Anno 2. Potenze di un radicale e razionalizzazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anno 2. Potenze di un radicale e razionalizzazione"

Transcript

1 Anno Potenze di un rdicle e rzionlizzzione

2 Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente vedremo un metodo per rendere rzionli i denomintori di frzioni in cui compiono i rdicli. Al termine dell lezione sri in grdo di: risolvere l potenz e l rdice di un rdicle risolvere l rzionlizzzione del denomintore di un frzione In quest lezione impreri dpprim utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle; successivmente vedremo un metodo per rendere rzionli i denomintori di frzioni in cui compiono i rdicli. Al termine dell lezione sri in grdo di operre con l potenz e l rdice di un rdicle e di operre l rzionlizzzione del denomintore di un frzione.

3 L potenz di un rdice Come si procede nel cso di elevmento potenz di un rdicle? L potenz indic l moltipliczione di un fttore per se stesso ripetut tnte volte qunte indicto dll esponente. m n n n n n n m lte vl tevom Per elevre un determint potenz un rdicle st elevre quell potenz il rdicndo. om Allo stesso risultto si giunge considerndo l rdice come un potenz esponente rzionle, inftti: Esempio: n m m n n m m n Nel seguente esempio vedimo come l potenz estern si distriuisce su tutti i fttori interni l rdicle: x yz 6x y z Come si procede nel cso di elevmento potenz di un rdicle? Come en si, l potenz indic l moltipliczione di un fttore per se stesso ripetut tnte volte qunte indicto dll esponente. Inoltre, dovresti ricordre come si esegue il prodotto tr rdicli con lo stesso indice. Per clcolre l potenz m-esim di n isson scrivere il prodotto di n fttori uguli n. M, poiché l indice è ugule, si può fre un unic rdice con il solo rdicndo moltiplicto per se stesso m volte. Quindi si h ( n ) m = n m. In conclusione, per elevre un determint potenz un rdicle st elevre quell potenz il rdicndo. In effetti, potevmo giungere llo stesso risultto considerndo l rdice come un potenz esponente rzionle, inftti ( n ) m =( /n ) m =( m ) /n = n m. Nell esempio vedimo come l potenz estern si distriuisce su tutti i fttori interni l rdicle.

4 L rdice di un rdice Sempre sfruttndo le proprietà delle potenze possimo cpire come si effettu l rdice di un rdice: n m n m m n m n mn mn L rdice di un rdice è un rdicle con lo stesso rdicndo e con indice pri l prodotto degli indici delle rdici. Un esempio immedito: x y x y Un esempio in cui isogn prim trsportre tutto nel rdicndo più interno: x x y x x y 8x x y 8x y Sempre sfruttndo le proprietà delle potenze possimo cpire come si effettu l rdice di un rdice: n m si può trsformre come potenz di potenz, inftti n m = n /m =( /m ) /n. Sfruttndo le proprietà delle potenze si ottiene /nm e quindi, riscrivendo quest potenz d esponente rzionle come rdice, /nm = nm. Proponimo un esempio immedito: x y = x y Vedimo poi un secondo esempio, meno immedito, in cui per poter operre l rdice di rdice isogn prim trsportre ogni fttore dentro il segno di rdice più interno: y x y x. 4

5 Rzionlizzzione del denomintore: rdici qudrte Anlizzimo or un nuovo prolem: qundo l denomintore di un frzione compiono uno o più rdicli, è possiile scrivere un frzione equivlente con l denomintore un espressione senz rdicli? È possiile grzie ll rzionlizzzione del denomintore. Rdici qudrte: Se l denomintore compre un solo termine ed è un rdice qudrt, per rzionlizzre st moltiplicre numertore e denomintore per l stess rdice. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Anlizzimo or un nuovo prolem: qundo l denomintore di un frzione compiono uno o più rdicli, è possiile scrivere un frzione equivlente con l denomintore un espressione senz rdicli? L rispost è ffermtiv e il procedimento si chim rzionlizzzione del denomintore. D qui e nelle prossime pgine ffronteremo vrie tipologie di rzionlizzzione. Inizimo con il cso delle rdici qudrte. Se l denomintore compre un solo termine ed è un rdice qudrt, per rzionlizzre st moltiplicre numertore e denomintore per l stess rdice. Nel primo esempio imo l denomintore. Moltiplicndo numertore e denomintore per, l denomintore ottenimo. Nel secondo esempio l denomintore compre un fttore fuori dl segno di rdice e il rdicndo è un inomio. Non cmi null: doimo solo moltiplicre numertore e denomintore per il rdicle, in modo d ottenere l rdice del inomio l qudrto che si può semplificre.

6 Rzionlizzzione del denomintore: rdici n-esime Le rdici qudrte non sono le uniche rdici. Provimo trttre un cso più generle: Rdici n-esime di un fttore elevto potenz: Se l denomintore compre un solo termine e si trtt di un rdice n-esim di un fttore elevto ll m, con m<n, per rzionlizzre st moltiplicre numertore e denomintore per l rdice n-esim di quel fttore elevto n-m. 7 6 x y x y x y x y x y xy Come en si le rdici qudrte non sono le uniche rdici. Provimo trttre un cso più generle: vedimo il cso delle rdici n-esime di un fttore elevto potenz. Se l denomintore compre un solo termine e si trtt di un rdice n-esim di un fttore elevto ll m, con m<n, per rzionlizzre st moltiplicre numertore e denomintore per l rdice n-esim di quel fttore elevto n-m. Affrontimo tre esempi: nel primo trovimo l denomintore. Moltiplichimo numertore e denomintore per in modo d ottenere l denomintore, che è proprio. Nel secondo esempio l differenz è che il rdicndo è un monomio composto d tre fttori. Per ogni fttore isogn ripetere il rgionmento dell differenz tr indice ed esponente e si costruisce il rdicle d usre per il prodotto. Infine, nel terzo esempio, l esponente del rdicndo è mggiore dell indice del rdicle. In questo cso, per poter procedere ll rzionlizzzione, è necessrio operre prim il trsporto di un fttore fuori dll rdice. 6

7 Rzionlizzzione del denomintore: somm per differenz Un ulteriore cso rigurd l presenz l denomintore di un somm o un differenz di rdici qudrte. In questo cso si sfrutt il prodotto notevole somm per differenz. Somm o differenz di rdici qudrte: Se l denomintore compre un somm (differenz) di due termini dei quli lmeno uno è un rdice qudrt, per rzionlizzre il denomintore st moltiplicre per l differenz (somm) degli stessi termini. ( ) ( ) ( ) 4 4 4( ) 4( 9 7 ) ( ) Un cso ulteriore rigurd l presenz l denomintore di un somm o un differenz di rdici qudrte. In questo cso si sfrutt il prodotto (+)(-)= -. In prtic, se l denomintore compre un somm di due termini dei quli lmeno uno è un rdice qudrt, per rzionlizzre il denomintore st moltiplicre per l differenz degli stessi termini. Se è presente un differenz moltiplicheremo per l somm. Vedimo due esempi. Nel primo cso imo l somm di due rdici qudrte, e. Moltiplichimo per l loro differenz e, sfruttndo il prodotto notevole opportuno, ottenimo l differenz dei qudrti delle due rdici. A questo punto possimo eliminre le rdici l denomintore. Nel secondo esempio imo solo un rdicle, l ltro termine è un intero. Operimo però llo stesso modo, moltiplicndo per lo stesso inomio con il segno di operzione inverso e sfruttimo l somm per differenz. 7

8 Rzionlizzzione del denomintore: somm o differenz di cui L ultimo cso rigurd l presenz l denomintore di un somm o un differenz di rdici cuiche. In questo cso si sfrutt il prodotto notevole somm o differenz di due cui. Somm o differenz di cui: Se l denomintore compre un somm (differenz) di due termini che sono due rdici cuiche, o un intero e un rdice cuic, per rzionlizzre il denomintore isogn moltiplicre per il trinomio flso qudrto dei due termini. 4 x x 6 x x x x 4 x x 8 x L ultimo cso rigurd l presenz l denomintore di un somm o un differenz di rdici cuiche. In questo cso, si sfrutt l formul per l scomposizione di un somm o differenz di due cui. Se l denomintore compre un somm o un differenz di due termini, di cui lmeno uno si un rdice cuic, per rzionlizzre il denomintore isogn moltiplicre per il trinomio +. Per esempio, se l denomintore -, isogn moltiplicre numertore e denomintore per il trinomio + +. In questo modo si ottiene l differenz dei cui delle due rdici ( ) ( ) = -. Il secondo esempio propone il cso di un somm tr un numero e un rdice cuic: + x. L procedur, comunque, è del tutto nlog: si moltiplic per - x + x e si ottiene un somm di cui ( x) che permetto di eliminre l rdice. 8

9 Conclusione Operzioni con i Rdicli Potenz di rdice Rzionlizzzione Rdice di rdice Rdice qudrt Rdice n-esim Somm per differenz Somm o differenz di cui Ricpitolimo qunto visto in quest lezione sulle operzioni con i rdicli. Dpprim imo imprto sviluppre l potenz di un rdice e l rdice di rdice. Succesivmente simo pssti d ffrontre l questione dell rzionlizzzione dei denomintori, ffrontndo quttro csi diversi: l presenz di un sol rdice qudrt, il cso più generle dell presenz di un rdice n-esim di un rdicndo elevto un determint potenz, l possiilità di usre il prodotto notevole somm per differenz e il cso in cui ci si può riportre ll somm o differenz di cui. 9

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

3. Il calcolo a scuola (2): l uso della calcolatrice 1

3. Il calcolo a scuola (2): l uso della calcolatrice 1 Didttic 3. Il clcolo scuol (2): l uso dell clcoltrice 1 Ginfrnco Arrigo 57 1. Clcoli con un sol operzione L prim cos d insegnre d un giovne llievo che voglimo educre ll uso corretto dei moderni mezzi di

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Giochi matematici nella storia della matematica

Giochi matematici nella storia della matematica Belluno, mrzo 00 Giochi mtemtici nell stori dell mtemtic UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bgni Diprtimento di Mtemtic e Informtic Università di Udine gni@dimi.uniud.it www.syllogismos.it di L

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP NORMATIVA ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP A cur di Libero Tssell d Scuol&Scuol del 21/10/2003 Riferimenti normtivi: rt. 21 e 33 5.2.1992 n. 104 e successive modifiche ed integrzioni, Dlgs.

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 09//203 PIANI DI AMMORTAMENTO Pino di mmortmento Itlino Esercizio 2 ESERCIZIO Si clcoli il pino di mmortmento quot cpitle costnte e rt semestrle reltivo d un prestito

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Dichiarazione di conformità alle prescrizioni alla Norma CEI 0-21

Dichiarazione di conformità alle prescrizioni alla Norma CEI 0-21 Bureu Verits Consumer Products Services Germny GmbH Businessprk A96 86842 Türkheim Germny + 49 (0) 40 740 41 0 cps-tuerkheim@de.bureuverits.com Orgnismo di certificzione BV CPS GmbH Accreditmento EN 45011

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G IPSIA ore complessive di insegnmento 33 settimne X 3 ore = 99 ore Nome Ins. Tecn. Prtico Testo in dozione

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE Università degli studi di Cgliri CORSO ANALISI II A.A. 007/008 Rppresentzione delle CONICHE e QUADRICHE Rppresentzione delle CONICHE Generlità Si definiscono coniche le curve pine risultto dell intersezione

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Profili standard disponibili a magazzino

Profili standard disponibili a magazzino Profili stndrd disponiili mgzzino PROFILO MT Per ctene rullo semplice...pgin 4 PROFILO MT Per ctene rullo doppio...pgin 5 PROFILO MT Per ctene rullo triplo... Pgin 6 PROFILO ME Per ctene rullo semplice...pgin

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Progetto LO 100 di Andrea Sacchetti andreasacchetti1965@gmail.com scala 1:4 Tavola 4 S 6061 sp 9% al 31% 1b

Progetto LO 100 di Andrea Sacchetti andreasacchetti1965@gmail.com scala 1:4 Tavola 4 S 6061 sp 9% al 31% 1b tgli d effetture per fcilitre l'sportzione prim del rivestimento del dorso e crere lo spzio per i portionett 1 1 le centine d 1 4 sono di compensto di etull d 4 mm, per le centine d 5 15 si può usre compensto

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

UN ESPERIENZA DIDATTICA IN UNA SECONDA CLASSE DI LICEO SCIENTIFICO: I RADICALI IN R

UN ESPERIENZA DIDATTICA IN UNA SECONDA CLASSE DI LICEO SCIENTIFICO: I RADICALI IN R ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA Sede di Bologn Scuol di Specilizzzione per l Insegnmento Secondrio Indirizzo Fisico Informtico Mtemtico Clsse A047 Direttore dell Scuol: Prof. Roberto Greci Direttore

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1 Sched tecnic rev. 1 EV II TASSELLO CHIMICO STRUTTURALE ncornte chimico d iniezione in resin epossicrilto/vinilestere bicomponente d ltissim resistenz Che cos'è È un ncornte chimico d iniezione composto

Dettagli

Desk CSS-KPMG Innovare la PA. Presentazione del progetto di ricerca Organization Review. Luciano Hinna

Desk CSS-KPMG Innovare la PA. Presentazione del progetto di ricerca Organization Review. Luciano Hinna Desk CSS-KPMG Innovre l PA Presentzione del progetto di ricerc Orgniztion Review Lucino Hinn Obiettivo del progetto Mettere punto un nuov metodologi, intes come strumento d consegnre lle pubbliche mministrzioni

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

FERRARIS BRUNELLESCHI

FERRARIS BRUNELLESCHI ISTITUTO D ISTRUZIONE SUPERIORE FERRARIS BRUNELLESCHI Vi R. Snzio, 187 50053 Epoli (FI) A.S. 2009/2010 Te di turità di Tecnic dell produzione e lb. Docente: Andre Strnini Soluzione Not: L soluzione non

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

TECNOLOGIE PER L ACQUACOLTURA

TECNOLOGIE PER L ACQUACOLTURA Scuol di specilizzzione in: Allevmento, igiene, ptologi delle specie cqutiche e controllo dei prodotti derivti TECNOLOGIE PER L ACUACOLTURA PROF. MASSIMO LAZZARI Anno ccdemico 007-008 L movimentzione meccnic

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60 Per l Anno Scolstico 2015/2016 l Deliber di Giunt Comunle n.25 del 16.04.2015 d oggetto: Determinzione dei criteri e ppliczione delle triffe dei servizi comunli introitti dl Comune nno 2015. Ricognizione

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8)

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8) COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionle 18 febbrio 2010, n. 8) N Prot. VARIAZIONE...del (d compilrsi cur dell ufficio competente) Al Comune di.. Il/L sottoscritto/: Cognome Nome Dt

Dettagli

Saluti estivi e altre amenità

Saluti estivi e altre amenità Trscurre l mtemtic è un'offes l spere, poiché chi l ignor non può conoscere le ltre scienze o le cose del mondo. Roger Bcon (Ruggero Bcone) (1214-1294) L mtemtic, l di sopr dell su pplicbilità lle scienze,

Dettagli

Saluti estivi e altre amenità

Saluti estivi e altre amenità Trscurre l mtemtic è un'offes l spere, poiché chi l ignor non può conoscere le ltre scienze o le cose del mondo. Roger Bcon (Ruggero Bcone) (114-194) L mtemtic, l di sopr dell su pplicbilità lle scienze,

Dettagli

Impronta in implantoprotesi

Impronta in implantoprotesi CAPITOLO PARTE I 6 Impront in implntoprotesi Come in tutte le riilitzioni protesiche, il momento dell impront è uno dei più importnti. D un impront eseguit mle non potremmo che vere un lvoro mlriuscito,

Dettagli

Corso di Laurea in Chimica Regolamento Didattico

Corso di Laurea in Chimica Regolamento Didattico Corso di Lure in Chimic Regolmento Didttico Art.. Il Corso di Lure in Chimic h come finlità l formzione di lureti con competenze nei diversi settori dell chimic per qunto rigurd si gli spetti teorici che

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

Eccellente qualità delle immagini

Eccellente qualità delle immagini www. dr wi ng c d. c om/ pr i m p g i n t e r moc me r e. ht ml Eccellente qulità delle immgini Il sensore è il cuore dell termocmer. Testo ttribuisce un enorme vlore ll mssim qulità possibile. Testo 890

Dettagli

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners.

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners. CIRCOLARE INFORMATIVA NR. 14 del 30/11/2012 ARGOMENTO: IMPOSTA SOSTITUIVA TFR 2013 Scde il prossimo 16 dicembre il termine per pgre l impost sostitutiv sul TFR. Tle impost rppresent l nticipo di tsse dovute

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI SANDRO BARONE, PAOLA FORTE LE SOLLECITAZIONI DEGLI INGRANAGGI A DENTI FRONTALI Un ingrnggio denti frontli (Fce Ger) offre vntggi si in termini di peso si in termini di riprtizione dei crichi sui denti,

Dettagli

Miscele di aria e vapore d acqua

Miscele di aria e vapore d acqua Brbr Gherri mtr. 4544 Lezione del 20/2/02 or 8:0-0:0 iscele di ri e ore d cqu L esigenz di studire le miscele ri ore deri dll grnde imortnz che esse riestono er il benessere termoigrometrico dell uomo

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

NORME APPLICABILI ALLE ARMATURE 9

NORME APPLICABILI ALLE ARMATURE 9 QUADERNO III Strutture in clcestruzzo rmto e legno CALCESTRUZZO ARMATO Sched N : NORME APPLICABILI ALLE ARMATURE 9 Not generle: le indiczioni nel seguito riportte sono trtte dlle norme frncesi BAEL 91

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

Tecnologie informatiche

Tecnologie informatiche PAOLO CAMAGNI RICCARDO NIKOLASSY Tecnologie informtiche L hrdwre, il softwre e i principi dell progrmmzione EDITORE ULRICO HOEPLI MILANO Indice Indice MODULO Come è ftto un computer e come rgion Conoscimo

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

Temi speciali di bilancio

Temi speciali di bilancio Università degli Studi di Prm Temi specili di bilncio Le imposte (3) Il consolidto fiscle nzionle RIFERIMENTI Normtiv Artt. 117 129 del TUIR Art. 96 del TUIR Prssi contbile Documento OIC n. 25 Documento

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli