LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)"

Transcript

1 LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla distribuzione normale o distribuzione di Gauss come modello teorico di riferimento. Ciò, in particolare, quando il numero delle classi dell istogramma è elevato e l ampiezza di ogni classe piccola. Ad esempio, la figura che segue si riferisce alla distribuzione empirica della statura di 700 maschi di età -18 anni; l istogramma può essere interpolato con una curva normale con media μ = 17.8 cm e varianza σ = 56.7 cm (deviazione standard σ = 7.53 cm): Statura di 700 maschi di età -18 anni Densità statura In realtà, la variabilità di alcuni caratteri biologici (peso, statura, pressione arteriosa, glicemia, temperatura corporea, ) dipende dall apporto di molteplici fattori genetici e ambientali e le loro distribuzioni sono tanto più vicine alla distribuzione normale quanto più grande è il numero di fattori che entrano in gioco. La densità di un carattere X distribuito normalmente è individuata dalla funzione: 1 (x μ) σ f ( x) = e π σ ed è caratterizzata dai due parametri di media μ e varianza σ. La figura seguente rappresenta la curva di una distribuzione normale con μ =5 e sull asse orizzontale sono evidenziati i valori di μ + σ =.5, μ = 5 e μ + σ = 7.5 : σ = 6.3 e La curva normale risulta: 1

2 simmetrica rispetto alla retta parallela all asse verticale e passante per la media, ovvero, presi due punti qualsiasi sull asse orizzontale equidistanti dalla mediana (=media), uno a sinistra e l altro a destra, la funzione di densità assume per essi lo stesso valore; asintotica rispetto all asse delle ascisse, cioè per valori sempre più distanti dalla media l ordinata della curva tende a zero; crescente nell intervallo (, μ ) e decrescente nell intervallo ( μ,+ ); la crescita è meno veloce fino a μ σ (punto di flesso) e più rapida da tale valore a μ ; si ha un massimo in μ e poi l andamento è decrescente con ritmo più veloce dal massimo a μ + σ (punto di flesso). Un significato importante assume l area al di sotto della curva tra i valori X=x 1 e X=x : Area tra x 1 e x = Frequenza % dei valori di X compresi tra x 1 e x = P(x 1 <X x ) L area totale al di sotto della curva è uguale a 1 e si può osservare che: P(X>x 1 ) = 1 P(X x 1 ) e P(x 1 <X x ) = P(X x ) P(X x 1 ). La media è il parametro di posizione, nel senso che, al variare del suo valore, la curva non cambia nella forma ma subisce una traslazione rispetto all asse orizzontale; nella figura sono rappresentate tre distribuzioni di pesi aventi la stessa varianza ma media diversa: La varianza è il parametro di scala: al suo variare cambia la forma della curva di distribuzione. In particolare, per bassi valori di σ, l area sotto la curva è concentrata intorno alla media, mentre per alti valori di σ, la curva è schiacciata rispetto all asse orizzontale; nella figura sono riportate tre distribuzioni di pesi aventi ugual media, ma varianze diverse:

3 Evidentemente esiste un numero infinito di distribuzioni normali diverse tra loro, ottenute al variare dei due parametri. Tutte queste distribuzioni diverse possono essere ricondotte ad un unica distribuzione standard: la distribuzione normale standard, avente media μ = 0 e varianza σ =1. All uopo va considerata la trasformazione (standardizzazione): Z = X μ, σ e Z è la variabile normale standardizzata e ha densità f ( z) = e π Graficamente: 1 z. Per il calcolo delle aree al di sotto della curva normale standardizzata si può far ricorso ad un programma informatico (ad esempio all ambiente R) o a tavole della distribuzione normale standardizzata (come quella riportata in Appendice). In merito alle aree, un risultato importante è schematizzato nella figura che segue: 3

4 Esempio 1. Una popolazione di maschi si distribuisce normalmente secondo la statura (X) con media μ = 173 cm e deviazione standard σ = cm. Determinare la frequenza relativa degli individui: 1. con statura maggiore di 00 cm;. con statura compresa tra 175 e 190 cm; 3. con statura minore di 156 cm. Per rispondere alle domande poste è necessario procedere alla standardizzazione dell altezza e utilizzare la tavola riportata in Appendice. 1. standardizzando x = 00 cm: z = =.08, si ha: P(X>00) = P(Z>.08) = 1 P(Z.08) = (ricercando all interno della tavola nell incrocio tra la riga del.0 e la colonna di 0.08) = = = 1.9% % di individui;. standardizzando 175 e 190 cm: z 1 = = 0.15 e z = = 1. 31, si ha: P(175<X 199)=P(0.15<Z 1.31)=P(Z 1.31) P(Z 0.15)= (valori interni alla tavola nell incrocio tra la riga di 1.3 e 0.01 e nell incrocio tra la riga di 0.1 e 0.05) = % di maschi; 4

5 3. standardizzando 156 cm: z = = 1.31, risulta: P(X 156)=P(Z 1.31)= (per la simmetria della curva) = P(Z >1.31) = 1 P(Z 1.31) = (valore interno alla tavola nell incrocio tra la riga 1.3 e la colonna 0.01) = % di individui. Sempre in riferimento all esempio considerato, ci si può chiedere: 4. qual è la statura massima del 10% degli individui più bassi; 5. qual è la statura minima del 5% degli individui più alti. Per rispondere alle due domande è necessario partire dai valori interni alla tavola (che sono valori di frequenze relative/probabilità). 4. Va determinato, anzitutto, il valore z 1 della variabile Z per il quale risulta P(Z z 1 )=10%=0.1. Per la simmetria della curva (vedi grafico) risulta che: P(Z z 1 ) = P(Z>z )=1 P(Z z ).Osservando all interno della tabella di Appendice, il valore z di Z al quale corrisponde una probabilità di 0.90 (data da 1 0.1) è pari a 1.8 (riga di 1. e colonna di 0.08). Pertanto, sempre per la simmetria, si ha: z 1 = 1.8 e, per la standardizzazione, il valore x 1 della variabile X corrispondente a z 1 è dato da (x 1 173)/= 1.8 x 1 = 156 cm. Tale valore è proprio la massima altezza del 10% degli individui più bassi. 5. In questo caso il valore z 1 di z è tale che P(Z>z 1 ) = 5% = 0.05 e va determinato in modo che risulti 1 P(Z z 1 ) = Dall interno della tavola si evince che il valore di Z al quale corrisponde una probabilità del 95% è pari a z 1 = (media dei valori di Z corrispondenti al probabilità di e ). Il valore x 1 dell altezza di ottiene da: (x 1 173)/= x 1 = 194 cm, che rappresenta proprio la statura minima del 5% degli individui più alti nella popolazione presa in esame. Esempio. In una data popolazione è noto che l HDL-colesterolo si distribuisce normalmente con media μ = 57 mg/100ml e deviazione standard σ = 5 mg/100ml. Determinare la percentuale di soggetti della popolazione con a) HDL maggiore di 60 mg/100ml, b) HDL compreso tra 40 e 45 mg/100ml, c) HDL minore di 58 mg/100ml, d) HDL tra 55 e 58 mg/100ml. (risultati: a) 7.43%, b) 0.79%, c) 57.93%, d) 3.47%). 5

6 APPENDICE 6

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale Lezione VI: Distribuzione normale Cattedra di Biostatistica Dipartimento di Scienze Biomediche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Lezione 6a- Ia distribuzione normale

Dettagli

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Università di Cassino Corso di Statistica Esercitazione

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

La SCALA di Probabilità varia tra 0.00 e 1.00.

La SCALA di Probabilità varia tra 0.00 e 1.00. CHE COS E LA PROBABILITA La probabilità è la MISURA dell incertezza di un evento, cioè come noi classifichiamo gli eventi rispetto alla loro incertezza. La SCALA di Probabilità varia tra 0.00 e 1.00. 0.00

Dettagli

A1. La curva normale (o di Gauss)

A1. La curva normale (o di Gauss) Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

LA DISTRIBUZIONE NORMALE ESERCITAZIONE

LA DISTRIBUZIONE NORMALE ESERCITAZIONE LA DISTRIBUZIONE NORMALE ESERCITAZIONE Esercizio 1 Se si suppone che, nella popolazione degli adulti, il livello di acido urico (mg/100 ml) segua una distribuzione gaussiana con media e d.s. rispettivamente

Dettagli

V.C. RETTANGOLARE o UNIFORME

V.C. RETTANGOLARE o UNIFORME V.C. RETTANGOLARE o UNIFORME La v.c. continua RETTANGOLARE o UNIFORME descrive il modello probabilistico dell equiprobabilità. [ a b] X, con densità di probabilità associata: P( x) 1 b a con P(x) costante.

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o DISTRIBUZIONE DI GAUSS 1. E la più importante distribuzione continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Variabili aleatorie gaussiane

Variabili aleatorie gaussiane Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - 9.Statistica - CTF Matematica - Seconda Parte Codice Compito: - Numero d Ordine D. 1 Un veicolo marcia per 50 km alla velocita v, e per altri 50 km alla velocita

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza

Dettagli

Le tappe sono essenzialmente 2

Le tappe sono essenzialmente 2 Statistica3 28/09/2015 Che cosa interessa realmente al biologo quando ad esempio determina la glicemia in un gruppo di 6 animali? La glicemia di questi 6 animali La glicemia degli animali sani Le tappe

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Statistica Un Esempio

Statistica Un Esempio Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe

Dettagli

MISURE DI SINTESI 54

MISURE DI SINTESI 54 MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due

Dettagli

STATISTICA DESCRITTIVA (variabili quantitative)

STATISTICA DESCRITTIVA (variabili quantitative) STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili casuali continue p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili

Dettagli

1/55. Statistica descrittiva

1/55. Statistica descrittiva 1/55 Statistica descrittiva Organizzare e rappresentare i dati I dati vanno raccolti, analizzati ed elaborati con le tecniche appropriate (organizzazione dei dati). I dati vanno poi interpretati e valutati

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumenti di indagine per la valutazione psicologica.3 - La distribuzione normale Tempi di reazione Registrati i tempi di reazione (in millisecondi) a uno stimolo (n = 30). Classe Freq Freq relative Densità

Dettagli

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso

3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso CLM C Verifica in itinere statistica medica 13-01-2014 1) Indicate a quale categoria (Qualitativa, qualitativa ordinabile, quantitativa discreta, quantitativa continua) appartengono le seguenti variabili:

Dettagli

Statistica4-29/09/2015

Statistica4-29/09/2015 Statistica4-29/09/2015 Raccogliere i dati con il maggior numero di cifre significative ed arrotondare eventualmente solo al momento dei calcoli (min. 3); nella grande maggioranza delle ricerche biologiche

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 15/10/2007 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 15/10/2007 Dott. Alfonso Piscitelli. Esercizio 1 Università di Cassino Corso di Statistica 1 Esercitazione del 15/10/2007 Dott. Alfonso Piscitelli Esercizio 1 Il seguente data set riporta la rilevazione di alcuni caratteri su un collettivo di 20 soggetti.

Dettagli

Statistica descrittiva II

Statistica descrittiva II Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA

LABORATORIO DI PROBABILITA E STATISTICA UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 6 VARIABILI ALEATORIE CONTINUE z LA VARIABILE NORMALE Esempio

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 Lezione n.3 - Indici di posizione 1 Per i caratteri qualitativi, la tabella e le rappresentazioni grafiche esauriscono quasi completamente gli aspetti descrittivi.

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 - Distribuzione binomiale - Distribuzione Normale Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona DISTRIBUZIONI TEORICHE DI PROBABILITA

Dettagli

È possibile trovare la popolazione di origine conoscendone un campione? o meglio. partendo dalla conoscenza di n, x e d.s.?

È possibile trovare la popolazione di origine conoscendone un campione? o meglio. partendo dalla conoscenza di n, x e d.s.? Statistica6-06/10/2015 È possibile trovare la popolazione di origine conoscendone un campione? o meglio. È possibile conoscere σ e μ partendo dalla conoscenza di n, x e d.s.? 1 A partire da un campione

Dettagli

STATISTICA: esercizi svolti sulla DISTRIBUZIONE NORMALE

STATISTICA: esercizi svolti sulla DISTRIBUZIONE NORMALE STATISTICA: esercizi svolti sulla DISTRIBUZIONE NORMALE 1 2 Tavole della normale standard. Φ(x) = x 1 2π e t2 2 dt z.00.01.02.03.04.05.06.07.08.09 0.0 0.0 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende

Dettagli

Statistica. Campione

Statistica. Campione 1 STATISTICA DESCRITTIVA Temi considerati 1) 2) Distribuzioni statistiche 3) Rappresentazioni grafiche 4) Misure di tendenza centrale 5) Medie ferme o basali 6) Medie lasche o di posizione 7) Dispersione

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it TIPI DI MEDIA: GEOMETRICA, QUADRATICA, ARMONICA Esercizio 1. Uno scommettitore puntando una somma iniziale

Dettagli

MISURE DI DISPERSIONE

MISURE DI DISPERSIONE MISURE DI DISPERSIONE 78 MISURE DI DISPERSIONE Un insieme di dati numerici può essere sintetizzato da alcuni valori tipici, che indicano il grado di variabilità dei dati stessi. Grado di Variabilità o

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo

Dettagli

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z,

Dettagli

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici

Dettagli

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1) ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua Università di Cassino Esercitazioni di Statistica del 29 Gennaio 200 Dott. Mirko Bevilacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (kg) LAUREA SCARPA OCCHI CAPELLI M 79 65

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva

LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva LE MISURE DI TENDENZA CENTRALE Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva Individuare un indice che rappresenti significativamente un insieme di dati statistici

Dettagli

I principali tipi di grafici

I principali tipi di grafici I principali tipi di grafici Esiste una grande varietà di rappresentazioni grafiche. I grafici più semplici e nello stesso tempo più efficaci e comunemente utilizzati sono: I GRAFICI A BARRE I GRAFICI

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD. PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da:

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: Analisi chimica strumentale Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: (31.4) dove s y è la varianza dei valori

Dettagli

ESERCIZI STATISTICA DESCRITTIVA

ESERCIZI STATISTICA DESCRITTIVA ESERCIZI STATISTICA DESCRITTIVA Frequenze assolute e relative Titolo di studio Frequenze assolute Frequenze relative Proporzioni Percentuali Senza titolo 30 0,025 2,5 Lic. elementare 509 0,424 42,4 Licenza

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 05-Deviazione standard e punteggi z vers. 1.1 (22 ottobre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Rappresentazioni grafiche

Rappresentazioni grafiche Rappresentazioni grafiche Su una popolazione di n = 20 unità sono stati rilevati i seguenti fenomeni: stato civile (X) livello di scolarità (Y ) numero di figli a carico (Z) reddito in migliaia di (W )

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE

DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE Sapendo che la variabile dominanza si distribuisce normalmente con media = 32 e deviazione standard = 5, trovare, in un gruppo di 80 soggetti,

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Capitolo 5 Confidenza, significatività, test di Student e del χ 2

Capitolo 5 Confidenza, significatività, test di Student e del χ 2 Capitolo 5 Confidenza, significatività, test di Student e del χ 5.1 L inferenza Se conosciamo la legge di probabilità di un evento (a priori o a posteriori) possiamo fare delle previsioni su come l evento

Dettagli

Casa dello Studente. Casa dello Studente

Casa dello Studente. Casa dello Studente Esercitazione - 14 aprile 2016 ESERCIZIO 1 Di seguito si riporta il giudizio (punteggio da 0 a 5) espresso da un gruppo di studenti rispetto alle diverse residenze studentesche di un Ateneo: a) Si calcolino

Dettagli

Obiettivi Strumenti Cosa ci faremo? Probabilità, distribuzioni campionarie. Stimatori. Indici: media, varianza,

Obiettivi Strumenti Cosa ci faremo? Probabilità, distribuzioni campionarie. Stimatori. Indici: media, varianza, Obiettivi Strumenti Cosa ci faremo? inferenza Probabilità, distribuzioni campionarie uso stima Stimatori significato teorico descrizione Indici: media, varianza, calcolo Misure di posizione e di tendenza

Dettagli

Fonte: Esempio a fini didattici

Fonte: Esempio a fini didattici I principali tipi di grafici Esiste una grande varietà di rappresentazioni grafiche. I grafici più semplici e nello stesso tempo più efficaci e comunemente utilizzati sono: i grafici a barre i grafici

Dettagli

Versione di Controllo

Versione di Controllo Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle

Dettagli

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl 1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per

Dettagli

Esempio: Media, Mediana, Moda

Esempio: Media, Mediana, Moda Esempio: Media, Mediana, Moda 7 6 5 4 3 2 1 0 classe ri fi fi / n 1-5 3 5 0,25 5-9 7 6 0,300 9-13 11 4 0,200 13-17 15 3 0,150 17-21 19 2 0,100 5 6 4 20 1,000 3 7 11 15 19 3 2 MEDIA: x = 9.2 si calcola

Dettagli

Esercitazione n 2. Costruzione di grafici

Esercitazione n 2. Costruzione di grafici Esercitazione n 2 Costruzione di grafici I grafici I grafici sono rappresentazione di dati numerici e/o di funzioni. Devono facilitare all utente la visualizzazione e la comprensione dei numeri e del fenomeno

Dettagli

STATISTICA A D (72 ore)

STATISTICA A D (72 ore) STATISTICA A D (72 ore) Marco Riani mriani@unipr.it http://www.riani.it Elementi che fanno variare l ampiezza dell intervallo di confidenza (p. 70) s.q.m. dell universo σ Più σ è elevato, maggiore è la

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli