d coulomb d volt b trasformatore d alternatore b amperometro d reostato

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "d coulomb d volt b trasformatore d alternatore b amperometro d reostato"

Transcript

1 ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro voltmetro trsformtore lterntore mperometro reostto 5 Potenz elettri ssorit/potenz res: ispersione meni onsumo ispersione elettri renimento 6 Il «tor» misur: l pressione l veloità l orrente l umiità 7 I «Rggi Röntgen» sono: rggi γ (gmm) rggi X rggi α (lf) rggi β (et) 8 Qule elle seguenti relzioni ini l prim legge i Ohm? R = V I R = I/V R = V/I I = R V

2 9 L elettronvolt (ev) è l unità i misur ell: energi pità elettri ri ell elettrone ifferenz i potenzile 10 I rggi X sono one elettromgnetihe l ui veloità in un eterminto mezzo è: ugule quell ell lue in quel mezzo ugule quell el suono in quel mezzo ipene ll lunghezz on ei rggi X ipene ll frequenz ei rggi X 11 Due resistenze elettrihe i 15 e 45 (ohm) rispettivmente sono poste in serie tr loro e ollegte un tteri i 3 Volt i f.e.m. Allor esse risultno ttrverste orrenti il ui vlore è rispettivmente: 0,05 Coulom per entrme (1/3) A per l prim e (1/15) A per l seon A per entrme (1/15) A per l prim e (1/3) A per l seon 12 Le rmture i un onenstore pino, rio e isolto nel vuoto, vengono llontnte prllelmente l un ll ltr. Il nuovo onenstore he osì si ottiene: immgzzin l stess energi elettrostti i quello inizile immgzzin mggiore energi elettrostti i quello inizile immgzzin minore energi elettrostti i quello inizile l ifferenz i potenzile fr le rmture è rimst invrit 13 Il numero mssimo i elettroni he possono oupre lo strto tomio i numero quntio priniple «n» è: n2 n 2n + 1 2n2 14 L formul he esprime l energi E issipt in un resistenz R in un tempo t quno ll resistenz è pplit un tensione V è: E = V 2. t/r. Se V = 0,2 volt, R = 0,10 ohm e t = 10 2 seoni, ire qunto vle E. E = 400 joule E = 4 joule E = 4 x 10 3 joule E = 4 x 106 joule Quesiti

3 15 Un mpo mgnetio è prootto: un ri elettri in moto un mpo elettrio stzionrio un ri elettri in un mpo elettrio esterno use non in relzione fenomeni elettrii ppunti 16 Le linee i forz el mpo elettrio sono: sempre perte sempre hiuse hiuse se il mpo elettrio è generto l fenomeno ell inuzione mgneti equipotenzili 17 Nel sistem internzionle (SI) l ostnte ielettri si misur in: fr/metro henry tesl oulom/volt 18 Il kilowttor è l unità i misur ell: potenz quntità i lore ensità i energi intensità i orrente 19 Consierno un ri elettri q in moto rettilineo e uniforme he on veloità v entr in un regione i spzio in ui esiste un mpo mgnetio H, perpeniolre ll irezione el moto i q, risult he: il moto ell ri ivent uniformemente elerto il moto ell ri ivent osilltorio rmonio l triettori ell ri suise un evizione restno invrito il moulo ell veloità il moto ell ri rest invrito 20 Il olore zzurro el ielo è ovuto: un fenomeno i interferenz tr irie e musoli splenii ll polrizzzione el ristllino l fenomeno ell iffrzione ll riflessione ell superfiie el mre

4 ppunti 8 RISPOSTE COMMENTATE 1 Rispost estt: Il oulom è l unità i misur ell ri elettri nel S.I. (Sistem Internzionle) e nel sistem MKSA. H simolo «C» e è efinito ome l quntità i elettriità he ttrvers in un seono l sezione i un onuttore perorso un orrente ell intensità i un mpere. Il oulom può nhe essere efinito in moo iretto ome l quntità i ri he pssno ttrverso un voltmetro nitrto rgento epone l too 1,118 mg i rgento. Il oulom può nhe essere efinito ome l ri elettri he, post nel vuoto ll istnz i un metro un ri ugule, l respinge on l forz i newton. 2 Rispost estt: Il fr (F) è l unità i misur ell pità elettri. Un fr orrispone ll pità i un onenstore fr le ui rmture si stilise l ifferenz i potenzile i un volt quno su i esse vi è l quntità i ri elettri i un oulom. Tle pità risult estremmente grne, per ui i norm vengono utilizzti i sottomultipli el fr: mirofr (1 µ F = 10 6 F), nnofr (1 nf = 10 9 F) e il piofr (1 pf = F). 3 Rispost estt: L lterntore è uno strumento he trsform energi meni in energi elettri, erogno quest ultim sotto form i orrente lternt. Il suo funzionmento è sto sul prinipio ell inuzione elettromgneti. 4 Rispost estt: Per misurre l tensione, o ifferenz i potenzile i pi i un onuttore, è neessrio inserire un voltmetro in prllelo. 5 Rispost estt: Il renimento è efinito l rpporto tr l potenz utile e quell proott; l potenz utile è quell he viene effettivmente sfruttt ll utilizztore e è sempre inferiore quell erogt

5 6 Rispost estt: Unità i misur ell pressione: 1 tm = 760 mm Hg; 1 mm Hg = 1 torr. 7 Rispost estt: Röntgen soprì i rggi X nel 1895: si trtt i rizioni elevt frequenz on potere penetrnte elevto. 8 Rispost estt: Si trtt ell prim legge i Ohm. In un onuttore perorso orrente è ostnte il rpporto tr l ifferenz i potenzile pplit i suoi estremi e l intensità ell orrente: questo rpporto orrispone ll resistenz elettri el onuttore. 9 Rispost estt: L elettronvolt (ev) è un unità i misur i energi pri ll quntità i energi ineti quistt un elettrone pssno tr ue punti tr i quli sussiste l ifferenz i potenzile i un Volt. 10 Rispost estt: Il fotone è il ostituente elementre ell rizione elettromgneti vente l veloità ell lue ( km/se) e proprietà orpusolri; è otto i un quntità i energi (qunto) pri h. V, ove h è l ostnte i Plnk e V l frequenz ell rizione onsiert. 11 Rispost estt: L resistenz totle vle R tot = = 60 Ω. Clolimo l intensità ell orrente nel iruito elettrio: I = V/R = 3/60 = 0,005 A. 12 Rispost estt: Aumentno l istnz fr le rmture, l pità el onenstore iminuise. Inftti, C = ε 0. ε1. S/. Diminueno l pità elettri el onenstore, ument l energi elettrostti immgzzint. Inftti, W = Q 2 /(2. C). 13 Rispost estt: Il numero quntio priniple n ini il numero mssimo i elettroni he possono essere ontenuti in uno strto livello energetio he è 2 n Rispost estt: L energi issipt è t ll relzione E = V 2. t/r = (0,2) /0,1 = joule, ove R è l resistenz, t il tempo, V l tensione. Risposte

6 15 Rispost estt: Per generre un mpo mgnetio è neessri un orrente elettri. ppunti 16 Rispost estt: Un prtiell neutr he entr in un regione perpeniolrmente un mpo mgnetio esrive un triettori rettiline senz suire elerzioni. Nel so i un prtiell ri, quest esrive un triettori irolre, pur non vrino l su energi ineti. 17 Rispost estt: L unità i misur ell ostnte ielettri è il fr/metro e si ini on F/m. 18 Rispost estt: Il kilowttor esprime un energi, perhé il kilowtt misur l potenz e l or misur il tempo. Il lore è un energi termi; si trtt omunque i energi elettri. 19 Rispost estt: Vei rispost Rispost estt: Si h l iffrzione quno un rggio iniente inontr un ostolo i spessore ir ugule ll su lunghezz on. L ngolo i inienz è ugule ll ngolo i iffrzione. Tle fenomeno giustifi il olore zzurro el ielo. 21 Rispost estt: Prim legge i Ohm: V = RI. Seon legge i Ohm: R = ρ l/s V = ifferenz i potenzile (volt) I = intensità i orrente (mpere) R = resistenz elettri (ohm) r = resistività, vri metllo metllo (ohm. metro) l = lunghezz el onuttore (metri) S = sezione el onuttore (metri 2 ) 22 Rispost estt: Consierimo un mpo elettrio prootto un ri positiv puntiforme. Clolimo l intensità E el mpo in un primo punto istnte ll sorgente, on un ifferenz i potenzile V E = V/. 23 Rispost estt: I rggi X sono rizioni elettromgnetihe e viggino sotto form i one

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Allegato 3 Elenco BAT ed esempio interventi efficientamento

Allegato 3 Elenco BAT ed esempio interventi efficientamento Allegto 3 Eleno BAT e esempio interventi effiientmento LINEE GUIDA per l onuzione ell ignosi energeti nel settore rtrio Pg. 1 i 6 Riepilogo BAT sul onsumo e sull effiienz energetii estrtte ll DECISIONE

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

4. Qual è il requisito principale per la saldatura di acciai a basso contenuto di carbonio (acciai dolci)?

4. Qual è il requisito principale per la saldatura di acciai a basso contenuto di carbonio (acciai dolci)? 1. Qule ei metoi ell eleno è ppliile ll ossizione ell iio? Menio Iniezione Chimio A sintill 2. Qule elle seguenti frsi rigur l punzontur? È un lvorzione lo he non inue grne eformzione el pezzo È un lvorzione

Dettagli

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA)

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA) CONDUTTANZA ELETTICA DI UN ELETTOLITA IN SOLUZIONE (TEOIA) Se si ppli un differenz di potenzile elettrio fr due elettrodi iersi in un soluzione ioni, si verifi un igrzione risultnte di ioni in direzione

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Calcolo del costo unitario FASE 1

Calcolo del costo unitario FASE 1 ESERCIZIO Definizione el pino ei entri i osto e eterminzione el osto unitrio i prootto Clolo el osto unitrio FASE 1 Azien i prouzione: proue i eni,,, Il proesso prouttivo prevee 3 fsi o proessi prinipli:

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1

PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1 PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1 PUNTEGGIO PARAMETRI INTERURBANO NORMALE Punteggio Vlutzioni 1 PREZZO DEL VEICOLO COMPLETO (vesi

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Appunti di Elettrotecnica

Appunti di Elettrotecnica Appunti di Elettrotecnic Premess Il presente opuscolo non può e non vuole essere considerto sostitutivo del libro di testo, vuole semplicemente essere un supporto, per rmmentre gli studenti lcuni degli

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets Lezione 1 Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali Lezione Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del Questo mterile è stto prodotto dl progetto Progrmm di informzione e omunizione sostegno degli oiettivi di Gudgnre Slute del Ministero dell Slute /CCM, in ollorzione ol Ministero dell Istruzione, dell Università

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Piero Gallo Fabio Salerno. Task. Corso di informatica. Gli archivi sequenziali. il libro si estende sul web

Piero Gallo Fabio Salerno. Task. Corso di informatica. Gli archivi sequenziali. il libro si estende sul web Piero Gllo Fio Slerno Tsk Corso i informti 2 il liro si estene sul we Gli rhivi sequenzili il liro si estene sul we LEZIONE L orgnizzzione sequenzile L orgnizzzione logi sequenzile Con rhivio logio sequenzile

Dettagli

SISTEMI DI PROTEZIONE PERIMETRALE INVISIBILI PERIMETER

SISTEMI DI PROTEZIONE PERIMETRALE INVISIBILI PERIMETER ITEMI DI PROTEZIONE PERIMETRALE INVIIBILI P R O T E Z I O N I P E R I M E T R A L I I N V I I B I L I Immunità lle conizioni climtiche Neve istemi i protezione PERIMETRALE INVIIBILI Pioggi Grnine I sistemi

Dettagli

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

QUESITI DI PSICOLOGIA

QUESITI DI PSICOLOGIA QUESITI DI PSICOLOGIA appunti 23 TEST DI VERIFICA 1 Che osa si intene on il onetto i atteniilità? a L effiaia he un test ha nel preveere i renimenti i un soggetto nelle ailità speifihe misurate Il grao

Dettagli

IL CONTRATTO RISTORATIVO

IL CONTRATTO RISTORATIVO IL CONTRATTO RISTORATIVO ATTIVITÀ E LABORATORIO i Pol LOBINA PREMESSA L rtiolo nlizz l ntur giurii el ontrtto i ristorzione osì ome viene elinet l Coie el onsumo e è orreto un primo test i verifi sui ontrtti.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di utovlutzione 0 0 0 0 0 50 0 70 0 0 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle 5 lterntive. n Confront le tue risposte on le soluzioni. n Color, prtendo d

Dettagli

PROVE DI CARICO SU SOLAIO

PROVE DI CARICO SU SOLAIO .5. PROVE DI CARICO SU SOAIO Pg. di PROVE DI CARICO SU SOAIO. Sopo prov intende testre le strutture orizzontli, in termini di resistenz e di rispost elsti, sottoponendole lle mssime solleitzioni possiili

Dettagli

Risoluzione. dei triangoli. e dei poligoni

Risoluzione. dei triangoli. e dei poligoni UNITÀ Risoluzione dei tringoli e dei poligoni TEORI Relzioni tr lti e ngoli di un tringolo qulunque (sleno) riteri per risolvere i tringoli qulunque 3 re dei tringoli 4 erhi notevoli dei tringoli 5 ltezze,

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Modulo 3. del mercato dei capitali. e la Borsa valori. Unità didattiche che compongono il modulo. Tempo necessario

Modulo 3. del mercato dei capitali. e la Borsa valori. Unità didattiche che compongono il modulo. Tempo necessario Modulo Il merto dei pitli e l Bors vlori I destintri del modulo sono gli studenti del qurto nno; essi, dopo ver ppreso quli differenti forme giuridihe un impres può ssumere e, on riferimento lle soietà

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO ALLEGATO: N. 1 PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO MANUTENZIONE ORDINARIA E RIPARATIVA DEGLI EDIFICI PATRIMONIALI DESTINATI AD UFFICI DELLA PROVINCIA. IMPIANTI ELETTRICI

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Le verifiche interdisciplinari

Le verifiche interdisciplinari Le verifihe interisiplinri Le verifihe interisiplinri, ifferenz i quelle i fine moulo volte misurre il rggiungimento egli oiettivi isiplinri, privilegino l ertmento el rggiungimento egli oiettivi trsversli.

Dettagli

1. Unità SI, loro multipli e sottomultipli decimali

1. Unità SI, loro multipli e sottomultipli decimali ALLEGATO A Simboli convenzionali di unità di misura di cui al testo vigente dell'allegato al decreto del Presidente della Repubblica 12 agosto 1982, n. 802 (Attuazione della direttiva n. 80/181/CEE relativa

Dettagli

TIMER. Cliccando qui si può vedere il video del circuito su breadboard in cui si potrà notare:

TIMER. Cliccando qui si può vedere il video del circuito su breadboard in cui si potrà notare: 6 TIMER Il iruito proposto è un pproonimento personle sopo ittio per mettere in prti le nozioni ino or quisite (pssno nhe l mierto SUPERCAR qui rppresentto i CD07B), iò non tolie he non poss essere utile.

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

La piattaforma Next Generation Guida rapida

La piattaforma Next Generation Guida rapida Gui rpi Quest gui rpi è stt ret on l oiettivo i iutrti fmilirizzre rpimente on le numerose rtteristihe e strumenti isponiili sull pittform Next Genertion. Sopri ove trovre i prootti isponiili e le notizie

Dettagli

Accoppiamento pompa e sistema

Accoppiamento pompa e sistema Accoppimento pomp e sistem 1/9 Considerimo il sistem idrulico dell Fig. 1 costituito d due bcini, mbedue soggetti ll pressione tmosferic e collegti tr loro d un tubzione: si vuole portre l cqu dl bcino

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Millenium 3 Interfaccia di comunicazione M3MOD Guida all'uso della Directory operativa 04/2006

Millenium 3 Interfaccia di comunicazione M3MOD Guida all'uso della Directory operativa 04/2006 Millenium 3 Interfi i omunizione M3MOD Gui ll'uso ell Diretory opertiv 04/2006 160633105 Pnormi AGui ll'uso ell Diretory opertiv Introuzione L Diretory opertiv è un file i testo generto l softwre i progrmmzione

Dettagli

ZOOM. Approfondimento. la vita negli ambienti acquatici. L ecosistema marino

ZOOM. Approfondimento. la vita negli ambienti acquatici. L ecosistema marino l vit negli mienti qutii Approfonimento L eosistem mrino Le que mrine rioprono il 71% ell superfiie terrestre, formno oeni e mri, tutti omuninti tr loro. Offrono numerosi hitt he si ifferenzino per le

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Quarta Esercitazione di Fisica I 1. Problemi Risolti

Quarta Esercitazione di Fisica I 1. Problemi Risolti Qurt Esercitzione di Fisic I 1 Problemi Risolti 1. Sul cruscotto pitto dell mi uto è ppoggito un libro di 1.5 kg il cui coefficiente di ttrito sttico con il pino d'ppoggio è µ = 0.3. mssim velocità secondo

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 09//203 PIANI DI AMMORTAMENTO Pino di mmortmento Itlino Esercizio 2 ESERCIZIO Si clcoli il pino di mmortmento quot cpitle costnte e rt semestrle reltivo d un prestito

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA 2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA UMIDA 2.1. Ari Atmosferic L'ri tmosferic é costituit d un insieme di componenti gssosi (N 2, O 2, Ar, CO 2, Ne, He, ) e d ltre sostnze che possono presentrsi in

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

Istruzioni per l'uso originali

Istruzioni per l'uso originali Istruzioni per l'uso originli SLS 78 M/P-1730 Fotoellule rrier di siurezz Disegno quotto it 03-2010/11 602042 0 150m 24 V DC 300 Hz Alloggimento rousto di metllo on lente in vetro, grdo di protezione IP

Dettagli

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO Appliazione: Dimensionare l impianto di sollevamento per il sottopasso illustrato alle figure 3.60 e 3.61. Elaborazione delle

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

PAOLO CAMAGNI RICCARDO NIKOLASSY CORSO DI INFORMATICA. Per il nuovo liceo scientifico opzione scienze applicate VOLUME 1 HOEPLI

PAOLO CAMAGNI RICCARDO NIKOLASSY CORSO DI INFORMATICA. Per il nuovo liceo scientifico opzione scienze applicate VOLUME 1 HOEPLI PAOLO CAMAGNI RICCARDO NIKOLASSY CORSO DI INFORMATICA Per il nuovo lieo sientifio opzione sienze pplite VOLUME 1 HOEPLI PAOLO CAMAGNI RICCARDO NIKOLASSY Corso i Informti Per il nuovo lieo sientifio opzione

Dettagli

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio SCHEDA DI APPROONDIMENTO Prove i laoratorio PROVE DI RESISTENZA A TRAZIONE Le prove i resistenza a trazione sono essenziali per valutare le caratteristiche fonamentali e il comportamento el materiale sia

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 Sgnli i siurzz pr fontnll o i mrgnz pr l ontminzion UNI 7546/3. Symols for sfty signs-ys wshing - mrgny showr. 332 Normtiv in mtri i tutl ll slut siurzz

Dettagli

Risolvere il seguente caso aziendale

Risolvere il seguente caso aziendale Risolvere il seguente so zienle Un lergo on 80 oppie nel mese i Giugno e Luglio h registrto un gro i oupzione mere el 40% i ui il 75% iit mer oppi mentre il restnte 25% mer singol. Gli rrivi i perioo sono

Dettagli

APPROFONDIMENTI SULL UTILIZZAZIONE DI ENERGIA SOLARE

APPROFONDIMENTI SULL UTILIZZAZIONE DI ENERGIA SOLARE APPENDICE 1 APPROFONDIMENI SULL UILIZZAZIONE DI ENERGIA SOLARE 1.1 CONVERSIONE IN ENERGIA ERMICA CON COLLEORI SOLARI 1.1.1 Premess Per qunto rigurd quest form di utilizzo, il merto nzionle è nor oggi iuttosto

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Catalogo isoweld Il sistema di fissaggio ad induzione. Nuovo

Catalogo isoweld Il sistema di fissaggio ad induzione. Nuovo Catalogo isowel Il sistema i fissaggio a inuzione Nuovo isowel l innovativo sistema i fissaggio a inuzione i SFS intec Il nuovo sistema isowel TM i SFS intec è un sistema i fissaggio a inuzione innovativo

Dettagli

Indice. Le derivate. Successioni e serie numeriche

Indice. Le derivate. Successioni e serie numeriche Iie pitolo Suessioi e serie umerihe. Suessioi umerihe Rppresetzioe grfi, Suessioi mootòe,. Limiti elle suessioi Suessioi overgeti, Suessioi ivergeti, Suessioi ietermite, 6. Teoremi e operzioi sui limiti

Dettagli

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta QUESTIONRIO PINO GENERLE DEL TRFFIO URNO ITTÀ DI MGENT nlisi dei dti ottenuti dll rolt dei Questionri onsegnti l Tessuto Imprenditorile e ommerile dell ittà di Mgent Relizzt d onfommerio Mgent e stno Primo

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

d.bisogno c. mi ss io ne iso gni Valorizzare la Villa reale 1 Rendere nuovamente la Villa Reale polo di attrazione e di promozione della città

d.bisogno c. mi ss io ne iso gni Valorizzare la Villa reale 1 Rendere nuovamente la Villa Reale polo di attrazione e di promozione della città nome politio deleghe od. ontesto polit i. d.sse finlità C. sse iso gni d.isogno. mi ss io ne d.missioni.p ro gr m m d.progrmm inditori Dirigente ssegntri o Progrmm.Pr d.progetto oget to resp. Progetto

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Moduli di sicurezza Preventa. Guida alla scelta

Moduli di sicurezza Preventa. Guida alla scelta Mouli i siurezza Preventa Guia alla selta 010 CEI EN 6061 Stima el rishio e assegnazione SIL Dato a titolo esemplifiativo in un Allegato informativo RISCHIO RELATIVO ALL'EVENTO PERICOLOSO IDENTIFICATO

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

RAGIONERIA GENERALE ED APPLICATA SIMULAZIONE PRIMA PROVA INTERMEDIA A

RAGIONERIA GENERALE ED APPLICATA SIMULAZIONE PRIMA PROVA INTERMEDIA A RGIONERI GENERLE ED PPLICT SIMULZIONE PRIM PROV INTERMEDI COGNOME: NOME: N MTRICOL: L presente prov const di?? quesiti - Il tempo disposizione è di?? minuti ) Utilizzndo il solo Libro Giornle si proced

Dettagli

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh Corso i Elettronica Digitale Display ecoer a 7 segmenti con le mappe i Karnaugh Anrea Di Salvo A.A. 23/24 Che cos'è? Per un singolo moulo, è una rappresentazione i interi a a 9 (e eventualmente i alcuni

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente

Dettagli