriamo la funzion g() sn : il suo grafico si ottin dalla funzion y sn tramit una contrazion orizzontal ; poiché il priodo dlla funzion y sn è, il priodo di g() sn è T 4. Rapprsntiamo in figura 7 il suo grafico. Figura 7. Figura 6. 6 Zanichlli Editor,

7 Ricaviamo ora i punti dl grafico di g a tangnt orizzontal nll intrvallo [ ; ], dducndoli dal grafico di figura 7 tnndo conto dlla priodicità T 4 dlla funzion: k k con 5 k 4, k Z. y k ( ) k. Rapprsntiamo nllo stsso sistma cartsiano i grafici dll funzioni f g indichiamo con R la rgion dlimitata nll intrvallo [; 4] (figura 8). Calcoliamo la suprfici S dlla rgion R mdiant l intgral: S 4 [g() f()]d Figura 8. 4 sn 6 d cos Tracciamo l rtt y 5 y 5 ch intrscano il contorno dlla rgion R ni punti P, Q, S, T (figura 9). Figura 9. 7 Zanichlli Editor,

8 Dtrminiamo l asciss di punti P Q, risolvndo il sgunt sistma pr 4: y ( )( 5) y 5 ( ) 6 6 y 5 non accttabil y 5 y 5 y 5 Prtanto risulta: P, Q 6. L asciss di punti S T, con 4 soddisfano il sistma: y 6 y 5 y y 5 y 5 6 L quazion 6 5 non ha soluzioni razionali, prtanto procdiamo con l analisi numrica scondo un approssimazion a mno di, dducndo dal grafico ch sistono du radici T S. Posto p() 6 5, ossrviamo ch p() 5 p(), sgu ch T ; applichiamo il mtodo di biszion, partndo dai valori a b. a p(a) b p(b) a b p a b 5,5,875 5,5,875,5,6,5,6,5,875,75,947,5,6,75,947,5, Si trova quindi ch T, a mno di. Ricrchiamo ora il valor approssimato di S, ossrvando ch p() 6 p(4) 5, sgu ch S 4; riapplichiamo il mtodo di biszion, partndo dai valori a b 4. a p(a) b p(b) a b p a b 6 4 5,5 8,5,5 8,5 4 5,75,66,75,66 4 5,875,86,75,66,875,86,8,57 Dalla tablla ricaviamo così ch un valor approssimato dlla radic è S,8 con un rror minor di,. 8 Zanichlli Editor,

9 4. Calcoliamo il volum dlla piscina szionando il solido con piani, 4 prpndicolari alla suprfici dll acqua (figura ). Figura. Pr ogni piano si ottin un rttangolo di altzza h( ) 5 bas g( ) f ( ); l ara di tal rttangolo val: (g( ) f ( )) h( ) sn 6 (5 ). Il volum V dlla vasca può ssr così calcolato mdiant l intgral: V 4 sn 6 (5 )d 5 cos sn d 4 sn d 4 [ + 6 ](5 )d sn d 4 ( )d 5( ) 4 sn d svolgiamo pr parti l intgral contnuto ancora nll sprssion: 4 5 cos d cos sn In unità di misura, tnndo conto ch dm quival a L: V m L 6,5 L. QUESTIONARIO A partir dal XVIII scolo, molti filosofi matmatici si ddicarono a un analisi critica dlla gomtria uclida aprndo un dibattito sulla validità dl V postulato sulla possibilità di dimostrarlo in bas agli altri quattro. Tal discussion portò nll arco di un scolo alla costruzion dll gomtri non uclid, cioè di gomtri basat su un sistma assiomatico divrso da qullo di Euclid. Nlla prima mtà dl XIX scolo i matmatici Bolyai Lobačvskij posro l basi dlla gomtria non uclida dtta iprbolica, sostitundo il V postulato con la sua ngazion (pr un punto passano almno du rtt paralll a una rtta data). In particolar, Lobačvskij attribuiva alla gomtria i carattri di una scinza mpirica, in cui l sprinza gioca un ruolo important pr dfinir l ffttiv proprità dllo spazio. I suoi calcoli astronomici rlativi al triangolo Trra-Sol-Sirio lo portarono a pnsar ch, bnché il modllo uclido risultass soddisfacnt nlla rapprsntazion dlla raltà fisica di nostri snsi, sso potss divntar inadguato falso pr dscrivr il mondo fisico nlla sua globalità. 9 Zanichlli Editor,

10 Oltr alla gomtria iprbolica furono costruit altr gomtri non uclid, dotat di cornza compltzza, dtt gomtria sfrica gomtria llittica. Ciò portò i fisici a rivdr lo spazio fisico, fino ad allora intrprtato scondo il modllo uclido. La rlatività gnral di Einstin stabiliva l sistnza di un rapporto tra spazio matria molto divrso da qullo dlla toria nwtoniana: la prsnza di matria può dformar lo spazio; lo spazio può ssr globalmnt curvo dv prsntar curvatur a livllo local. Mntr l ossrvazioni più rcnti (sprimnto Boomrang dl ) smbrano dimostrar ch lo spazio ha una struttura globalmnt uclida, l ossrvazioni di un cliss di Sol la curvatura di raggi luminosi ha confrmato nl 99 l sistnza dll dformazioni locali instinian. In conclusion non è satto dir ch la gomtria uclida non è più vra o ch un modllo è più satto di altri: sistono solo modlli ch mglio rapprsntano l situazioni locali. Vdi lo svolgimnto dl qusito dlla prova dl corso di ordinamnto. In figura è rapprsntato il solido W ottnuto dalla rotazion intorno all ass y dlla rgion dlimitata dalla curva y sn dall ass, pr [; ]. W Figura. Considriamo il cilindro di raggio,, altzza sn. Esso ha suprfici latral S( ) = sn. Il volum dl solido W può ssr calcolato tramit il sgunt intgral risolto pr parti: V S()d sn d cos cos d (). 4 5 Vdi lo svolgimnto dl qusito 4 dlla prova dl corso di ordinamnto. Considriamo l insim di numri naturali N; sia A l insim di quadrati di numri naturali: A = {q N q n, n N}. L insim A è un sottoinsim proprio di N ovvro A N, i du insimi sono ordinati pr inclusion ma sono infiniti. Ugualmnt si può dfinir una corrispondnza biunivoca tra N A: n n, ovvro a un numro natural corrispond uno un solo numro, suo quadrato. L insim di partnza N qullo di arrivo A sono ordinati pr cardinalità. Prtanto affrmar ch i numri naturali sono in numro maggior ch i corrispondnti quadrati è falso. Zanichlli Editor,

11 6 Considriamo una sfra di raggio OR cm un cono a sso inscritto (figura ). S Il sgmnto RS è un diamtro dlla sfra misura cm. Pr smplicità tralasciamo, pr il momnto, l unità di misura. Indichiamo con l angolo PRˆS, dov. Pr i tormi trigonomtrici di triangoli rttangoli risulta: PR RS cos cos, PH PR sn sn cos. Calcoliamo la suprfici latral S() dl cono inscritto: S() PH PR, sostituiamo: S() ( sn cos cos ) 4 cos sn 4(sn sn ),. Calcoliamo la drivata prima S () studiamon il sgno nll intrvallo, tnndo conto ch in tal intrvallo il sno il cosno sono positivi comprsi tra : S () 4(cos cos sn ) 4 cos ( sn ), S () pr arcsn, S () pr arcsn, S () pr arcsn. Prtanto la funzion S() è dotata di massimo assoluto nl punto arcsn. Il cono di suprfici latral massima ha apotma, raggio di bas altzza rispttivamnt: PR cos arcsn PH 4 6 cm, RH PR PH Figura. 6 cm, 4 cm. Zanichlli Editor,

12 7 Considriamo gli vnti: E nssuna risposta satta, E una sola risposta è satta, E almno du rispost sono satt. Dtrminiamo l sgunti probabilità: p(e ) 9 4, p(e ) L vnto E risulta l vnto contrario dlla somma logica dgli vnti incompatibili E E, prtanto la probabilità val: p(e ) p(e E ) (p(e ) + p(e )) , Vdi lo svolgimnto dl qusito 8 dlla prova dl corso di ordinamnto. Vdi lo svolgimnto dl qusito 9 dlla prova dl corso di ordinamnto. Vdi lo svolgimnto dl qusito dlla prova dl corso di ordinamnto. Zanichlli Editor,

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2012

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2012 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 0 Il candidato risolva uno di du problmi di 0 qusiti in cui si articola il qustionario. PRBLEMA Dlla funzion f, dfinita pr 0, si sa ch è dotata

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

ESAMI DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA SCIENTIFICO BROCCA Sessione 2002 seconda prova scritta Tema di MATEMATICA

ESAMI DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA SCIENTIFICO BROCCA Sessione 2002 seconda prova scritta Tema di MATEMATICA ESAMI DI STATO DI LIEO SIENTIFIO PIANO NAZIONALE DI INFORMATIA SIENTIFIO BROA Sssion 00 sconda prova scritta Tma di MATEMATIA Il candidato risolva uno di du problmi 5 di 0 qusiti dl qustionario. PROBLEMA

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti Svolgimnto di tmi d sam di Matmatica Anno Accadmico 05/6 Albrto Prtti April 06 A Prtti Svolgimnto di tmi d sam di Matmatica AA 05/6 PROVA INTERMEDIA DI MATEMATICA I part Vicnza, 04//05 Domanda Scomporr

Dettagli

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) :

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) : Ystudio Corsi lzioni d srcizi on lin di Matmatica, Statica Scinza dll costruzioni www.studio.it/sit. Dominio : Poichè la unzion è pari, lo studio vin itato al smipiano dll asciss positiv. Intrszion assi

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

ISTITUTO MAGISTRALE MARIA IMMACOLATA di San Giovanni Rotondo (FG) INDIRIZZO: PEDAGOGICO

ISTITUTO MAGISTRALE MARIA IMMACOLATA di San Giovanni Rotondo (FG) INDIRIZZO: PEDAGOGICO ISTITUTO MAGISTRALE MARIA IMMACOLATA di San Giovanni Rotondo (FG) INDIRIZZO: PEDAGOGICO ORGANIZZAZIONE MODULARE DEI CONTENUTI DI MATEMATICA DEL BIENNIO FINALITÀ Acquisir rigor spositivo prcision di linguaggio

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

novembre 2015 suddivisioni di quantità, retta numerica, lunghezze e superfici, altezza di figure 2D e 3D

novembre 2015 suddivisioni di quantità, retta numerica, lunghezze e superfici, altezza di figure 2D e 3D MATEMATICA 2^ VERSO I TRAGUARDI DI COMPETENZA L alunno: gg scriv i numri naturali snza limiti prfissati; riconosc il valor posiziona dl cifr; calcola riga addizioni, moltiplicazioni; calcola divisioni

Dettagli

P I A N O D I L A V O R O

P I A N O D I L A V O R O ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazion, Finanza Markting/IGEA Costruzioni, Ambint Trritorio/Gomtri Lico Linguistico/Linguistico

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Soddisfazione sulla valutazione della didattica da parte degli studenti. Anno accademico: 2014/2015

Soddisfazione sulla valutazione della didattica da parte degli studenti. Anno accademico: 2014/2015 Soddisfazion sulla valutazion dlla da part dgli studnti Anno accadmico: 2014/2015 Rapporto statistico pr Tipologia di Corso Laura Trinnal Indagin sulla soddisfazion dgli studnti sulla Numro insgnamnti

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA. DISCIPLINA: Matematica (Biennio)

DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA. DISCIPLINA: Matematica (Biennio) DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA DISCIPLINA: Matmatica (Binnio) Il coordinator dl Dipartimnto pr l anno 2013-2014 Prof. Tommaso Bologns Profilo dllo studnt in uscita

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

PROVA EDOMETRICA A.A

PROVA EDOMETRICA A.A PROA EDOMETRICA La prova domtrica riproduc in laboratorio l condizioni di consolidazion monodimnsional PROA A INCREMENTO DI CARICO (IL) La consolidazion monodimnsional è simulata applicando una squnza

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Mawll Equazioni non linari: probla di punto isso Sisti di quazioni non linari Introduzion Il probla di punto isso è un probla ch si prsnta spsso in oltissi applicazioni Esso

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE

CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE ALLEGATO A CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE Quando la condizion di uso final di un prodotto da costruzion è tal da contribuir alla gnrazion alla propagazion dl fuoco dl fumo all intrno dl local

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani;

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani; CONVENZIONE FRA IL COMUNE DI CASTEL MAGGIORE, L UNIONE RENO GALLIERA E I COMUNI DI ARGELATO, BENTIVOGLIO, SAN GIORGIO DI PIANO, SAN PIETRO IN CASALE, CASTELLO D ARGILE, PIEVE DI CENTO, GALLIERA, PER LA

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

STABILITÀ DELL EQILIBRIO 5. Tensione critica e snellezza. Al carico critico euleriano (1) N cr =

STABILITÀ DELL EQILIBRIO 5. Tensione critica e snellezza. Al carico critico euleriano (1) N cr = Tnsion critica snllzza Al carico critico ulriano STABILITÀ DELL EQILIBRIO 5 π EI cr () l do l è la lunghzza libra di inflssion corrispondnt alla smilunghzza d onda dlla sinusoid formata dalla lina lastica,

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO PRIMO BIENNIO/SECONDO BIENNIO ULTIMO ANNO In cornza con i critri di validazion dlla programmazion di ass (o

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

p(e 3 ) = 31 [R. c) e d)]

p(e 3 ) = 31 [R. c) e d)] CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ - ESERCIZI I.) Anna, Batric Carla fanno una gara di corsa. Stimo ch Anna Carla siano ugualmnt vloci ch Batric abbia probabilità doppia dll altr du di vincr la

Dettagli

LA CURVA DI OFFERTA AGGREGATA, IL MODELLO COMPLETO AD AS

LA CURVA DI OFFERTA AGGREGATA, IL MODELLO COMPLETO AD AS Modulo 7 1 LA CURVA DI OFFERTA AGGREGATA, IL MODELLO COMLETO AD 1. Dfinizion 2. Il caso noclassico 3. Il caso kynsiano 4. Il caso intrmdio 5. Il modllo AD - l politich di stabilizzazion 5.a olitica fiscal

Dettagli

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Cntro Rgional di Programmazion I n t r POR Sardgna FESR 2007/2013 - ASSE VI COMPETITIVITÀ Lina di attività 6.1.1.A Promozion

Dettagli

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO REGIONE LAZIO Dirzion Rgional: Ara: SVILUPPO ECONOMICO E ATTIVITA PRODUTTIVE INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE N. G09834 dl 08/07/2014 Proposta n. 11437 dl 01/07/2014 Oggtto: Attuazion

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

MATRICE CURRICOLARE PER CONCETTI MATEMATICA CLASSE I

MATRICE CURRICOLARE PER CONCETTI MATEMATICA CLASSE I MATMATICA RILABORAZION SISTMA CONCTTUAL a.s. 2008-09 MATRIC CURRICOLAR PR CONCTTI MATMATICA CLASS I LOGICA GOMTRIA ARITMTICA RLAZIONI NSSI PROPRITÀ LINGUAGGI SPAZIO TMPO NTI GOMTRICI MISUR RLAZIONI NUMRI

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 00 Sessione ordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Sia AB un segmento

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml Class di abilitazion (o class di concorso) La class di concorso è una sigla alfa numrica con la qual si indica l insim di matri ch possono ssr insgnat da un docnt. Indica una particolar cattdra di insgnamnto,

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

EUCENTRE. European Centre for Training and Research in Earthquake Engineering

EUCENTRE. European Centre for Training and Research in Earthquake Engineering Europan Cntr for Rsarch in Earthquak Enginring Parr sulla vntual obbligatorità di un intrvnto di adguamnto sismico nll ambito dll intrvnto di ristrutturazion, adguamnto ampliamnto dlla Casa Albrgo pr Anziani

Dettagli

Parte IV: Spin e fisica atomica

Parte IV: Spin e fisica atomica Part IV: Spin fisica atomica Atomo in un campo magntico Esprinza di Strn Grlach Spin dll lttron Intrazion spin orbita doppitti spttrali Spin statistica 68 Atomo in un campo magntico Efftto classico: prcssion

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

verifiche di Informatica giuridica e logica giuridica; di Informatica giuridica e logica giuridica (recupero tre crediti);

verifiche di Informatica giuridica e logica giuridica; di Informatica giuridica e logica giuridica (recupero tre crediti); Informatica giuridica logica giuridica part tradizional (pagina 1 di 5 ) vrifich di Informatica giuridica logica giuridica; di Informatica giuridica logica giuridica (rcupro tr crditi); Univrsità dgli

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

2.2 L analisi dei dati: valutazioni generali

2.2 L analisi dei dati: valutazioni generali 2.2 L analisi di dati: valutazioni gnrali Di sguito (figur 7-) vngono riportat l informazioni più intrssanti rilvat analizzando globalmnt la banca dati dll tichtt raccolt. Considrando ch l tichtta nutrizional

Dettagli

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI STUDI DI VERONA, L UNIVERSITA IUAV DI VENEZIA, L UNIVERSITA CA FOSCARI E L AZIENDA REGIONALE PER

Dettagli

Gazzetta ufficiale dell'unione europea

Gazzetta ufficiale dell'unione europea L 68/4 Gazztta ufficial dll'union uropa 15.3.2016 REGOLAMENTO DELEGATO (UE) 2016/364 DELLA COMMISSIONE dal 1 o luglio 2015 rlativo alla classificazion dlla prstazion di prodotti da costruzion in rlazion

Dettagli

730, Unico 2014 e Studi di settore

730, Unico 2014 e Studi di settore 730, Unico 2014 Stu sttor Pillol aggiornamnto N. 39 27.06.2014 Il prosptto Dati bilancio in Unico2014 ENC. La riconciliazion dati dllo Stato Patrimonial nl prosptto Dati bilancio. Catgoria: Dichiarazion

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

dossier a cura di Alessandro Massari

dossier a cura di Alessandro Massari I REFERENDUM REGIONALI ABROGATIVI, CONSULTIVI, PROPOSITIVI dossir a cura di Alssandro Massari PREMESSA... 2 1. RIMBORSI SPESE... 2 2. REFERENDUM PREVISTI NELLE DISPOSIZIONI STATUTARIE DELLE REGIONI A STATUTO

Dettagli

Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?

Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio? Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale

Dettagli

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB In rlazion a quanto prvisto dall art.2120 C.C., dall norm di lgg dagli accordi collttivi vignti, convngono ch, in aggiunta alla casistica sprssamnt prvista, il dipndnt possa chidr la anticipazion dl proprio

Dettagli

Prot. n. AOODGEFID/7724 Roma, 12/05/2016. Al Dirigente Scolastico I.C. 1^ CASSINO VIA BELLINI, 1 03043 CASSINO FROSINONE LAZIO

Prot. n. AOODGEFID/7724 Roma, 12/05/2016. Al Dirigente Scolastico I.C. 1^ CASSINO VIA BELLINI, 1 03043 CASSINO FROSINONE LAZIO Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr la Programmazion la gstion dll risors uman, finanziari strumntali Dirzion Gnral pr intrvnti in matria di dilizia scolastica, pr la gstion

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata Istituti Tcnici Industriali L curvatur di prcorsi scolastici vrso Robotica/Mccatronica avanzata MACRO-COMPETENZE IN USCITA VERSO LA ROBOTICA/MECCATRONICA AVANZATA Quattro Macro-Comptnz Spcialistich: 1.

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

REGIONE DEL VENETO PROVVEDIMENTO

REGIONE DEL VENETO PROVVEDIMENTO REGIONE DEL VENETO AZIENDA UNITA LOCALE SOCIO SANiTARIA N. 6 VICENZA PROVVEDIMENTO DEL DIRIGENTE RESPONSABILE Srvizio Appalti Pubblic E-Procurmnt dlgato dal Dirttor Gnral dll Azinda con dlibra rgolamntar

Dettagli

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale Univrsità dgli Studi di Firnz Dipartimnto di Inggnria Civil d Ambintal TARIFFARIO DELLE PRESTAZIONI IN CONTO TERZI (Approvato dal Consiglio di Dipartimnto dl 24/01/2002) ATTIVITÀ E SERVIZI OFFERTI PROVE

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione Committnt /o Rsponsabil di lavori Imprsa affidataria, Imprs scutrici Lavoratori autonomi 1 Committnt CHI E : soggtto pr conto dl qual l intra opra vin ralizzata, indipndntmnt da vntuali frazionamnti dlla

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli