PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI"

Transcript

1 PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti i for decile. Si h: R uero rziole: uero irrziole: se l prte decile è fiit o periodic se l prte decile è ifiit e o periodic RADICI QUADRATE Defiizioe: Si dicoo rdici qudrte 1 di u uero rele tutti quei ueri che, elevti l qudrto, do coe risultto. Osservzioe: Lo 0 h coe uic rdice qudrt se stesso! Perché i ueri reli egtivi o ettoo lcu rdice qudrt? L rispost ll dod è seplice, bsti pesre l ftto che qulsisi uero rele elevto l qudrto dà coe risultto u uero positivo! Notzioe: Il sibolo utilizzto per idicre l rdice qudrt di u uero è esso idic solete il vlore ssoluto delle rdici qudrte del uero, cioè:, i reltà se > 0 se < 0 Per tle rgioe il sibolo suddetto prede il oe di rdice qudrt ssolut. Bisog quidi stre tteti e ricordre che ell isiee dei ueri reli: ogi uero positivo ette due rdici qudrte opposte tr loro: ± ; lo zero ette coe uic rdice qudrt se stesso; i ueri egtivi o ettoo lcu rdice qudrt. 1 Il terie rdice qudrt deriv dl ftto che esprie il lto di u qudrto di re. Sibolo itrodotto dl tetic tedesco Christoph Rudolff (00 5) coe bbrevizioe dell prol rdix. Erso Modic, 009/010 1

2 Dlle precedeti cosiderzioi ppre evidete che di frote ll, si deve vere: 0, perché i ueri reli egtivi o ettoo rdice qudrt; 0, perché il sibolo rppreset l rdice qudrt ssolut. Qudo ci si trov di frote ll rdice qudrt di u uero rele si possoo verificre i due csi segueti: il uero è u qudrto perfetto e quidi l su rdice qudrt ssolut è u uero itero: d esepio ; il uero o è u qudrto perfetto e quidi l su rdice qudrt ssolut è u uero irrziole: d esepio 1,1 Cocludio questo prgrfo osservdo che, se si cosidero i soli ueri reli o egtivi, l rdice qudrt ssolut o ritetic è l operzioe ivers dell elevzioe l qudrto: RADICI CUBICHE Defiizioe: Si dice rdice cubic di u uero rele quel uero che, elevto l cubo, dà coe risultto. Si osserv fcilete che l rdice cubic di u uero tiee sepre lo stesso sego del uero i quto sppio che il cubo di u uero rele coserv sepre lo stesso sego dell bse. Esepi: o 8 o 5 o 0 0 Qudo ci si trov di frote ll rdice cubic di u uero rele si possoo verificre i due csi segueti: il uero è u cubo perfetto e quidi l su rdice cubic è u uero itero; il uero o è u cubo perfetto e quidi l su rdice cubic è u uero irrziole. Il terie rdice cubic deriv dl ftto che v Erso Modic, 009/010 esprie il lto di u cubo di volue v.

3 RADICI -ESIME Defiizioe: Si dicoo rdici -esie di u uero rele coe risultto : quei ueri che, elevti d, do idice dell rdice rdice rdicdo Qudo si trtt co le rdici -esie di u uero rele, bisog fre ttezioe l ftto che l idice si pri o dispri. Si preseto iftti i segueti csi: se l idice è dispri l è defiit per qulsisi vlore di R, ioltre è egtiv se < 0, positiv se > 0 e ull se 0; se l idice è pri l è defiit solo per i vlori di 0 e si h che 0. Defiizioe: Sio α R, co α > 0 e N, si chi rdice ritetic -esi di e si idic co l uico uero rele e positivo tle che β α. Se α 0 si poe, di coseguez, β 0 (ovvero 0 h coe uic rdice -esi se stesso). Si ritiee utile ribdire i cocetti precedeteete discussi edite le segueti: Osservzioi: 1. Se si prl di rdice qudrt e l scrittur idic tutti quei ueri reli che, elevti l qudrto, do coe risultto. Ogi uero positivo ette due rdici qudrte opposte tr loro: ±, iftti: e + + ; o esiste perché o esistoo le rdici -esie di ueri egtivi qudo è pri.. 8 perché l rdice cubic di u uero tiee sepre lo stesso sego del uero, i quto sppio che il cubo di u uero rele coserv sepre lo stesso sego dell bse, si può geerlizzre e dire che esistoo le rdici -esie di ueri egtivi qudo è dispri. Osservzioe: Attezioe! Se si clcol l rdice ritetic di poiché 0 l scrittur h sigificto o sppio priori se è positivo o egtivo, quidi è u errore scrivere: È ivece corretto scrivere: Erso Modic, 009/010

4 Se si cosidero i soli ueri reli o egtivi, l rdice qudrt ssolut o ritetic è l operzioe ivers dell elevzioe l qudrto: I questo cso o si ricorre l vlore ssoluto perché l scrittur h sigificto se 0 e quidi il qudrto dell rdice ritetic di u uero positivo è il uero stesso. POTENZE A ESPONENTE RAZIONALE ESPONENTE POSITIVO I questo prgrfo il ostro scopo è quello di scrivere l rdice -esi di u uero rele 0 sotto for di potez di, voglio cioè che si: x Elevdo bo i ebri dell ugugliz otteio: x x Trttdosi di due poteze co bse 0 uguli tr loro, tle ugugliz è res possibile solo dll ugugliz dei due espoeti, cioè deve essere: 1 x x 1 Possio quidi scrivere che: 1 relzioe vlid che el cso i cui 0. Cosiderio u uero itero positivo e scrivio: quidi si h che: 1 Erso Modic, 009/010

5 Esepio: Clcolre 7. Si h che: ESPONENTE NEGATIVO Per poter defiire l potez d espoete rziole egtivo è ecessrio iporre l restrizioe 0, iftti: 1 1 Esepio: Clcolre 7. Si h che: Defiizioe: Si dice potez espoete rziole di u uero rele positivo l espressioe: co Q, Z 0 Prtio dll espressioe: Perché bbio dovuto escludere dll defiizioe il cso < 0? co N 0. 1 Se è dispri, l potez 1 è sepre defiit per ogi vlore dell bse; se è pri, 1 è defiit solo per 0. Cosiderdo il uero Z, si h: 1 Erso Modic, 009/010 5

6 Quest ulti ugugliz è fls se < 0! Iftti cosiderio: , i cui o è defiit i R Si ot che i u cso perveio d u risultto etre ell ltro o. Per estedere l defiizioe l cso di bsi egtive srebbe ecessrio stbilire u ordie di priorità delle operzioi, ovvero u regol di precedez: 1 ciò drebbe cotro l proprietà couttiv del prodotto degli espoeti di u potez di potez. OPERAZIONI CON LE RADICI Proprietà ivritiv Moltipliczioe di rdici co lo stesso idice t t b co t N 0 b Divisioe di rdici co lo stesso idice : b Potez di rdici b Rdici di rdici Moltipliczioe di rdici co lo stesso rdicdo Divisioe di rdici co lo stesso rdicdo Riduzioe di rdici llo stesso idice q q p q : p q q q b q b q +p q p MOLTIPLICAZIONE E DIVISIONE DI RADICI CON LO STESSO RADICANDO Per effetture l oltipliczioe o l divisioe tr due rdici veti lo stesso rdicdo bst trsforrle sotto for di poteze co espoete rziole e utilizzre le proprietà delle poteze. Esepio: Eseguire l oltipliczioe Erso Modic, 009/010 6

7 Esepio: Eseguire l divisioe 6: 6 6: : RIDUZIONE DI RADICI ALLO STESSO INDICE Per ridurre due o più rdicli llo stesso idice è ecessrio portrli d u idice coue, detto iio coue ultiplo degli idici, utilizzdo l proprietà ivritiv. Esepio: Ridurre i rdicli 5 e llo stesso idice. Il iio coue idice è 1, quidi di h: o o I RADICALI Defiizioe: Si dice rdicle u espressioe del tipo b, co e b ueri reli, b 0 ed N. Il uero prede il oe di coefficiete del rdicle. Operre co i rdicli è siile l odo di operre co i ooi. Iftti è possibile effetture soe lgebriche soltto se i rdicli ho lo stesso idice e lo stesso rdicdo, etre si possoo sepre effetture oltipliczioi e divisioi dopo verli ridotti llo stesso idice. Si trtt co rdicli ritetici se l rdice -esi è u rdice ritetic, ltrieti si trtterà co rdicli lgebrici. Defiizioe: Due rdicli si dicoo siili se ho lo stesso idice e lo stesso rdicdo. OPERAZIONI CON I RADICALI Resto vlide tutte le operzioi electe per le rdici -esie. È possibile effetture soe lgebriche soltto se i rdicli soo siili: Iftti l so + o si può scrivere coe uico rdicle perché l idice è diverso; ivece l so + o si può scrivere coe uico rdicle perché è diverso il rdicdo. Erso Modic, 009/010 7

8 Ivece si possoo sepre effetture oltipliczioi e divisioi dopo ver ridotti i rdicli llo stesso idice: PORTARE DENTRO IL SEGNO DI RADICE Per portre detro il sego di rdice bst elevre il coefficiete del rdicle ll idice dell rdice e lo si riscrive sotto il sego di rdice: b Esepio: Portre il coefficiete del rdicle 5 5 b 5 detro il sego di rdice. 0 PORTARE FUORI DAL SEGNO DI RADICE È possibile portre fuori dl sego di rdice quei fttori veti coe espoete u uero che si ggiore o ugule ll idice dell rdice. I geerle si prte d: co si divide per e si port fuori il terie elevto l quoziete dell divisioe iter, cioè q, etre rie detro il sego di rdice il terie elevto l resto dell divisioe iter, cioè r. Quidi si h: q r co q + r Esepio: Portre fuori dl sego di rdice 5 b 7 cd. il ggior uero di fttori ell espressioe 5 b 7 cd b d bc RAZIONALIZZAZIONE Rziolizzre u frzioe vuol dire trsforrl i u frzioe equivlete vete deoitore u uero itero. Erso Modic, 009/010 8

9 I Cso: Rziolizzzioe dell frzioe b Per rziolizzre u tle frzioe bst oltiplicre si uertore che deoitore per b, che prede il oe di fttore rziolizzte: b b b b b b II Cso: Rziolizzzioe dell frzioe b Il fttore rziolizzte di quest frzioe è b, quidi si h: b b b b b b b b III Cso: Rziolizzzioe dell frzioe b c I questo cso, sfruttdo il prodotto otevole + b b b, si h che: b c b + c b + c b + c b c b + c b c b c b c b + c b c b c IV Cso: Rziolizzzioe dell frzioe b c Bst utilizzre lo stesso prodotto otevole sfruttto el precedete cso e si ottiee: b c b +c b +c b +c b c b +c b c b c b c b +c b c b c V Cso: Rziolizzzioe dell frzioe + b+ c Ache i questo cso si utilizz il prodotto otevole utilizzto el terzo cso e si h: Erso Modic, 009/010 9

10 b + c + d b + c d b + c + d b + c d b + c d + b + b d b + c d b + c d VI Cso: Rziolizzzioe dell frzioe ± b Per rziolizzre tle deoitore si utilizz l ugugliz ± b ± b b + b e si ottiee: ± b ± b b + b b + b b ± b + b RADICALI DOPPI Defiizioe: Si dice rdicle doppio u espressioe del tipo: ± b Teore: Per i rdicli doppi sussiste l forul di trsforzioe: Diostrzioe ± b + b Elevdo l qudrto bo i ebri otteio: ± b I ebro) II ebro) ± b ± b + b ± b + b + b ± + b b ± b ± + b ± b Osservzioe: Quest forul di trsforzioe trov u utile ppliczioe solo el cso i cui l espressioe b è u qudrto perfetto. Erso Modic, 009/

11 Esepio: Trsforre il rdicle doppio 7 0. Dopo ver osservto che , utilizzdo le forule di trsforzioe si ottiee: Erso Modic, 009/

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

I segnali nelle telecomunicazioni

I segnali nelle telecomunicazioni I segli elle telecouiczioi Geerlità I segli ossoo essere rresetti el doiio del teo edite u grfico crtesio vete i scisse il teo e i ordite i vlori isttei dell'iezz del segle cosiderto. Tle grfico, detto

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario UNIVERSITA DEGLI STUDI DI FERRARA Scuol Di Specilizzzioe Per L isegmeto Secodrio CLASSE DI SPECIALIZZAZIONE A049-A059 Tem: Progressioi Aritmetiche e Geometriche. Successioi. Limite di u Successioe. Fuzioi

Dettagli

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet: - - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI ) COSA SIGNIFICANO GLI ESPONENTI IRRAZIONALI pg. ) LA FUNZIONE ESPONENZIALE 5 ) LOGARITMI 8 ) LA FUNZIONE LOGARITMICA 9 5) I LOGARITMI: QUESTIONI DI STORIA E DI SIMBOLOGIA 6) PROPRIETA

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Studio delle Slot di Accoppiamento in Guida d Onda ed in Microstriscia

Studio delle Slot di Accoppiamento in Guida d Onda ed in Microstriscia UNIVERSIT DEGLI STUDI DI CGLIRI COLT DI INGEGNERI DIPRTIENTO DI INGEGNERI ELETTRIC ED ELETTRONIC Studio delle Slot di ccoppieto i Guid d Od ed i icrostrisci DOTT. G. dre CSUL TESI DI DOTTORTO DI RICERC

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012 Po dopo po ero l iiito L moc ocillte Pdero Del Grpp, 9 Agoto 0 Boetur Polillo Liceo Scietiico Frceco Seeri, Slero Uo gurdo d iieme Mtemtic Ricreti Didttic Ricerc Liee guid Il Queito come ote Alii e trtegi

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

L operazione di Convoluzione,

L operazione di Convoluzione, Revisioe mg 015 L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe Cludio Mgo wwwcm-physmthet CM_Portble MATH Notebook Series L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Congelatori Orizzontali in Classe A+, A++ e A -60%

Congelatori Orizzontali in Classe A+, A++ e A -60% Cogelatori Orizzotali i Classe A+, A++ e A -60% Modello: GTP 6 Valvola StopFrost I cogelatori orizzotali Liebherr della serie GTP e GTS soo dotati del sistea StopFrost. Questa valvola riduce la forazioe

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Dispense di Analisi Matematica II

Dispense di Analisi Matematica II Dispese di Aalisi Matematica II Domeico Cadeloro (Prima Parte) Itroduzioe Queste dispese trattao la prima parte del corso di Aalisi Matematica II. Nel primo capitolo si discutoo gli itegrali geeralizzati

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Le tante facce del numero e di Nepero

Le tante facce del numero e di Nepero Le tate facce del umero e di Nepero Paolo Tilli Dipartimeto di Matematica Politecico di Torio Premessa Questa breve ota raccoglie e i parte itegra il coteuto della cofereza da me teuta col medesimo titolo

Dettagli

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c.

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c. I LEZIONE Il ostro iteto è aalizzare i dettaglio i metodi di cifratura che si soo susseguiti el corso della storia prestado particolare attezioe all impiato matematico che e cosete la realizzazioe Iiziamo

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

ESERCIZI SULLE SERIE NUMERICHE

ESERCIZI SULLE SERIE NUMERICHE ESERCIZI SULLE SERIE NUMERICHE a cura di Michele Scaglia RICHIAMI TEORICI Richiamiamo brevemete i pricipali risultati riguardati le serie umeriche. Teorema (Codizioe Necessaria per la Covergeza) Sia a

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici Piao Lauree Scietifiche 2010-2011 Laboratorio di Autovalutazioe per il migliorameto della preparazioe per i corsi di laurea scietifici Caserta, 14 febbraio 2011 Prof.ssa Maria Cocozza Quate possibilità

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

13ALPGC-Costruzione di Macchine 1 Anno accademico 2005-2006

13ALPGC-Costruzione di Macchine 1 Anno accademico 2005-2006 13ALPGC-Cosruioe di Mcchie 1 Ao ccdeico 005-006 IL CALCOLO DELLE RUOTE DENTATE CILINDRICE 1 Iroduioe Il diesioeo di u igrggio, essedo o l cieic (rpporo di rsissioe, ueri di dei, golo di pressioe α (oα

Dettagli

Calcolo di autovalori

Calcolo di autovalori lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l l utolore utoettore Esepo 9 9 b 8 b 8 b geerle o è ultplo d. Se però oero c soo due dreo lugo le qul fuo coe se fosse oltplcto per uo sclre.

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

APPUNTI SUL MOTORE ASINCRONO TRIFASE

APPUNTI SUL MOTORE ASINCRONO TRIFASE Apputi sul otore Asicroo Trifse AUNTI SUL OTOE ASINONO TIFASE Iice. Geerlità... 2. Aspetti costruttivi... 3 3. orreti iotte, velocità i rotzioe e crtteristic meccic... 6 4. Esempi e esercizi... 7. GENEALITÀ

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

FORMULARIO DI MATEMATICA

FORMULARIO DI MATEMATICA TEST UIVERSITARI FACILI - uitest.isswe.et FORMULARIO DI MATEMATICA Sommrio ALGEBRA... DISEQUAZIOI... 5 GEOMETRIA... 6 GEOMETRIA AALITICA... 7 FUZIOI ESPOEZIALI LOGARITMI... 9 TRIGOOMETRIA... CALCOLO COMBIATORIO...

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

I Convention Bureau. Dott. Mario Liguori Università degli Studi di Roma Tor Vergata

I Convention Bureau. Dott. Mario Liguori Università degli Studi di Roma Tor Vergata I Covetio Bureu Dott. Mrio Liguori Uiversità degli Studi di Ro Tor Vergt 49 For the ltest, go to http:// Cosorzio Uiversitrio di Ecooi Idustrile e Mgerile 1. Il odello iterprettivo dei CB Goverce Pubblic

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALIASTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI TESI DI LAUREA IL METODO DELLE COPULE: ifereza,

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

16. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA = (16.1,2) 2 2

16. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA = (16.1,2) 2 2 G. etucci Lezioi di Cotuzioe di Mcchie 6. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA I copoeti di cchi oo oggetti toie di cico vibile el tepo co dieeti odlità; i ig. oo otti lcui tipici

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

FERRARIS BRUNELLESCHI

FERRARIS BRUNELLESCHI ISTITUTO D ISTRUZIONE SUPERIORE FERRARIS BRUNELLESCHI Vi R. Snzio, 187 50053 Epoli (FI) A.S. 2009/2010 Te di turità di Tecnic dell produzione e lb. Docente: Andre Strnini Soluzione Not: L soluzione non

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli