Appunti sul corso di Complementi di Matematica (modulo Analisi)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti sul corso di Complementi di Matematica (modulo Analisi)"

Transcript

1 Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto scalare, norma. Cap : In R 3 : equazione della retta, equazione del piano. Cap.1.1: Cenni di topologia di R n : intorno di un punto, punti interni, esterni, di frontiera; insiemi aperti, chiusi. R n è l insieme delle n uple ordinate di numeri reali x = (x 1, x 2,..., x n ). Un elemento di R n è detto vettore se n 2, e lo indichiamo con carattere grassetto; se n = 1 è detto scalare (carattere.normale). Se n = 2 un vettore P è un punto del piano cartesiano, se n = 3 è un punto dello spazio, e parliamo indifferentemente di punti o vettori. Ad un vettore P di R 2 o R 3 associamo una direzione, cioè quella del segmento OP che unisce l origine degli assi O e il punto P, un verso, da O a P, e una lunghezza data dalla norma di P (vedi più avanti). Operazioni in R n. Somma La somma di vettori è somma per componenti: x + y = (x 1 + y 1, x 2 + y 2,..., x n + y n ). Prodotto esterno. Il prodotto di un vettore x per uno scalare λ R è il vettore dato da λx = (λx 1, λx 2,..., λx n ). Se λ > 0, x e λx hanno stessa direzione, cioè sono paralleli, e stesso verso, cioè sono concordi. Se λ < 0 hanno verso opposto (discordi). I vettori x e x sono opposti. Norma (euclidea). La norma di un vettore x = (x 1, x 2,..., x n ) di R n è il numero reale definito da x := n (x i ) 2 Ha le proprietà seguenti x, y R n : 1) x 0 e x = 0 x = 0; 2) λx = λ x, λ R; 3) x + y x + y (disuguaglianza triangolare); i=1 1

2 Un versore è un vettore di norma 1. Dato un vettore v 0, allora u = v è un versore, cioè u = 1, parallelo e concorde a v. v Prodotto scalare (o prodotto interno). vettori x e y è il numero reale x y := n x i y i i=1 Il prodotto scalare di due Proprietà del prodotto scalare. a) x y R b) x y = y x c) λx y = x λy =λ(x y), λ R d) x x = x 2 e) x y x y (disuguaglianza di Cauchy-Schwarz). In R 2 e in R 3 si dimostra che x y = x y cos θ, dove θ [0, π] è l angolo compreso tra i due vettori x e y. In R n l angolo compreso tra due vettori x e y è definito come quell angolo θ [0, π] tale che soddisfa ( ) x y cioè θ := arccos. x y x y = x y cos θ Ortogonalità. Se il prodotto scalare è nullo, x y =0, i due vettori si dicono ortogonali (o perpendicolari). La base canonica di R n è costituita dai versori e 1 = (1, 0,..., 0), e 2 = (0, 1, 0,..., 0),...,e n = (0,..., 0, 1), e si può scrivere x = n x k e k. k=1 In R 2 i versori degli assi cartesiani si indicano comunemente con i = (1, 0), j = (0, 1), e sono ortogonali tra loro (verificare con la definizione data sopra). In R 3 i versori degli assi cartesiani si indicano comunemente con i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1), essi sono mutuamente ortogonali, e formano una terna destrorsa. 2

3 In R 3 ( e solo in questo spazio a 3 dimensioni) si definisce il prodotto vettoriale (def 5, cap. 1.3). Prodotto vettoriale. Il prodotto vettoriale di due vettori x e y è l unico vettore, indicato con x y, che soddisfa le tre condizioni seguenti: (i) (x y) x = 0 e (x y) y = 0; (ii) x y = x y sin(θ), dove θ è l angolo compreso fra x e y; (iii) x, y e x y formano una terna destrorsa. Si dimostra che, se x = (x 1, x 2, x 3 ) e y = (y 1, y 2, y 3 ), allora i j k x y = x 1 x 2 x 3 (determinante) y 1 y 2 y 3 Si dimostra facilmente dalla (ii) che x y è uguale all area del parallelogramma che ha per lati i vettori x e y (aventi un vertice in comune). Si dimostra (meno facilmente) che (x y) w è uguale al volume del parallelepipedo che ha per lati i vettori x, y e w. Piano in R 3. Un piano passante per P 0 = (x 0, y 0, z 0 ) con vettore normale (al piano) n = (A, B, C) è l insieme di tutti i punti P =(x, y, z) di R 3 soddisfacenti l equazione n (P P 0 ) =0, (forma vettoriale) ovvero A(x x 0 ) + B(y y 0 ) + C(z z 0 ) = 0, (forma scalare) o anche Ax + By + Cz = D, dove D = Ax 0 + By 0 + Cz 0. Tre punti non allineati P, Q, R, individuano un piano τ. Detti u = P Q e v = R Q. Per la (i), il prodotto vettoriale (u v) è ortogonale sia a u che a v e quindi è un vettore parallelo alla normale al piano τ. Es. Dati i tre punti S = (0, 1, 0), Q = ( 1, 2, 1), R = ( 1, 0, 1), scrivere l equazione del piano da essi individuato. 3

4 Siano u = P Q = (1, 1, 1), v = P R = (1, 1, 1). La direzione della normale al piano è uguale a i j k u v = = 2i+2k =(2, 0, 2) Se indichiamo con P =(x, y, z) il generico punto nello spazio tridimendionale, allora l equazione del piano è (u v) (P S) =0, cioè nel nostro caso x + z = 0 Retta in R n.una retta per passante per a di direzione v ha equazione parametrica vettoriale La semiretta di origine a x = a + tv, t R. e direzione e verso di v ha equazione: x = a + tv, t 0. Il segmento di estremi a, b percorso da a a b ha equazione: x = ta + (1 t)b, 0 t 1. In R 3, detto a =(a, b, c), e v = (v 1, v 2, v 3 ) il vettore direzione, le equazioni parametriche scalari della retta sono o anche x = a + tv 1 y = b + tv 2 z = c + tv 3 x a v 1 = y b v 2, t R = z c v 3 Si noti che in questo modo la retta è rappresentata dall intersezione di due piani. Es. Le equazioni x = 2 + t y = 3t, t R z = 5 rappresentano una retta passante per a =(2, 0, 5) parallela al vettore v =(1, 3, 0), ed è intersezione del piano z = 5 col piano y = 3(x 2). 4

5 Es.: La retta in R 2 di equazione y = mx + q ha la( direzione del vettore) u = 1 (1, m); il versore parallelo e concorde a u è v =, m ; il 1 + m m 2 versore parallelo e discorde a u è v. Si noti che, se m = tg(θ), allora 1 = cos(θ) e m = sin(θ). Un vettore perpendicolare alla 1 + m m 2 retta è w = (1, 1 m ). La retta in R 2 di equazione ax+by +c = 0 ha ( la direzione del vettore ) u = b (b, a); il versore parallelo e concorde a u è v = a2 + b, a,.quello 2 a2 + b 2 discorde è v. Un vettore perpendicolare alla retta è w = (a, b). Es. In R 2 trovare i versori u nella direzione della retta 3x 2y + 5 = 0 e quelli w nella direzione ortogonale: la retta ha equazione 2y = 3 x + 5 (m = 3/2) ed è parallela al vettore v =(2, 3), quindi u 1 = v v = ( 2 3, ), u 2 = u 1 ; la direzione ortogonale a v è c =(3, 2), (in questo caso m = 2/3) quindi w 1 = c c = ( 3, 2 ), w 2 = w Cenni di topologia di R n Siano D, F insiemi di R n. D c indica l insieme complementare di D in R n. Intorno U r (a) di un punto a di raggio r > 0 è l insieme: U r (a) = {x R n : x a < r} per esempio: in R, U r (a) = (a { r, a + r); in R 2, se a=(a,b) U r (a, b) = (x, y) R 2 : } (x a) 2 + (y b) 2 < r cioè un disco privato del bordo, di centro (a, b) e raggio r; in R 3, a=(a,b,c) U r (a, b, c) è una sfera (priva della superficie esterna) di centro (a, b, c) e raggio r. a è punto interno a D se esiste un intorno di a tutto contenuto in D. a è punto esterno a D se a è interno a D c, complementare di D. a è di frontiera di D se in ogni intorno di a ci sono punti di D e punti di D c. a è punto di accumulazione di D se in ogni intorno di a ci sono infiniti elementi di D. Un punto di accumulazione di D può essere punto interno o di frontiera. 5

6 D è insieme aperto se ogni suo punto è punto interno a D. F è insieme chiuso se F c è aperto. L insieme vuoto e l insieme totale R n sono sia aperti che chiusi. 6

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2 1 Il punto in R 3 La geometria analitica nello spazio: punti, vettori, rette e piani sintesi e integrazione prof D Benetti Un punto P nello spazio è associato a una terna ordinata di numeri reali numero

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Vettori e loro applicazioni

Vettori e loro applicazioni Argomento 11 Vettori e loro applicazioni Parte B - Applicazioni geometriche Utilizzando la nozione di vettore si possono agevolmente rappresentare analiticamente distanze, rette e piani nello spazio Supponiamo

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in n. Piani e rette nello spazio. 17 Gennaio 2016 Indice 1 Prodotto scalare nello spazio

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

I VETTORI DELLO SPAZIO

I VETTORI DELLO SPAZIO I VETTORI DELLO SPAZIO Riferimento cartesiano ortogonale nello spaio Bisogna assegnare nello spaio un punto O (detto origine e tre rette per esso a due a due perpendicolari e orientate in modo concorde

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni Problema1 x = y Dato il punto P(0,1,2), la retta r: y = z 2 ed il piano α: x 3y + z = 0 a) Trova il piano passante per P

Dettagli

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Sansonetto Nicola 15 aprile 2016 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A 2 (R) dotato del riferimento canonico,

Dettagli

y 5z = 7 y +8z = 10 +3z = 3

y 5z = 7 y +8z = 10 +3z = 3 Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Ferruccio Orecchia. esercizi di GEOMETRIA 1

Ferruccio Orecchia. esercizi di GEOMETRIA 1 A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Geometria Affine ed Euclidea dello Spazio

Geometria Affine ed Euclidea dello Spazio Geometria Affine ed Euclidea dello Spazio Nicola Sansonetto Istituto Sanmicheli di Verona 8 Aprile 2016 - Istituto Tecnico Marconi di Verona Nicola Sansonetto (Sanmicheli) Geometria affine dello spazio

Dettagli

= (5x 2 ) 2x y 2 = x+y ; = Risolvere le seguenti equazioni e disequazioni: xy = 1/2 = 10

= (5x 2 ) 2x y 2 = x+y ; = Risolvere le seguenti equazioni e disequazioni: xy = 1/2 = 10 9. Dimostrare che l equazione 37 x = (0.58) x3 non ha soluzioni reali diverse da 0. 10. Risolvere le seguenti equazioni: (i) 8 x = 1 4 ; (ii) 91/(x 1) = 3 1/(3x 1) ; (iii) 7 x2 5x+9 = 343; (iv) (52 x )

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Lezione 3: Ancora sui vettori

Lezione 3: Ancora sui vettori Lezione : Ancora sui vettori Norma Abbiamo detto che uno degli elementi che contraddistinguono un vettore è la sua lunghezza. Allora incominciamo a vedere i vantaggi della rappresentazione dei vettori

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Elementi di geometria analitica nel piano

Elementi di geometria analitica nel piano Capitolo 1 Elementi di geometria analitica nel piano 1.1 Richiami di geometria euclidea piana In questa sezione verranno menzionati alcuni concetti della geometria del piano di Euclide riguardanti l appartenenza

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

D. 1 Il prodotto di a = 12,37 e b = 25,45

D. 1 Il prodotto di a = 12,37 e b = 25,45 Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Vettori del piano. Questo materiale non deve essere considerato come sostituto

Vettori del piano. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi Politecnico di Torino. Vettori del piano Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi P P Q Q Il simbolo

Dettagli

Coordiante omogenee e proiezioni

Coordiante omogenee e proiezioni CAPITOLO 15 Coordiante omogenee e proiezioni Esercizio 15.1. Utilizzando le coordinate omogenee, determinare l equazione della retta r passante per i punti A(2,) e B( 1,0) e della retta s passante per

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

La circonferenza. Tutti i diritti sono riservati.

La circonferenza. Tutti i diritti sono riservati. La circonferenza Copyright c 008 Pasquale Terrecuso Tutti i diritti sono riservati. L equazione della circonferenza La circonferenza come luogo geometrico....................................... Questioni

Dettagli

Appendice Elementi di algebra lineare

Appendice Elementi di algebra lineare Appendice - Elementi di algebra lineare 1 Appendice Elementi di algebra lineare Indice 1 Vettori geometrici 2 11 Vettori geometrici nello spazio 2 12 Prodotto scalare 5 13 Rette e piani nello spazio 6

Dettagli