I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax"

Transcript

1 I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax Settore tecnologico Indirizzo meccanica meccatronica ed energia Meccanica Applicata Rel. 1.0 Data: ALGEBRA DEI VETTORI INTRODUZIONE SERVIZIO DISPENSE E MATERIALE DIDATTICO Questa dispensa tratta, in modo sintetico, l'algebra dei vettori, in essa si danno per note le nozioni di base di goniometria e trigonometria. L'argomento, pur tipicamente matematico, è sviluppato pensando all'applicazione fisica e meccanica del concetto di vettore. DEFINIZIONE In fisica, un vettore è un elemento geometrico rappresentato da un segmento orientato, munito cioè di una freccia in una delle sue estremità, e caratterizzato da quattro elementi: - modulo: rappresenta la lunghezza del vettore (indicata da un valore e un'unità di misura); - direzione: è individuata dal fascio di rette parallele alla retta su cui giace il vettore; - verso: il verso è descritto dalla punta del vettore stesso, rappresentato da un segmento orientato; - punto di applicazione: il punto antecedente a tutti gli altri, ossia il punto iniziale. Secondo questa definizione, un vettore geometrico non dipende dalla scelta del sistema di coordinate. In matematica un vettore non ha un punto di applicazione; per distinguere i due concetti si parla allora di vettore applicato (con un punto di applicazione) o di vettore libero (senza punto applicazione) Dunque uno stesso vettore libero genera vettori applicati diversi, se è applicato a punti diversi. OPERAZIONI SUI VETTORI Le operazioni elementari sui vettori che hanno una applicazione in campo meccanico (e non solo) sono: - somma e sottrazione di vettori - prodotto di un vettore per uno scalare - prodotto scalare - prodotto vettoriale Somma e sottrazione di due vettori. La somma di due vettori a e b è definita come il vettore a + b, diagonale del parallelogramma formato dai vettori a e b. Conoscendo i moduli e l'angolo formato da due vettori (θ), sfruttando il teorema del coseno, la somma di a e b è data da: 1

2 La somma gode delle seguenti proprietà: - a + b è ancora un vettore (cioè "+" è legge di composizione interna); - (a + b) + c = a + (b + c) (proprietà associativa); - esiste l' elemento neutro rispetto alla somma; il vettore zero, 0 è un segmento degenere di lunghezza zero, cioè un punto; - esiste l' elemento opposto rispetto alla somma, cioè un vettore -a che sommato a a da il vettore zero; - a è un vettore che ha lo stesso modulo, punto di applicazione e direzione di a, ma verso opposto; - a + b = b + a (proprietà commutativa). Qui sotto due modi grafici per eseguire la somma di due vettori. La definizione di opposto di un vettore permette di definire la differenza tra due vettori a - b come somma di a con l'opposto di b. In altri termini si trasforma l'operazione di sottrazione in questo modo: a b = a + (-b) Qui sono illustrate, nella stessa costruzione grafica, le operazioni di somma e sottrazione di vettori. I concetti di somma e sottrazione di vettori possono essere estesi a più vettori, qui alcuni esempi: 2

3 Prodotto di un vettore per uno scalare Il prodotto di un vettore a per uno scalare k è un vettore che ha la stessa direzione di a, verso positivo se k è positivo e negativo se k è negativo ma modulo uguale a k a. Se k >1 il vettore viene dilatato, se k <1 il vettore viene contratto. Il prodotto per uno scalare gode delle seguenti proprietà: (siano m, n scalari e a, b vettori) - n a è ancora un vettore (cioè il prodotto per uno scalare è legge di composizione interna); - (n m)a = n(m a) (proprietà associativa); - esiste l' elemento neutro rispetto al prodotto ed è l'elemento 1; - (n + m) a = n a + m a (proprietà distributiva rispetto alla somma di numeri); - n (a + b) = n a + n b (proprietà distributiva rispetto alla somma di vettori). Più avanti utilizzeremo questa operazione per rappresentare i vettori in un modo molto comodo per i calcoli analitici. Prodotto scalare Il prodotto scalare tra due vettori u e v è uno scalare, definito nel modo seguente (si veda la figura sotto) u v = u v cos θ ove θ è l'angolo formato dai due vettori. Il prodotto scalare non è una legge di composizione interna, perché associa a due vettori uno scalare. Non ha quindi senso parlare di associatività, di elemento neutro, oppure di elemento opposto; il prodotto scalare risulta invece commutativo, ovvero: u v = v u Il prodotto scalare è nullo se almeno uno dei due vettori è il vettore nullo, oppure se essi sono tra loro perpendicolari. Il prodotto scalare è molto importante in fisica perché su di esso si basa la definizione generale di lavoro di una forza. Sia infatti una forza F ed s lo spostamento ad essa associato (sia F che s sono di fatto grandezze vettoriali) allora il lavoro L della forza F relativo allo spostamento s sarà: L = F s E' anche interessante notare come il prodotto scalare sia di fatto un'operazione di proiezione. 3

4 Prodotto vettoriale Si dice prodotto vettoriale dei vettori v e u il vettore libero w avente: - la direzione della retta perpendicolare al piano individuato da v e u - il verso quello di una persona che percorre l'angolo θ tra v e u in senso antiorario. Per il verso si utilizza anche la regola della mano destra; disponendo pollice, indice e medio perpendicolari tra loro, se il pollice indica la direzione di v e l'indice la direzione di u, allora il medio indica la direzione di w (si veda la figura qui sopra). In maniera equivalente si può affermare che il verso di w è tale che la terna (v,u,w) sia una terna levogira. - il modulo di w è definito dalla formula: v u = u v sin θ Il prodotto vettoriale gode delle seguenti proprietà: - proprietà distributiva rispetto alla somma: (a + b) c = a c + b c - è anticommutativo: v u = - u v - è nullo se almeno uno dei due vettori è il vettore nullo, oppure se i vettori sono tra loro paralleli. - Proprietà associativa rispetto ad uno scalare "λ" : u (λv) = λ(u v) = (λu) (v) - a (b c) = b (a c) c (a b) - soddisfa l'identità ciclica di Jacobi Il prodotto vettoriale ha un'applicazione importantissima in meccanica, esso infatti sottende alla definizione rigorosa di momento di una forza (o in generale di momento di una grandezza vettoriale. Sia infatti una forza F con punto di applicazione P ed O un punto, allora si definisce Momento della forza F rispetto ad O il prodotto vettoriale: M = OP F Il momento M quindi è anch'esso una grandezza vettoriale, ortogonale al piano di giacitura definito da OP ed F e con verso definito dalla regola della mano destra. Questa definizione ha molte implicazioni importanti in meccanica. 4

5 SCOMPOSIZIONE DI VETTORI Un'operazione molto importante nelle applicazioni meccaniche è la scomposizione di vettori. A livello elementare la scomposizione di vettori è quell'operazione che ricerca, dati un vettore e due rette ad esso concorrenti, i vettori, giacenti su dette rispettive rette, la cui somma è proprio il vettore dato. Graficamente non è altro che l'applicazione inversa della regola del parallelogramma. Qui sotto due esempi elementari di scomposizione. Ad un livello più complesso la scomposizione di un vettore è un'operazione che, associata alla già illustrata moltiplicazione di un vettore per uno scalare ci consente di descrivere un qualsiasi vettore come somma delle sue componenti secondo, in generale, tre assi coordinati. Scomporre un vettore infatti significa esprimerlo come combinazione lineare (valgono, come detto le proprietà della somma e del prodotto per uno scalare viste in precedenza) di altri vettori. Nel piano, dati due vettori non paralleli, un vettore può essere scomposto mediante somma di due vettori paralleli ai due dati, come mostrato in figura. Nel caso di vettori nello spazio, la scomposizione avviene in modo del tutto analogo, con l'unica differenza che il vettore viene ora scomposto in tre altri vettori. In generale, data una base di vettori, un qualsiasi vettore può essere espresso come combinazione lineare degli elementi della base: dove, in questo caso, gli α i rappresentano le componenti. La scomposizione di vettori è una procedura molto utilizzata in fisica, in particolare in statica per scomporre le forze lungo direzioni particolari (ad esempio parallele e perpendicolari a determinati vincoli). 5

6 Un caso particolare di sistema di riferimento, è quello ortonormale, in cui i vettori scelti come base sono tra loro ortogonali e tutti di lunghezza unitaria (vedi versore). Nel caso del piano o dello spazio euclideo, un tale sistema di coordinate è detto cartesiano. Un vettore viene dunque scomposto nelle sue componenti cartesiane e, convenzionalmente, i versori sono denominati con i simboli i, j e k rispettivamente per l'asse x, y e z. I versori sono tali che: i j = k j k = i k i = j Un vettore può allora essere scritto come combinazione lineare dei versori canonici: con v x, v y e v z componenti cartesiane del vettore v. In particolare anche i prodotti scalare e vettoriale possono essere scritti in termini di componenti. Prodotto scalare: E' interessante osservare come il prodotto scalare così scritto ci dia una facile verifica di ortogonalità di due vettori. Prodotto vettoriale: Il prodotto vettoriale come si vede comporta l'introduzione di una nuova struttura matematica che prende il nome di matrice. Questa dispensa è distribuita secondo le licenze creative commons come indicato dall'etichetta qui sotto. Parti di questa dispensa sono state tratte da internet avendo cura di utilizzare materiali liberi da copyright, se per errore fosse stato invece utilizzato materiale sotto licenza, si prega di contattare immediatamente l'istituto G. Marconi, allegando la documentazione di licenza così che i curatori abbiano modo di eliminare quanto non conforme alla legge. 6

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Elementi di calcolo vettoriale

Elementi di calcolo vettoriale Mathit Elementi di calcolo ettoriale Nozione di ettore Grandezze ettoriali e grandezze scalari Segmenti orientati e ettori Definizioni Operazioni con i ettori Somma e differenza di ettori Moltiplicazione

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

I VETTORI DELLO SPAZIO

I VETTORI DELLO SPAZIO I VETTORI DELLO SPAZIO Riferimento cartesiano ortogonale nello spaio Bisogna assegnare nello spaio un punto O (detto origine e tre rette per esso a due a due perpendicolari e orientate in modo concorde

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

1. DEFINIZIONE DI VETTORE

1. DEFINIZIONE DI VETTORE 1. DEFINIZIONE DI VETTORE 486 PRIMO INCONTRO COI VETTORI Un segmento si dice orientato quando è specificato quale dei due estremi sia da considerarsi come il primo estremo e quale come il secondo estremo

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

ALCUNI RICHIAMI GENERALI

ALCUNI RICHIAMI GENERALI ALCUNI RICHIAMI GENERALI 0.1 SUL CONCETTO DI VETTORE La direzione Data una linea retta, è possibile muoversi su questa in due versi opposti: si possono distinguere assegnando a ciascuno di essi un segno

Dettagli

2 Vettori applicati. 2.1 Nozione di vettore applicato

2 Vettori applicati. 2.1 Nozione di vettore applicato 2 Vettori applicati 2 Vettori applicati 2.1 Nozione di vettore applicato Numerose grandezze fisiche sono descritte da vettori (spostamento, velocità, forza, campo elettrico, ecc.). Per alcune di esse e,

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag. I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

I vettori: brevissime note

I vettori: brevissime note I vettori: brevissime note F. Demontis Corsi PAS 2014 Trovate in queste pagine le poche nozioni sul calcolo vettoriale che vi ho presentato durante le lezioni. Tutto il materiale è stato scritto molto

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Operazioni sui vettori

Operazioni sui vettori Operazioni sui vettori Vettore Un vettore v è un insieme ordinato di elementi. Per esempio, il seguente è un vettore di 3 elementi: Gli elementi di un vettore si indicano solitamente con i seguenti simboli:

Dettagli

Esercizi di Geometria - 2

Esercizi di Geometria - 2 Esercizi di Geometria - 2 Samuele Mongodi - s.mongodi@sns.it La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel

Dettagli

LA FORZA...SIA CON TE!

LA FORZA...SIA CON TE! LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Elementi di Geometria

Elementi di Geometria Algoritmi di approssimazione numerica Elementi di Geometria R. Caira, M.I. Gualtieri Dipartimento di Matematica, Università della Calabria - ITALY R. Caira, M.I. Gualtieri Elementi di Geometria 1/51 Overview

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

- Fondamenti di calcolo vettoriale - VETTORI

- Fondamenti di calcolo vettoriale - VETTORI VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

Le grandezze vettoriali e le Forze

Le grandezze vettoriali e le Forze Fisica: lezioni e problemi Le grandezze vettoriali e le Forze 1. Gli spostamenti e i vettori 2. La scomposizione di un vettore 3. Le forze 4. Gli allungamenti elastici 5. Le operazioni sulle forze 6. Le

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta, 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta, 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

Problemi di Fisica I Vettori

Problemi di Fisica I Vettori Problemi di isica I Vettori PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: (; 6) (-; ) 3 (-6; -3) (0; -) Metodo grafico Rappresentiamo graficamente

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le

Dettagli

SIMMETRIE NEL PIANO CARTESIANO

SIMMETRIE NEL PIANO CARTESIANO Simmetrie nel piano cartesiano - Marzo 011 SIMMETRIE NEL PIANO CARTESIANO SIMMETRIE RISPETTO AGLI ASSI CARTESIANI ASSE X: P ( x,y ) a P1 ( x, y ) ; punto medio: M1 ( x,0) ASSE Y: P ( x,y ) a P ( x, y ),

Dettagli

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO DOCENTE: Galizia Rocco MATERIA: Fisica CONTENUTI Teoria CLASSE 1 BL3 Anno scolastico 2015-2016 INTRODUZIONE

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

Matematica per le scienze sociali Elementi di base. Francesco Lagona

Matematica per le scienze sociali Elementi di base. Francesco Lagona Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli

Dettagli

Nozioni di calcolo vettoriale Unità Richiami. 1.2 Somma di vettori. Scomposizione.

Nozioni di calcolo vettoriale Unità Richiami. 1.2 Somma di vettori. Scomposizione. NOTA BENE: Orientativamente, gli studenti del Liceo Scientifico, compresa l opzione scienze applicate, affronteranno lo studio di questa unità nel 1 biennio. Quelli degli altri Licei lo faranno nel biennio.

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate

Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate Anno scolastico 2015/2016 PROGRAMMA SVOLTO Docente: Catini Romina Materie: Matematica Classe : 4 L Indirizzo Scientifico Scienze Applicate UNITA DIDATTICA FORMATIVA 1: Statistica Rilevazione dei dati Rappresentazioni

Dettagli

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU)

Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Docente: Daniele Chiriu Ricevimento: Mar e Mer 14:30-16:30 email: daniele.chiriu@dsf.unica.it Stanza MC5 Dipartimento di Fisica

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA OBIETTIVI SPECIFICI DEL BIENNIO 1) utilizzare consapevolmente le tecniche e le procedure di calcolo basilari studiate; 2) riconoscere nei

Dettagli

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori : NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo

Dettagli

CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI

CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI CLASSE II A LICEO LINGUISTICO A.S. 2015/2016 Prof.ssa ANNA CARLONI OBIETTIVI la scomposizione dei polinomi le frazioni algebriche X X X scomposizione in fattori dei Scomporre a fattor comune polinomi Calcolare

Dettagli

Prof. Angelo Angeletti I VETTORI

Prof. Angelo Angeletti I VETTORI I VETTORI Si consideri la seguente situazione: in un prato due ragazzi stano giocando e uno dice all altro spostati di 5 passi. È chiaro che il comando non è completo in quanto non viene detto in quale

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.

Dettagli

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco Classe 1G Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. Bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978-88-08-53467-5 Capitolo 1 Insiemi

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

PROGRAMMA A.S. 2014/2015

PROGRAMMA A.S. 2014/2015 MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi

Dettagli

Componenti della competenza. Competenza MATEMATICA PRIME. Calcolo scritto

Componenti della competenza. Competenza MATEMATICA PRIME. Calcolo scritto Competenza Componenti della competenza Conoscenze Abilità Utilizzare con sicurezza le tecniche del calcolo aritmetico ed algebrico, scritto e mentale, anche con riferimento ai contesti reali Calcolo scritto

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca Matematica CLASSE PRIMA INDIRIZZO AFM - TUR UdA n. 1 Titolo: Calcolo aritmetico e algebrico Utilizzare le tecniche e le procedure di calcolo aritmetico e algebrico rappresentandole anche sotto forma grafica

Dettagli

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B 1 ENERGI PTENZILE 1 Energia potenziale 1.1 orze conservative Se un punto materiale è sottoposto a una forza costante, cioè che non cambia qualunque sia la posizione che il punto materiale assume nello

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 ALGEBRA Ripasso programma di prima. Capitolo 5 - I monomi e i polinomi La divisione fra polinomi La divisione di un polinomio per un monomio.

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e

Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali eometria delle ree Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali In realtà lo studio della Meccanica delle Strutture non si accontenta di

Dettagli