Calcolo integrale: esercizi svolti

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo integrale: esercizi svolti"

Transcript

1 Calcolo integrale: esercizi svolti Integrali semplici Integrazione per parti Integrazione per sostituzione Integrazione delle funzioni razionali fratte Integrazione con sostituzioni speciali Integrazione di funzioni definite a tratti Integrali definiti Altri esercizi

2 Calcolo integrale: esercizi svolti Integrali semplici Esercizio. Calcolare i seguenti integrali indefiniti: a) b) + cos log + sin + c, c R] + sin ] + + log + ) + arctan + c, c R c) sin cos. tan cot + c, c R] a) Consideriamo l integrale indefinito + cos + sin. Poichè + cos è la derivata di + sin, si ha che + cos log + sin + c, c R. + sin b) Consideriamo l integrale indefinito + +. Si ha che ) log + ) + arctan + c, c R. + c) Consideriamo l integrale indefinito sin cos. Poichè sin + cos, si ha che sin cos sin + cos sin cos tan cot + c, c R. cos + sin

3 . Integrazione per parti Integrazione per parti Esercizio. Calcolare i seguenti integrali indefiniti, utilizzando la formula di integrazione per parti: a) arcsin arcsin + + c, c R ] b) log log log + ) ] + c, c R 9 c). ) 5 ) 5 + c, c R ] a) Consideriamo l integrale indefinito arcsin. Integrando per parti si ha che arcsin arcsin arcsin + + c, c R. b) Consideriamo l integrale indefinito log ) Integrando due volte per parti si ha che log log log. log log 9 log + 9 log 9 log c log log + 9 ) + c, c R.

4 4 Calcolo integrale: esercizi svolti c) Consideriamo l integrale indefinito ). Integrando per parti si ha che ) ) + ) ) 5 ) 5 + c, c R. Integrazione per sostituzione Esercizio. Calcolare i seguenti integrali indefiniti, utilizzando la formula di integrazione per sostituzione: a) log log + c, c R ] b) sin + sin log + sin ) + c, c R ] c) log 6 + ) + c, c R ] a) Consideriamo l integrale indefinito log. Posto t log si ha che dt. Quindi log t dt t + c log + c, c R.

5 4. Integrazione delle funzioni razionali fratte 5 b) Consideriamo l integrale indefinito sin sin cos + sin + sin. Posto t sin si ha che dt cos. Quindi sin cos + sin t + t dt log + t ) + c log + sin ) + c, c R. c) Consideriamo l integrale indefinito +. Posto t 6, si ha che 6t 5 dt. Quindi + 6 t t + dt 6 t t + ) dt t + t t +6t 6 log t + +c log 6 + ) +c, c R. 4 Integrazione delle funzioni razionali fratte Esercizio. Calcolare i seguenti integrali indefiniti di funzioni razionali fratte: ] + a) + ) log + arctan + c, c R + b) + ) + log + c, c R ] c) + ] log + log + + c, c R d) + + ) log arctan + + c, c R e) log arctan + ] + c, c R

6 6 Calcolo integrale: esercizi svolti a) Consideriamo l integrale indefinito + + ). Si ha che Quindi + + ) A + B + C + A + B) + C + A + ) { A C B. + + ) + ) log + arctan + + log + arctan log + ) + c log + arctan + c, c R. + b) Consideriamo l integrale indefinito + ). Si ha che + ) A + B + C + + d ) D + E A + B + C D + E + A + B)4 + C D) + A E) D E + ) A B C D E.

7 4. Integrazione delle funzioni razionali fratte 7 Quindi + ) d )] + d + + ) log + log + ) + c log + + c, c R. c) Consideriamo l integrale indefinito Eseguendo la divisione fra i polinomi si ha che Quindi ) Si ha che 5 ) + ). 5 ) + ) A + B A + B) + A B + ) + ) Quindi { A B ) + ) + + ) log + log + + c, c R.

8 8 Calcolo integrale: esercizi svolti d) Consideriamo l integrale indefinito + + ). Si ha che + + ) A + B + C + + A + B) + A + C) + A + + ) A B C. Quindi si ha che + + ) ) log log 6 log + + ) ) ] + essendo ) + +, si ha che log 6 log + + ) 6 ) ] + + posto t +, si ha che dt, quindi log 6 log + + ) 6 t + dt log 6 log + + ) 6 arctan t + c log 6 log + + ) log arctan + + c 6 arctan + + c, c R.

9 4. Integrazione delle funzioni razionali fratte 9 e) Consideriamo l integrale indefinito Si ha che Quindi ) ). A + B + C A + B) + A + C) + 5A + + 5) ) + 4 ) Poichè si ha che Quindi A B C 4. ) log log log + + 5) ) ) ], ) ] arctan c, c R ) log log + + 5) ) log log + + 5) arctan + + c log arctan + + c, c R.

10 Calcolo integrale: esercizi svolti 5 Integrazione con sostituzioni speciali Esercizio. Calcolare i seguenti integrali indefiniti utilizzando la formula di integrazione per sostituzione: a) sin log tan ] + c, c R b) 4 + ] c, c R c). arcsin ] + c, c R + a) Consideriamo l integrale indefinito Posto t tan sin. si ha che dt. Poichè sin t, si ha che +t +t sin t dt log t + c log tan + c, c R. b) Consideriamo l integrale indefinito 4 +. ) Posto sinh t, quindi t settsinh log + + 4, da cui cosh t dt, si ha che sinh t dt e t e t ) dt. Posto z e t, cioè z + + 4, da cui dz e t dt, si ha che 4 + e t e t ) dt + + c, c R. + 4 z z ) dz z + c

11 6. Integrazione di funzioni definite a tratti c) Consideriamo l integrale indefinito + ). Posto sin t, per t π, π ], si ha che t arcsin, cos t sin t e cos t dt. Quindi ) dt t + c arcsin + c, c R. 6 Integrazione di funzioni definite a tratti Esercizio. Calcolare i seguenti integrali indefiniti di funzioni definite a tratti: e se e ) + c se a) f) sin se > cos + c se >, sin π + π ) se b) f) se >. π cos π ) + π sin π ) + c se c + π se >, c R c R a) Consideriamo la funzione e se f) sin se >. Determiniamo una generica primitiva F di f su R. Si ha che e e e e e + c e ) + c, c R, sin cos + c, c R. Quindi e ) + c se F ) cos + c se >,

12 Calcolo integrale: esercizi svolti dove c, c R sono tali che la generica primitiva F è continua in. Quindi deve essere Poichè F ) c, F ) lim + F ). lim F ) c +, si ha che c c. Quindi, posto c c, si ha che una generica primitiva di f è e ) + c se F ) c R. cos + c se >, b) Consideriamo la funzione sin π + π ) se f) se >. Determiniamo una generica primitiva F di f su R. Si ha che sin π + π ) sin π ) integrando per parti Quindi π cos π ) + π ) sin π ) cos π ) π cos π ) + π sin π ) + c, c R, 8 + 7) c, c R. F ) π cos π ) + π sin π ) + c se c se > dove c, c R sono tali che la generica primitiva F è continua in. Quindi deve essere Poichè F ) c + π, F ) lim + F ). lim + F ) c +,,

13 7. Integrali definiti si ha che c c + π. Quindi, posto c c, si ha che una generica primitiva di f è π cos π ) + π sin π ) + c se F ) c + π se >, c R. 7 Integrali definiti Esercizio. Calcolare i seguenti integrali definiti: a) π 6 π sin 6π 6] b) π sin + sin + sin )sin + ) cos ] 6 π log c) e e log ). )] log a) Consideriamo l integrale definito Si ha che π π 6 π sin. π 6 π 6 π sin 6 π) sin + integrando per parti ] π π 6 6 π) cos 6 6 π 6 6 π) sin π π cos + 6 π) cos ] + 6 cos π π 6 6 ] π 6 π π 6 sin + 5π + 6 sin ] π 6 6π 6.

14 4 Calcolo integrale: esercizi svolti b) Consideriamo l integrale definito π sin + sin + sin )sin + ) Posto t sin, da cui dt cos, si ha che Si ha che π sin + sin + sin )sin + ) cos cos. t + t + t )t + ) dt. t + t + t )t + ) A t + Bt + C t + A + B)t + B + C)t + A C t )t + ) A B C. Quindi si ha che t + t + t )t + ) dt ] log t + t + ) t dt + t ) + dt log + arctan t ] π log. 6 c) Consideriamo l integrale definito e e log ). Posto t log, da cui dt, si ha che e e log ) t dt. Posto y t, da cui t y + e quindi dt ydy, si ha che t dt y y dy ] y log y log ) dy y ).

15 8. Altri esercizi 5 8 Altri esercizi Esercizio. Scrivere lo sviluppo di McLaurin arrestato al sesto ordine della funzione f) arctan e t dt. È ben noto che se g è una funzione continua definita in un intorno di e se α >, allora g) o α ), gt) dt o α+),. Quindi utilizzando gli sviluppi di McLaurin delle funzioni arctan e e s si ottiene f) arctan o 5)) o 5)) e t dt t + t4 + o t 4)) dt t t + t o 5)) o ] o 6),. Ne segue che lo sviluppo di McLaurin arrestato al sesto ordine di f è f) o 6),. + o 5)) 5)) Esercizio. Scrivere lo sviluppo di McLaurin arrestato al nono ordine della primitiva della funzione che si annulla in. f) cos Essendo f continua, per il Teorema fondamentale del calcolo integrale, la funzione F ) ft) dt cos t dt è la primitiva di f che si annulla in. Inoltre, è ben noto che se g è una funzione continua definita in un intorno di e se α >, allora g) o α ), gt) dt o α+),.

16 6 Calcolo integrale: esercizi svolti Quindi utilizzando lo sviluppo di McLaurin della funzione cos s si ottiene F ) cos t dt t 4 + t8 + o t 8)) dt t 5 t5 + ] 7 t9 + o 9)) o 9),. Ne segue che lo sviluppo di McLaurin arrestato al sesto ordine di F è F ) o 9),. Esercizio. Calcolare l area delle seguenti regioni di piano: a) A, y) R :, y ) log )] + log log log b) B {, y) R : 5, } + y log ] c) C, y) R : e, log y 4 + log. e + ) ] 7 a) Posto f) log ) l area di A è data da Area A, osserviamo che per si ha che f). Quindi f) Posto t log, da cui dt, si ha che ) log log t dt ] log log t + log + t log Quindi l area di A è Area A log +log log ). ). log log )] + t log t t + ) dt + t ) + log log. log

17 8. Altri esercizi 7 b) Posto f) +, osserviamo che per 5 si ha che f). Quindi l area di B è data da Area B 5 f) 5 posto t, da cui t + e t dt, 5 + Quindi l area di B è Area B log. t t + ) dt + log t + + ] log t + ). ) t + t + ) dt c) Posto f) Infatti, log 4+ log, osserviamo che per e si ha che f). log 4 + log log 4 + log e le funzioni g) log 4+ log e h) sono crescenti nell intervallo, e] con g) 7, h) e per ogni, e]. Ne segue che g) h) per ogni, e], cioè f) per ogni, e]. Quindi l area di C è data da e ] Area C log e 4 + log posto t log, da cui dt, e log 4 + log ) e t dt ) e t4 + t ) dt 4 + t ) e 4 + t ] Quindi l area di C è Area C e + ) 7. e + ) 7.

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Curve e integrali curvilinei: esercizi svolti

Curve e integrali curvilinei: esercizi svolti Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Esercizi svolti sugli integrali indefiniti

Esercizi svolti sugli integrali indefiniti SCIENTIA http://www.scientiajournal.org/ International Review of Scientific Synthesis ISSN 8-9 Quaderni di Matematica 05 Matematica Open Source http://www.etrabyte.info Esercizi svolti sugli integrali

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore:

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore: INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a b c d e / +5 d ; arctan + d ; 8+ 4 5/ +e + d ; 9 +8 + + d. d ;. Verificare la convergenza del seguente

Dettagli

Primitive e Integrali Indefiniti

Primitive e Integrali Indefiniti Capitolo 0 Primitive e Integrali Indefiniti In questo capitolo ci proponiamo di esporre la teoria delle funzioni primitive per funzioni reali di una variabile reale e di dare cenni ai metodi utilizzati

Dettagli

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1 Esercizi di Analisi Matematica Paola Gervasio Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto Es Determinare il carattere delle seguenti serie

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Analisi Matematica I

Analisi Matematica I Esercizi di Analisi Matematica I Università degli Studi di Tor Vergata - Roma Facoltà di Ingegneria Corsi di Laurea: Ingegneria Civile, Medica, dei Modelli e dei Sistemi a cura di Ciolli Fabio I testi

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

1 + x2 Metodi di calcolo di un integrale Indefinito

1 + x2 Metodi di calcolo di un integrale Indefinito Integrali Integrali Indefiniti L operazione di integrale indefinito è l operazione inversa rispetto alla derivata, infatti consiste, partendo da una funzione f(x), di trovare l insieme delle funzioni F(x)

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Esercizi di Analisi Reale

Esercizi di Analisi Reale sercizi di Analisi Reale Corso di Laurea in Matematica Terminologia. Sia R n un insieme misurabile. Una funzione positiva misurabile f su, cioè una funzione f : [, ] misurabile, ammette sempre integrale

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Calcolo integrale. by http://www.appuntionline.net

Calcolo integrale. by http://www.appuntionline.net Calcolo integrale by http://www.appuntionline.net Indice I Teoria dell integrazione di una funzione reale di variabile reale 5 1 Integrale definito 6 1.1 Funzioni primitive........................... 6

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO

9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO A. A. 2014-2015 L. Doretti 1 La nascita e lo sviluppo del calcolo integrale sono legati a due tipi

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Tavola degli integrali più comuni

Tavola degli integrali più comuni Tavola degli integrali più comuni Da Wikipedia, l'enciclopedia libera. In base al Primo teorema fondamentale del calcolo integrale, il calcolo di suddetti integrali tramite identificazione della primitiva

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 011/01 EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi più difficili. Determinare l integrale generale dell equazione differenziale y = e x y

Dettagli

Esercizi sulle funzioni di due variabili: parte II

Esercizi sulle funzioni di due variabili: parte II ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Decomposizione in frazioni semplici e applicazioni all integrazione delle funzioni razionali fratte

Decomposizione in frazioni semplici e applicazioni all integrazione delle funzioni razionali fratte Decomposizione in frazioni semplici e applicazioni all integrazione delle funzioni razionali fratte A cura di Simone Secchi 3 gennaio 2005 Sommario Questa dispensa vuole fornire un supporto scritto ad

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

1 Funzioni razionali: riduzione in fratti semplici e metodo di Hermite

1 Funzioni razionali: riduzione in fratti semplici e metodo di Hermite Funzioni razionali: riduzione in fratti semplici e metodo di Hermite Chiamiamo funzione razionale una funzione f ottenuta come rapporto tra due polinomi P, Q a coefficienti reali: fx = P x Qx il cui dominio

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

ESERCIZI SUL CALCOLO DI INTEGRALI INDEFINITI E DEFINITI

ESERCIZI SUL CALCOLO DI INTEGRALI INDEFINITI E DEFINITI ESERCIZI SUL CALCOLO DI INTEGRALI INDEFINITI E DEFINITI a cura di Michele Scaglia RICHIAMI TEORICI INTEGRALE DEFINITO Nelle lezioni di teoria è stato ampiamente trattato l argomento riguardante l integrazione

Dettagli

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti LEZIONI DI ANALISI MATEMATICA I Equazioni Differenziali Ordinarie Sergio Lancelotti Anno Accademico 2006-2007 2 Equazioni differenziali ordinarie 1 Equazioni differenziali ordinarie di ordine n.................

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

La funzione primitiva

La funzione primitiva La funzione primitiva Può accadere di conoscere la derivata di una funzione f (x) e di voler conoscere f(x). Ad esempio, conosciamo il tasso di accrescimento di una data popolazione e vorremmo conoscere

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

la vasca si riempie e, per tali valori di k il tempo necessario affinché la vasca si riempia.

la vasca si riempie e, per tali valori di k il tempo necessario affinché la vasca si riempia. Esercizio In una vasca della capacità di 0 dm 3 e che inizialmente contiene 00 lt. di acqua, una pompa immette k lt. (k > 0) di acqua al minuto. Da un foro sul fondo l acqua esce con portata proporzionale

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN Prima prova di verifica in itinere di ANALISI MATEMATICA Gennaio 00 Determinare estremo superiore ed estremo inferiore dell insieme { } ( ) n A = n + : n IN specificando se si tratta rispettivamente di

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008 Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

1 RICHIAMI DALLA CLASSE QUARTA 2 FUNZIONI DI DUE VARIABILI 3 CALCOLO DI AREE, VOLUMI, LUNGHEZZE 4 I MODELLI DIFFERENZIALI

1 RICHIAMI DALLA CLASSE QUARTA 2 FUNZIONI DI DUE VARIABILI 3 CALCOLO DI AREE, VOLUMI, LUNGHEZZE 4 I MODELLI DIFFERENZIALI INDICE DELLE UFC 1 RICHIAMI DALLA CLASSE QUARTA 2 FUNZIONI DI DUE VARIABILI 3 CALCOLO DI AREE, VOLUMI, LUNGHEZZE 4 I MODELLI DIFFERENZIALI TIPOLOGIA VERIFICHE Test a completamento Domande aperte Esercizi

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Esercizi di Analisi Matematica 1 Corso Ingegneria Civile. L. Pandolfi

Esercizi di Analisi Matematica 1 Corso Ingegneria Civile. L. Pandolfi Esercizi di Analisi Matematica 1 Corso Ingegneria Civile L. Pandolfi Esercizi 1/A 1. calcolare (3 2 ) 2, (3 2 ) 3, (3 3 ) 2, log 10 ( 102 10 3), 10 log 10 3+log 10 2. 2. Scrivere la definizione di monomio

Dettagli

Approssimazione di Stirling

Approssimazione di Stirling Approssimazione di Stirling Marcello Colozzo - http://www.extrabyte.info 1 Rappresentazione integrale della funzione gamma Ricordiamo il teorema: Teorema 1 Sia ψ (t) la funzione complessa della variabile

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

G6. Integrali indefiniti

G6. Integrali indefiniti G6 Integrali indefiniti G6 Introduzione Nel capitolo G4 si è visto come calcolare la derivata di una funzione data Quando si calcola la derivata di una funzione y=f() il risultato è un altra funzione indicata

Dettagli

Esami d Analisi Matematica 1. Filippo De Mari e Marina Venturino

Esami d Analisi Matematica 1. Filippo De Mari e Marina Venturino Esami d Analisi Matematica 1 Filippo De Mari e Marina Venturino Indice Parte 1. ANNO ACCADEMICO 1999-000 5 1. Corso di Studi in Ingegneria Meccanica 5 Parte. ANNO ACCADEMICO 001-00 15 1. Corso di Studi

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile Capitolo 8 8. Definizione di derivata Sia y = f(x) definita nell intervallo A e sia fissato x 0 A. Diamo a x 0 un arbitrario incremento 0 su A, e indichiamo con y = f(x 0 + ) f(x 0 ) il corrispondente

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I

Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I Trieste Udine giugno 005 Prefazione Questo volume raccoglie i temi assegnati alle prove d esame dei corsi di Analisi matematica I

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile 5//5 Calcolo dierenziale per unzioni di una variabile Derivata di una unzione De. Sia : a,br, si deinisce derivata di nel punto a,b il numero, se inito,: d dy, y,,, D, Dy d d 5//5 Derivata di una unzione

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli