Corso di Geometria III - A.A. 2016/17 Esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Geometria III - A.A. 2016/17 Esercizi"

Transcript

1 Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare parte reale e immaginaria di z 4 1, z, z 1 z + 1, 1 z 2. Esercizio 3. Mostrare che ( 1 ± i ) 3 3 = 1 e 2 per tutte le combinazioni di segni indicate. ( ±1 ± i ) 6 3 = 1 2 Esercizio 4. Calcolare le parti reali e immaginarie dei numeri complessi z z con z = x + iy e w w 2 con w = x iy + 1 e quindi verificare che le due espressioni danno numeri complessi coniugati. Esercizio 5. Determinare il modulo dei seguenti numeri complessi 2i(3 + i)(2 + 4i)(1 + i), (3 + 4i)( 1 + 2i) ( 1 i)(3 i) Esercizio 6. Calcolare le radici quadrate e le radici quarte complesse del numero i. Esercizio 7. Mostrare che, dato n N, per ogni z C esistono al più n radici n-esime distinte e stabilire quali sono i numeri complessi per cui esistono esattamente n radici n-esime, tutte distinte fra loro. Esercizio 8. Dimostrare che per ogni z, w C z w z w. Esercizio 9. Provare che a) Se a = 1 oppure b = 1, allora fare se a = b = 1? b) Se a < 1 e b < 1, allora a b 1 ab 1 a b 1 ab < 1. = 1. Che eccezione si deve.

2 2 Esercizio 1. Mostrare che l inversa della proiezione stereografica trasforma z, z C in due punti antipodali della sfera di Riemann se e solo se zz = 1. Esercizio 11. Stabilire quando l equazione complessa az + b z + c = ha esattamente una soluzione e trovarne un espressione in termini di a, b e c. Esercizio 12. Stabilire condizioni necessarie e sufficienti sui coefficienti a, b e c affinchè l equazione complessa az + b z + c = rappresenti una retta. Esercizio 13. Siano β, β C e r, r le rette in C di equazioni Im((z z o )β) =, Im((z z o)β ) =. Sotto quale condizione si ha che r ed r sono fra loro ortogonali? Esercizio 14. (Opzionale) Mostrare che le diagonali di un parallelogramma si intersecano nei loro punti medi e che le diagonali di un rombo sono fra loro ortogonali. Esercizio 15. Sia ω = cos ( ) ( 2π n + i sin 2π ) n, n N. Provare che 1 + ω h + ω 2h + + ω (n 1)h = per ogni intero h che non è multiplo di n. Esercizio 16. Le funzioni z, Re z, Im z sono derivabili in senso complesso? Stabilirlo a) prima usando la definizione di derivata e b) poi usando anche le equazioni di Cauchy Riemann. Esercizio 17. Verificare che la funzione f : C C, f(z) := z 2, è derivabile in senso complesso solo nel punto z =. Esercizio 18. Verificare che la funzione f : C C, f(z) := z 3, soddisfa le equazioni di Cauchy-Riemann. Esercizio 19. Provare che se f(z) e f(z) sono entrambe olomorfe in un aperto connesso U, allora f è costante in U. Esercizio 2. Provare che una funzione f(z) è olomorfa se e solo se lo è la funzione f(z). Esercizio 21. Dato un polinomio reale P (x), i) mostrare che esistono α i R, h i N e un polinomio reale Q(x) con la proprietà Q(x o ) per ogni x o R, tali che P (x) = (x α 1 ) h 1... (x α r ) hr Q(x)

3 ii) dimostrare, senza usare il Teorema di Lucas ma imitando i punti della sua dimostrazione, che se gli zeri di P (x) sono tutti reali (ovvero, se Q(x) = cost.) e appartengono tutti a un semiasse I = (, a) o (a, + ), anche gli zeri reali di P (x) appartengono tutti allo stesso semiasse I. Esercizio 22. Determinare il raggio di convergenza delle seguenti serie di potenze: 3 n p z n, n=1 ( 1) n n 3 n (z i)n, n= z n!, n= q n2 z n ( q < 1). n=1 Esercizio 23. Espandere 2z+3 z+1 in serie di potenze di z 1. Qual è il raggio di convergenza della serie ottenuta? Esercizio 24. Se f(z) = n= a nz n, qual è la somma della serie n= n3 a n z n? Esercizio 25. Se a n z n ha raggio di convergenza R, qual è il raggio di convergenza di a n z 2n? E di a 2 nz n? Esercizio 26. Calcolare il valore di e z per z = π 2 i, 3 4 πi, 2 3 πi. Esercizio 27. Determinare parte reale e immaginaria di e ez. Esercizio 28. Per quali valori di z si ha che e z vale 2, 1, i, i 2, 1 i? Esercizio 29. Verificare che Log(z) è olomorfa su tutto C \ {Re(z) <, Im(z) = } e calcolare la sua funzione derivata. (Suggerimento. Ricordarsi che il Teorema delle Derivate delle Funzioni Inverse è valido anche per le funzioni complesse olomorfe.) Esercizio 3. Determinare tutti i valori di 2 i, i i, ( 1) 2i. Esercizio 31. Dato w C, risolvere l equazione tan z = w. Determinare poi un ramo regolare della cosa (= funzione multivoca ) arctan w ( 1 ), provare che è olomorfo e calcolare esplicitamente la derivata. 1 Con l espressione ramo regolare si intende una qualunque funzione olomorfa che è ottenuto restringendo una cosa ( = funzione multivoca ) ad un opportuno dominio e facendo opportune scelte fra i valori assunti dalla cosa in modo da ottenere una funzione ben definita e olomorfa. Ad esempio, la funzione Log, definita sul dominio è un ramo regolare della cosa log(z). C \ {Re(z) <, Im(z) = },

4 4 Esercizio 32. Determinare un ramo regolare f(z) della funzione F (z) = log(z z 2 ) che sia olomorfo in z = 1 2 e tale che Imf ( 1 2) = 2π. Specificare in quale dominio è definito il ramo regolare considerato. Esercizio 33. Calcolare x dz nel caso in cui a) è il segmento orientato da a 1 + i; b) è la circonferenza z = r percorsa in senso antiorario. Esercizio 34. a) Calcolare z =1 z 1 dz. b) Mostrare esplicitamente che, dati z o C e r >, si ha che z z dz = 2πr, verificando in questo modo che o =r z z dz o =r coincide con la lunghezza della circonferenza z z o = r. Esercizio 35. Sia : I C una curva chiusa di classe C 1 a tratti e f(z) una funzione olomorfa su una regione U che contiene (I). Provare che f(z)f (z) dz è immaginario puro ( 2 ). Questo è l ultimo degli esercizi relativi ai contenuti delle lezioni tenute fino al 15/12/16. Esercizio 36. Calcolare z =r x dz nel senso positivo di percorrenza in due modi: a) usando un parametro; b) osservando che sulla circonferenza z = r si ha x = 1 2 (z + z) = 1 r2 2 (z + z ). dz Esercizio 37. Calcolare z =2 nel verso positivo di percorrenza. z 2 +1 Suggerimento. Decomporre l integrando in fratti semplici. Esercizio 38. Sia f : U C olomorfa, con U aperto connesso, tale che f(z) 1 < 1 per ogni z U. Provare che f (z) f(z) dz = per ogni curva chiusa e di classe C 1 a tratti contenuta in U ( 3 ). 2 Si assuma come vera la seguente proprietà, che verrà dimostrata in seguito: per ogni funzione olomorfa f, la sua derivata complessa f è anch essa una funzione derivabile in senso complesso ed è in particolare continua. 3 Vedi nota (2).

5 5 Esercizio 39. Calcolare z =r dz z a 2, a r. Suggerimento. Osservare che se è data dalla circonferenza z = r, si ha che sui punti di quella curva vale l uguaglianza z z = r 2 e che per ogni funzione complessa f si verifica f dz = ir f dz z. Esercizio 4. Calcolare e z z a) dz con data dalla circonferenza z = 1 percorsa in senso antiorario, e b) e z σ dz con σ data dalla circonferenza z = 2 percorsa in senso z 2 1 antiorario. Esercizio 41. Mostrare che se P (z) è un polinomio e è data dalla circonferenza z a = R percorsa in senso antiorario, allora P (z) d z = 2πiR 2 P (a). Esercizio 42. Calcolare e z dz, (n 1) zn dove è una curva data dalla circonferenza z = 1 percorsa in senso antiorario. Esercizio 43. Sia f olomorfa su tutto C e tale che per z C \ { z 1 } si ha che f(z) C z k per qualche k N fissato. Provare che f è un polinomio. Esercizio 44. Sia f olomorfa su tutto C e tale che Re f(z) M per ogni z C. Provare che f è costante. Suggerimento. Considerare la funzione g(z) = e f(z). Esercizio 45. Sia f : U C olomorfa su una regione U C e sia R () U. Mostrare che se sup z R () f(z) M allora vale la seguente stima sulle derivate n-esime: per ogni r < R e per ogni z r () d n f dz n Mn!R z (R r) n+1. Esercizio 46. Provare che se f, g : U C sono olomorfe in una regione U e f(z)g(z) = per ogni z U, allora f oppure g.

6 6 Esercizio 47. Studiare le singolarità isolate delle seguenti funzioni: z 2 cos 1 z, z z 2 (z + 1), sin(2z) z 4, z + 1 z 2 3z + 2, 1 e z 1, tan z. Esercizio 48. Sia f olomorfa nella corona circolare 1 z 2 e sia f(z) 3 su z = 1 e f(z) 12 su z = 2. Provare che f(z) 3 z 2 per ogni 1 z 2. Esercizio 49. Calcolare e z (z + π 2 ) 2 dz dove è la curva data dalla circonferenza z = 4 percorsa in senso antiorario. Esercizio 5. Sia f : C, := 1 (), olomorfa su una regione U che contiene e tale che f(z) > 2 se z = 1 e f() = 1. Provare che f necessariamente si annulla in qualche punto di. Esercizio 51. Provare che per ogni R > esiste un numero naturale N > tale che per ogni n > N tutte le radici del polinomio 1 + z + z2 2! + + zn n! si trovano all esterno di R () = { z R}. Esercizio 52. Calcolare e z (z 2 + π 2 ) 2 dz dove è la curva data dalla circonferenza z = 4 percorsa in senso antiorario. Esercizio 53. Stabilire quante sono le radici dell equazione z 7 2z 5 + 6z 3 z + 1 = che sono all interno di = { z < 1}. Suggerimento. Considerare il monomio che ha modulo maggiore su z = 1. Esercizio 54. Provare che per ogni numero reale a > e, l equazione az n = e z ha n radici all interno del disco = { z < 1}. Esercizio 55. Quante radici dell equazione z 4 6z + 3 = hanno modulo compreso tra 1 e 2? Esercizio 56. Calcolare il residuo nelle loro singolarità isolate delle funzioni z 2 cos 1 z, z z 2 (z + 1), sin(2z) z 4, z + 1 z 2 3z + 2, 1 e z 1, tan z. Esercizio 57. Provare che se z o è un polo per f : U C allora Res z=zo (f ) =.

7 Esercizio 58. Provare che se f, g : U C sono olomorfe z o è uno zero semplice di g allora ( ) f Res z=zo = f(z o) g g (z o ). Esercizio 59. Siano f, g : U C olomorfe in una regione U e siano a 1,, a n gli zeri di g in U di ordini rispettivamente m 1,, m n. Mostrare che se è un ciclo in Ω, omologo a zero in Ω e che non passa per a 1,, a n, f(z) g (z) n g(z) dz = 2πi m j f(a j )n(, a j ). j=1 7 Esercizio 6. Calcolare i seguenti integrali: 2π cos 3θ 5 4 cos θ dθ, 2π dθ con a > b, a + b sin θ + cos xdx (x 2 + 1)(x 2 + 4). Esercizio 61. Calcolare i seguenti integrali: + x sin x x dx, + sin(ax) x(x 2 + b 2 dx con a, b >. ) Esercizio 62. Calcolare (motivando bene tutti i passaggi) i seguenti integrali + dx dx, p.v. x(x + 4) x λ (x 4) con < λ < 1. Esercizio 63. Calcolare + ln x 1 + x 2 dx. Suggerimento. Dati < δ < r, usare il cammino chiuso formato dai segmenti da δ ad r e da r a δ sull asse x e dalle semicirconferenze di centro e raggi r e δ contenute nel semipiano Im (z) > e percorse rispettivamente in senso antiorario e in senso orario. Lavorare con un ramo regolare di log z che sia olomorfo su tale cammino e nel suo interno. Provare con precisione cosa succede agli integrali sui vari pezzi del cammino quando si passa al limite. Esercizio 64. Calcolare + ln(1 + x 2 ) x 1+a dx con < a < 2. Suggerimento. Prima integrare per parti. Provare con precisione cosa succede agli integrali sui vari pezzi del cammino quando si passa al limite. Esercizio 65. Mostrare che dati tre punti distinti z 1, z 2, z 3 Ĉ esiste un unica trasformazione di Moebius S : Ĉ Ĉ tale che S(1) = z 1, S() = z 2

8 8 e S( ) = z 3. Suggerimento. Considerare prima il caso in cui tutti i tre punti z 1, z 2 e z 3 sono diversi da e poi separatamente il caso in cui z 1 =, quello in cui z 2 = e infine quello in cui z 3 =. Per dimostrare l affermazione nel primo caso ci si può ricondurre a mostrare l esistenza e unicità di una trasformazione proiettiva  di CP 1 che verifica ([ ]) [ ] ([ ]) [ ] ([ ]) [ ] 1 z1 z2 1 z3  =,  =,  = Esercizio 66. (Opzionale) Determinare una trasformazione di Moebius che manda il semipiano Imz > sul disco z < 1 in modo che 1 vada in 1 e in 1.

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A1 27 aprile 2017

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A1 27 aprile 2017 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 206/207 Prof. C. Presilla Prova A 27 aprile 207 Cognome Nome Matricola iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Matematica, A.A. 2012/2013 Analisi Reale e Complessa, Test del dx x 1/3 (x 4 + 5x 2 + 4).

NOME:... MATRICOLA:... Corso di Laurea in Matematica, A.A. 2012/2013 Analisi Reale e Complessa, Test del dx x 1/3 (x 4 + 5x 2 + 4). NOME:... MATRICOLA:.... Corso di Laurea in Matematica, A.A. 202/203 Analisi Reale e Complessa, Test del 4.0.203 ) Calcolare l integrale improprio x /3 (x 4 + 5x 2 + 4). 0 Suggerimento: estendere la funzione

Dettagli

Geometria 3 A.A Esercizi. Esercizi nn.1 4 del libro [Sernesi, Geometria 2] Capitolo 4 13.

Geometria 3 A.A Esercizi. Esercizi nn.1 4 del libro [Sernesi, Geometria 2] Capitolo 4 13. Geometria 3 A.A. 211 212 Esercizi Omotopia di applicazioni contiue. Sia X uno spazio topologico e sia p X. Denotiamo con C a (p) l insieme dei punti di X che possono essere connessi per archi con p. Si

Dettagli

ESERCIZI DI ANALISI COMPLESSA

ESERCIZI DI ANALISI COMPLESSA ESERCIZI DI ANALISI COMPLESSA Varie Sia f una funzione intera tale che + z Mostrare che f è costante 2 Siano θ (, π/2) e f una funzione olomorfa nel settore Γ θ := {z C : arg(z) < θ} e supponiamo che esistano

Dettagli

Esercizio 1. (i) Si dia la definizione di successione delle somme parziali per una serie di funzioni. (ii) Data la serie n + 1.

Esercizio 1. (i) Si dia la definizione di successione delle somme parziali per una serie di funzioni. (ii) Data la serie n + 1. Sapienza - Università di Roma Facoltà di Ingegneria - A.A. 0-04 Esercitazione per il corso di Metodi Matematici per l Ingegneria a cura di Daniela Giachetti Esercizio. (i) Si dia la definizione di successione

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Esame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 05/6 Prima prova in itinere. Novembre 05 Tema A Cognome: Nome N matr. o cod. persona: Domande di teoria (rispondere

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Matematica, A.A. 2011/2012 Analisi Reale e Complessa, Test del

NOME:... MATRICOLA:... Corso di Laurea in Matematica, A.A. 2011/2012 Analisi Reale e Complessa, Test del NOME:... MATRICOLA:.... Corso di Laurea in Matematica, A.A. 011/01 Analisi Reale e Complessa, Test del 7.01.01 1) Si dia un esempio di i) un dominio semplicemente connesso D di C non contenente l origine,

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2006/2007 Prof. C. Presilla. Prova finale 29 marzo 2007

METODI MATEMATICI DELLA FISICA A.A. 2006/2007 Prof. C. Presilla. Prova finale 29 marzo 2007 METODI MATEMATICI DELLA FISICA A.A. 006/007 Prof. C. Presilla Prova finale 9 marzo 007 Cognome Nome in sostituzione delle prove in itinere segnare penalità esercizio voto 3 4 5 6 Esercizio Siano a, b,

Dettagli

ESERCIZI DI ANALISI COMPLESSA

ESERCIZI DI ANALISI COMPLESSA ESERCIZI DI ANALISI COMPLESSA Varie Sia f una funzione intera tale che + z Mostrare che f è costante 2 Siano θ (, π/2) e f una funzione olomorfa nel settore Γ θ := {z C : arg(z) < θ} e supponiamo che esistano

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005 METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla Prova di recupero 4 settembre 2005 Cognome Nome Corso di Laurea in sostituzione delle prove in itinere segnare) 2 3 penalità esercizio voto

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S1/AC Cesi A.A. 9 1 Nome Cognome 6 CFU (AA 9-1) 8 CFU 4 CFU (solo analisi complessa) 4 + 6 CFU altro: problema voto 1 4 6 7 8 9 Test totale coeff. voto in trentesimi

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esame di Analisi Matematica 2 18/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 18/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 18/9/13 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 1/13 A Esercizio 1. Sia C la regione aperta di R compresa tra le circonferenze di centro l origine e raggi

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A MODELLI e METODI MATEMATICI della FISICA Esercizi - A.A. 08-9 settimana Esercizi:. Risolvere il problema di Cauchy y (x) = αy (x) + y (x) y (x) = αy (x) + y 3 (x) y 3(x) = αy 3 (x) con condizioni iniziali

Dettagli

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta del I MODULO di ANALISI MATEMATICA II - 14 gennaio 2000) Compito A

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta del I MODULO di ANALISI MATEMATICA II - 14 gennaio 2000) Compito A CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta del I MODULO di ANALISI MATEMATICA II - 14 gennaio 000) Compito A COGNOME... NOME... Data l equazione differenziale y 3 cos

Dettagli

Teorema dei residui: applicazioni

Teorema dei residui: applicazioni Teorema dei residui: applicazioni Docente:Alessandra Cutrì ichiamo: Teorema dei residui Teorema dei esidui:sia f H(A \ {z, z 2,... z N }), z, z 2,... z N singolarità isolate per f e sia γ una curva chiusa,

Dettagli

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2 Sapienza - Università di Roma Facoltà di Ingegneria - A.A. -4 Esercitazione per il corso di Metodi Matematici per l Ingegneria (Docente Daniela Giachetti) a cura di Ida de Bonis Esercizio. Calcolare per

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Corso di Laurea in Matematica, A.A. 2013/2014 Analisi Reale e Complessa, Esame del y 2 x2 + y 2 2 R 2 ; 1 }

Corso di Laurea in Matematica, A.A. 2013/2014 Analisi Reale e Complessa, Esame del y 2 x2 + y 2 2 R 2 ; 1 } NOME:................. MATRICOLA:................. Corso di Laurea in Matematica, A.A. 3/ Analisi Reale e Complessa, Esame del 8..5 Si stabilisca se la formula x + y α se f(x, y x + y x + y, x + y se x

Dettagli

Disequazioni in una variabile. Disequazioni in due variabili

Disequazioni in una variabile. Disequazioni in due variabili Disequazioni in una variabile Disequazioni in due variabili 2 () 2 3 > (2) 2 + + > (3) 2 3 + 2 < (4) 2 > + (5) 2 < 3 (6) 3 8 > 5 + 3 + + 5 (7) + < 2 < 2 (8) 2 α (α parametro reale) (9) 3 log /2 ( ) < 2

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2003/2004 Prof. C. Presilla. Prova finale 29 marzo 2004

METODI MATEMATICI DELLA FISICA A.A. 2003/2004 Prof. C. Presilla. Prova finale 29 marzo 2004 METODI MATEMATII DELLA FISIA A.A. /4 Prof.. Presilla Prova finale 9 marzo 4 ognome Nome in sostituzione delle prove in itinere (segnare 1 penalità esercizio voto 1 4 5 6 7 8 Esercizio 1 Determinare tutte

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. Istituzioni di Matematica 2 a.a. 2007-2008 http://www.dmmm.uniroma.it/persone/capitanelli CALCOLO INTEGRALE PER LE FUNZIONI

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 6 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Appello Straordinario AC

Appello Straordinario AC Appello Straordinario AC 2016-2017 Esercizio I Si consideri la seguente funzione f(z) f(z) = 1 (e z 1) sin(z). 1. Si determini la natura della singolarità di f in z = 0. 2. Nel caso si tratti di una singolarità

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 2/A

Modelli e Metodi Matematici della Fisica. Scritto 2/A Modelli e Metodi Matematici della Fisica. Scritto /A Cesi/Presilla A.A. 007 08 Nome Cognome Il voto dello scritto sostituisce gli esoneri 1 Devo verbalizzare il primo modulo da 4 crediti? S N problema

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 215/216 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano November 4, 215 Parte 1. Richiami di analisi funzionale 1.

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2003/2004 Prof. C. Presilla. Prova in itinere 27 febbraio 2004

METODI MATEMATICI DELLA FISICA A.A. 2003/2004 Prof. C. Presilla. Prova in itinere 27 febbraio 2004 METODI MATEMATICI DELLA FISICA A.A. 003/004 Prof. C. Presilla Prova in itinere 7 febbraio 004 Cognome Nome penalità esercizio voto 1 3 4 5 6 Esercizio 1 Determinare la funzione vx, y) armonica coniugata

Dettagli

Esercizi di Analisi Complessa. Corso di Laurea in Matematica

Esercizi di Analisi Complessa. Corso di Laurea in Matematica Esercizi di Analisi Complessa Corso di Laurea in Matematica Terminologia, notazioni. In uno spazio metrico (X, d indicheremo con U r (x o la palla aperta con centro x o X e raggio r > 0 : U r (x o := {

Dettagli

z n dove γ é la circonferenza di centro l origine e raggio 1.

z n dove γ é la circonferenza di centro l origine e raggio 1. . Calcolare ( n= n ) dove é la circonferena di centro l origine e raggio.. Mostrare che n= n l origine e raggio. é analitica nel complementare del cerchio di centro 3. Mostrare che n= e n sen (n) é analitica

Dettagli

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - giugno 0 Esercizio 8 punti) Si consideri la funzione fz) = z sinz) sin[sinz)], si studino e classifichino le singolarità e, di conseguenza, si stabilisca

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano October 28, 2016 1. Elementi di analisi funzionale 1.1.

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del gennaio 6 - Soluzioni compito E Determinare l insieme di definizione e di olomorfia della funzione ( ) f(z)

Dettagli

APPLICAZIONI di MATEMATICA ESERCIZI parte 8

APPLICAZIONI di MATEMATICA ESERCIZI parte 8 APPLICAZIONI di MATEMATICA ESERCIZI parte 8 Esercizi teorici Es. 1.1 - Sia F razionale, reale positiva e F (0) = 0. Stabilire se è RP la funzione G(s) = F (s 24) Es. 1.2 - Sia F reale, razionale e sia

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla. Prova A1 3 Maggio 2012

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla. Prova A1 3 Maggio 2012 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 211/212 Prof. C. Presilla Prova A1 3 Maggio 212 Cognome Nome II anno III anno o successivi penalità esercizio voto 1 2 3 4 5 6 Esercizio 1 Determinare tutte

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 ottobre 0 Esercizio (6 punti Si usi il metodo dei residui per calcolare l integrale J (z + sin 3 (/z, z con il cammino d integrazione percorso in senso

Dettagli

z i z + 1 z + 1 3, da cui, ponendo come al solito z 2i z 2i 1, da cui si ricava x y. ln(7) + i(π + 2kπ). sin z = 3.

z i z + 1 z + 1 3, da cui, ponendo come al solito z 2i z 2i 1, da cui si ricava x y. ln(7) + i(π + 2kπ). sin z = 3. METODI MATEMATICI per l INGEGNERIA PRIMA PROVA IN ITINERE del 9 novembre ) Determinare l insieme di convergenza della serie n 3 n ( ) n z i z + precisando se è aperto o chiuso. ( ) z i Soluzione. Ponendo

Dettagli

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11)

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) 1. Disegnare sul piano di Argand-Gauss e porre in forma trigonometrica-esponenziale (i.e. determinarne modulo

Dettagli

1 Limiti e continuità

1 Limiti e continuità Calcolo infinitesimale e differenziale Gli esercizi indicati con l asterisco (*) sono più impegnativi. Limiti e continuità Si ricorda che per una funzione di più variabili, la definizione di continuità

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

Esame di Metodi Matematici per l Ingegneria Quarto appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti

Esame di Metodi Matematici per l Ingegneria Quarto appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti Esame di Metodi Matematici per l Ingegneria Quarto appello. Agosto 018 A.A. 017/018. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti A. 6 punti). Per una

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2 METODI MATEMATICI PER L INGEGNERIA - A.A. 29- Primo appello del 9/6/2 Risolvere i seguenti esercizi, spiegando il procedimento usato. Calcolare la proiezione in L 2 π 2, π 2 di xt = t sul sottospazio generato

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

Metodi Matematici della Fisica. S3

Metodi Matematici della Fisica. S3 Metodi Matematici della Fisica. S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi voto

Dettagli

Numeri complessi. Esercizi

Numeri complessi. Esercizi Numeri complessi. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Indice Esercizi isposte e suggerimenti. 7 Esercizi Esercizio.. Scrivere in forma algebrica (x + iy) i seguenti numeri complessi:

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1) Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa 1) Marco Bramanti Politecnico di Milano November 7, 2016 1 Funzioni olomorfe e campi di

Dettagli

x = v y = v Per x = r cos θ e y = r sin θ, si ha x r + v y r = v x Applichiamo CauchyRiemann alla prime due Per confronto otteniamo = +r

x = v y = v Per x = r cos θ e y = r sin θ, si ha x r + v y r = v x Applichiamo CauchyRiemann alla prime due Per confronto otteniamo = +r Soluzioni Esercitazione.. La funzione w = f(z) = R(r, θ)e iφ(r,θ), dove z = + i = re iθ à data in coordinate polari nello spazio su cui è definita (il piano z) e lo spazio in cui assume valori. Per risolvere

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 LUGLIO 08 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

Capitolo 5. Serie di Laurent. 5.1 Sviluppo in una corona circolare

Capitolo 5. Serie di Laurent. 5.1 Sviluppo in una corona circolare Capitolo 5 Serie di Laurent Mentre la serie di Taylor è lo strumento più idoneo per lo studio di una funzione olomorfa nell'intorno di un suo punto di regolarità, per il suo studio in un punto singolare

Dettagli

1 Parziale di Studio di Funzioni di Interesse Fisico, 26/02/2009

1 Parziale di Studio di Funzioni di Interesse Fisico, 26/02/2009 Parziale di Studio di Funzioni di Interesse Fisico, 6/0/009. Riconsegnare il testo degli esercizi, firmato, congiuntamente all elaborato scritto.. Firmare e consegnare solo il materiale che si desidera

Dettagli

Esercizi sulle funzioni olomorfe

Esercizi sulle funzioni olomorfe Esercizi sulle funzioni olomorfe Corso di Fisica Matematica 2, a.a. 2-22 Dipartimento di Matematica, Università di Milano 8//23 Proprietà generali Esercizio. Si determini quali tra le seguenti funzioni

Dettagli

Modelli e Metodi Matematici della Fisica. S2/AC

Modelli e Metodi Matematici della Fisica. S2/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 010 11 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 1 CFU (AA 010-11) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2012/2013 Prof. C. Presilla. Prova A3 18 settembre 2013

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2012/2013 Prof. C. Presilla. Prova A3 18 settembre 2013 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 0/03 Prof. C. Presilla Prova A3 8 settembre 03 Cognome Nome II anno III anno o successivi penalità esercizio voto 3 4 5 6 Esercizio Determinare il dominio

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio 7 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, cos(z ) dz dove é

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Note sulle funzioni di variabile complessa

Note sulle funzioni di variabile complessa Note sulle funzioni di variabile complessa Carlo Sinestrari Dipartimento di Matematica, Università di Roma Tor Vergata Queste note contengono alcuni risultati sulle funzioni di variabile complessa esposti

Dettagli

Prima Prova Scritta 18/03/1997

Prima Prova Scritta 18/03/1997 Prima Prova Scritta 18/03/1997 1 + x y6 f(x, y) = x 6 + y 6, (x, y) (0, 0) k, (x, y) = (0, 0) A 2 Determinare, per k R, l insieme di continuità di f. B 2 Determinare, per k R, l insieme di differenziabilità

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + )

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + ) Esercizio 1 Verificare che il numero complesso z = ( 1 3 i)/2 algebrica: 2z 4 + 3z 3 2z 3 è radice dell equazione Esercizio 2 x 0 sin 3 x x x cos x Esercizio 3 Verificare se la funzione: (x 2)2 f(x) =

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione C

II Esonero di Matematica Discreta - a.a. 06/07. Versione C II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione C a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5612 e la scrittura

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 settembre Esercizio 6 punti Calcolare l integrale π dx I π + 4 cos x. Con la sostituzione z e ix quindi: x i lnz e dx idz/z l integrale diventa dz/z I

Dettagli

Riflessioni e proposte didattiche sull uso di strumenti tecnologici La bellezza dei numeri complessi resa evidente dall uso del software

Riflessioni e proposte didattiche sull uso di strumenti tecnologici La bellezza dei numeri complessi resa evidente dall uso del software Riflessioni e proposte didattiche sull uso di strumenti tecnologici La bellezza dei numeri complessi resa evidente dall uso del software Cristiano Dané Liceo Sc A Volta di Torino Indice La gestione degli

Dettagli

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2.

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2. Serie di Laurent Esercizio Sviluppare z 2 in serie di Laurent nella corona circolare 0 < z < 2. Soluzione con il calcolo dei coefficienti. Scomponendo f(z) in frazioni semplici, si ha ( 2 z ) z + il primo

Dettagli

1 Analisi mat. I - Esercizi del 13/10/99

1 Analisi mat. I - Esercizi del 13/10/99 Analisi mat. I - Esercizi del //99 ES. Delle seguenti funzioni determinare: il dominio l immagine gli eventuali asintoti l insieme dove sono continue e quali siano estendibili per continuita. Determinare

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio -

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio - AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it I numeri complessi. Richiami di teoria. 1.1 Numeri complessi. Un numero complesso è un espressione della

Dettagli

NUMERI COMPLESSI - ESERCIZI

NUMERI COMPLESSI - ESERCIZI NUMERI COMPLESSI - ESERCIZI Ecco una raccolta di esercizi apparsi nei compiti scritti di Analisi Matematica 1 degli anni passati con problemi ed equazioni in campo 1. Proprietà algebriche e geometriche

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica:

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica: Corso di laurea in Chimica Industriale Matematica II A.A. 2015/2016 Argomenti delle lezioni Giovedí 3 marzo - 2 ore. Richiami sulle equazioni e sui metodi utilizzati nel risolverle. Equazioni differenziali.

Dettagli

F. Fagnani, A. Tabacco e P. Tilli. Versione 21 marzo. Introduzione all Analisi Complessa e Teoria delle distribuzioni.

F. Fagnani, A. Tabacco e P. Tilli. Versione 21 marzo. Introduzione all Analisi Complessa e Teoria delle distribuzioni. F. Fagnani, A. Tabacco e P. Tilli Introduzione all Analisi Complessa e Teoria delle distribuzioni 2 marzo 2006 3 Serie di Taylor e di Laurent. Residui 3. Successioni e serie di numeri complessi Una successione

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME... NOME... Data l'equazione differenziale y 000 +2y

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (prima parte) 1. (a) Un numero complesso diverso da zero è invertibile. (b) Una successione illimitata superiormente

Dettagli

Esercizi sulle funzioni polidrome (non svolti a lezione per mancanza di tempo)

Esercizi sulle funzioni polidrome (non svolti a lezione per mancanza di tempo) Esercizi sulle funzioni polidrome non svolti a lezione per mancanza di tempo) ACHTUNG: Questi appunti sono pieni di errori... Okkio... Esercizio 1 Calcolare in campo complesso, l integrale π dθ + cos θ)

Dettagli

Corso di Analisi Matematica 1

Corso di Analisi Matematica 1 Corso di Analisi Matematica 1 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 21 dicembre 2016 Appello del 14 gennaio 2016 Tempo: 150 minuti Compito A 1. Enunciare e dimostrare

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

Modelli e Metodi Matematici della Fisica - Filippo Cesi S1 Test

Modelli e Metodi Matematici della Fisica - Filippo Cesi S1 Test Modelli e Metodi Matematici della Fisica - Filippo Cesi - 2013 14 - S1 Test Cognome e Nome (1) (3 pt). Calcolare usando (a) il ramo principale, (b) il ramo più (a) 3 1 i = (b) 3 1 i (+) = (2) (2 pt). Scrivere

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Esercizio 1 Si consideri l insieme Esercizi sulla funzione implicita e superfici Z = {(x, y) R 2 2y xe y

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 1. Elementi di analisi funzionale.

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Prova scritta di Matematica Discreta del 15/2/2005

Prova scritta di Matematica Discreta del 15/2/2005 Prova scritta di Matematica Discreta del 15/2/2005 1. a. Quante parole di 6 lettere si possono formare con un alfabeto contenente 25 lettere? b. Quante se sono proibite le doppie (ossia lettere uguali

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

x(y + z)dx dy dz y(x 2 + y 2 + z 2 )dx dy dz y 2 zdx dy dz Esempio di insieme non misurabile secondo Lebesgue.

x(y + z)dx dy dz y(x 2 + y 2 + z 2 )dx dy dz y 2 zdx dy dz Esempio di insieme non misurabile secondo Lebesgue. /3/23 Calcolare dove x(y + z)dx dy dz = {(x, y, z) R 3 : x, y, z, x + y + z }. Calcolare y(x 2 + y 2 + z 2 )dx dy dz dove = {(x, y, z) R 3 : x 2 + y 2 + z 2 z, x 2 + y 2 + z 2 3zx y }. Calcolare dove y

Dettagli