LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)"

Transcript

1 LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla distribuzione normale o distribuzione di Gauss come modello teorico di riferimento. Ciò, in particolare, quando il numero delle classi dell istogramma è elevato e l ampiezza di ogni classe piccola. Ad esempio, la figura che segue si riferisce alla distribuzione empirica della statura di 700 maschi di età -18 anni; l istogramma può essere interpolato con una curva normale con media μ = 17.8 cm e varianza σ = 56.7 cm (deviazione standard σ = 7.53 cm): Statura di 700 maschi di età -18 anni Densità statura In realtà, la variabilità di alcuni caratteri biologici (peso, statura, pressione arteriosa, glicemia, temperatura corporea, ) dipende dall apporto di molteplici fattori genetici e ambientali e le loro distribuzioni sono tanto più vicine alla distribuzione normale quanto più grande è il numero di fattori che entrano in gioco. La densità di un carattere X distribuito normalmente è individuata dalla funzione: 1 (x μ) σ f ( x) = e π σ ed è caratterizzata dai due parametri di media μ e varianza σ. La figura seguente rappresenta la curva di una distribuzione normale con μ =5 e sull asse orizzontale sono evidenziati i valori di μ + σ =.5, μ = 5 e μ + σ = 7.5 : σ = 6.3 e La curva normale risulta: 1

2 simmetrica rispetto alla retta parallela all asse verticale e passante per la media, ovvero, presi due punti qualsiasi sull asse orizzontale equidistanti dalla mediana (=media), uno a sinistra e l altro a destra, la funzione di densità assume per essi lo stesso valore; asintotica rispetto all asse delle ascisse, cioè per valori sempre più distanti dalla media l ordinata della curva tende a zero; crescente nell intervallo (, μ ) e decrescente nell intervallo ( μ,+ ); la crescita è meno veloce fino a μ σ (punto di flesso) e più rapida da tale valore a μ ; si ha un massimo in μ e poi l andamento è decrescente con ritmo più veloce dal massimo a μ + σ (punto di flesso). Un significato importante assume l area al di sotto della curva tra i valori X=x 1 e X=x : Area tra x 1 e x = Frequenza % dei valori di X compresi tra x 1 e x = P(x 1 <X x ) L area totale al di sotto della curva è uguale a 1 e si può osservare che: P(X>x 1 ) = 1 P(X x 1 ) e P(x 1 <X x ) = P(X x ) P(X x 1 ). La media è il parametro di posizione, nel senso che, al variare del suo valore, la curva non cambia nella forma ma subisce una traslazione rispetto all asse orizzontale; nella figura sono rappresentate tre distribuzioni di pesi aventi la stessa varianza ma media diversa: La varianza è il parametro di scala: al suo variare cambia la forma della curva di distribuzione. In particolare, per bassi valori di σ, l area sotto la curva è concentrata intorno alla media, mentre per alti valori di σ, la curva è schiacciata rispetto all asse orizzontale; nella figura sono riportate tre distribuzioni di pesi aventi ugual media, ma varianze diverse:

3 Evidentemente esiste un numero infinito di distribuzioni normali diverse tra loro, ottenute al variare dei due parametri. Tutte queste distribuzioni diverse possono essere ricondotte ad un unica distribuzione standard: la distribuzione normale standard, avente media μ = 0 e varianza σ =1. All uopo va considerata la trasformazione (standardizzazione): Z = X μ, σ e Z è la variabile normale standardizzata e ha densità f ( z) = e π Graficamente: 1 z. Per il calcolo delle aree al di sotto della curva normale standardizzata si può far ricorso ad un programma informatico (ad esempio all ambiente R) o a tavole della distribuzione normale standardizzata (come quella riportata in Appendice). In merito alle aree, un risultato importante è schematizzato nella figura che segue: 3

4 Esempio 1. Una popolazione di maschi si distribuisce normalmente secondo la statura (X) con media μ = 173 cm e deviazione standard σ = cm. Determinare la frequenza relativa degli individui: 1. con statura maggiore di 00 cm;. con statura compresa tra 175 e 190 cm; 3. con statura minore di 156 cm. Per rispondere alle domande poste è necessario procedere alla standardizzazione dell altezza e utilizzare la tavola riportata in Appendice. 1. standardizzando x = 00 cm: z = =.08, si ha: P(X>00) = P(Z>.08) = 1 P(Z.08) = (ricercando all interno della tavola nell incrocio tra la riga del.0 e la colonna di 0.08) = = = 1.9% % di individui;. standardizzando 175 e 190 cm: z 1 = = 0.15 e z = = 1. 31, si ha: P(175<X 199)=P(0.15<Z 1.31)=P(Z 1.31) P(Z 0.15)= (valori interni alla tavola nell incrocio tra la riga di 1.3 e 0.01 e nell incrocio tra la riga di 0.1 e 0.05) = % di maschi; 4

5 3. standardizzando 156 cm: z = = 1.31, risulta: P(X 156)=P(Z 1.31)= (per la simmetria della curva) = P(Z >1.31) = 1 P(Z 1.31) = (valore interno alla tavola nell incrocio tra la riga 1.3 e la colonna 0.01) = % di individui. Sempre in riferimento all esempio considerato, ci si può chiedere: 4. qual è la statura massima del 10% degli individui più bassi; 5. qual è la statura minima del 5% degli individui più alti. Per rispondere alle due domande è necessario partire dai valori interni alla tavola (che sono valori di frequenze relative/probabilità). 4. Va determinato, anzitutto, il valore z 1 della variabile Z per il quale risulta P(Z z 1 )=10%=0.1. Per la simmetria della curva (vedi grafico) risulta che: P(Z z 1 ) = P(Z>z )=1 P(Z z ).Osservando all interno della tabella di Appendice, il valore z di Z al quale corrisponde una probabilità di 0.90 (data da 1 0.1) è pari a 1.8 (riga di 1. e colonna di 0.08). Pertanto, sempre per la simmetria, si ha: z 1 = 1.8 e, per la standardizzazione, il valore x 1 della variabile X corrispondente a z 1 è dato da (x 1 173)/= 1.8 x 1 = 156 cm. Tale valore è proprio la massima altezza del 10% degli individui più bassi. 5. In questo caso il valore z 1 di z è tale che P(Z>z 1 ) = 5% = 0.05 e va determinato in modo che risulti 1 P(Z z 1 ) = Dall interno della tavola si evince che il valore di Z al quale corrisponde una probabilità del 95% è pari a z 1 = (media dei valori di Z corrispondenti al probabilità di e ). Il valore x 1 dell altezza di ottiene da: (x 1 173)/= x 1 = 194 cm, che rappresenta proprio la statura minima del 5% degli individui più alti nella popolazione presa in esame. Esempio. In una data popolazione è noto che l HDL-colesterolo si distribuisce normalmente con media μ = 57 mg/100ml e deviazione standard σ = 5 mg/100ml. Determinare la percentuale di soggetti della popolazione con a) HDL maggiore di 60 mg/100ml, b) HDL compreso tra 40 e 45 mg/100ml, c) HDL minore di 58 mg/100ml, d) HDL tra 55 e 58 mg/100ml. (risultati: a) 7.43%, b) 0.79%, c) 57.93%, d) 3.47%). 5

6 APPENDICE 6

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Università di Cassino Corso di Statistica Esercitazione

Dettagli

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale Lezione VI: Distribuzione normale Cattedra di Biostatistica Dipartimento di Scienze Biomediche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Lezione 6a- Ia distribuzione normale

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

La SCALA di Probabilità varia tra 0.00 e 1.00.

La SCALA di Probabilità varia tra 0.00 e 1.00. CHE COS E LA PROBABILITA La probabilità è la MISURA dell incertezza di un evento, cioè come noi classifichiamo gli eventi rispetto alla loro incertezza. La SCALA di Probabilità varia tra 0.00 e 1.00. 0.00

Dettagli

A1. La curva normale (o di Gauss)

A1. La curva normale (o di Gauss) Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

V.C. RETTANGOLARE o UNIFORME

V.C. RETTANGOLARE o UNIFORME V.C. RETTANGOLARE o UNIFORME La v.c. continua RETTANGOLARE o UNIFORME descrive il modello probabilistico dell equiprobabilità. [ a b] X, con densità di probabilità associata: P( x) 1 b a con P(x) costante.

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o DISTRIBUZIONE DI GAUSS 1. E la più importante distribuzione continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

LA DISTRIBUZIONE NORMALE ESERCITAZIONE

LA DISTRIBUZIONE NORMALE ESERCITAZIONE LA DISTRIBUZIONE NORMALE ESERCITAZIONE Esercizio 1 Se si suppone che, nella popolazione degli adulti, il livello di acido urico (mg/100 ml) segua una distribuzione gaussiana con media e d.s. rispettivamente

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

Le tappe sono essenzialmente 2

Le tappe sono essenzialmente 2 Statistica3 28/09/2015 Che cosa interessa realmente al biologo quando ad esempio determina la glicemia in un gruppo di 6 animali? La glicemia di questi 6 animali La glicemia degli animali sani Le tappe

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

MISURE DI SINTESI 54

MISURE DI SINTESI 54 MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo

Dettagli

STATISTICA DESCRITTIVA (variabili quantitative)

STATISTICA DESCRITTIVA (variabili quantitative) STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto

Dettagli

3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso

3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso CLM C Verifica in itinere statistica medica 13-01-2014 1) Indicate a quale categoria (Qualitativa, qualitativa ordinabile, quantitativa discreta, quantitativa continua) appartengono le seguenti variabili:

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA

LABORATORIO DI PROBABILITA E STATISTICA UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 6 VARIABILI ALEATORIE CONTINUE z LA VARIABILE NORMALE Esempio

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

1/55. Statistica descrittiva

1/55. Statistica descrittiva 1/55 Statistica descrittiva Organizzare e rappresentare i dati I dati vanno raccolti, analizzati ed elaborati con le tecniche appropriate (organizzazione dei dati). I dati vanno poi interpretati e valutati

Dettagli

Statistica descrittiva II

Statistica descrittiva II Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it TIPI DI MEDIA: GEOMETRICA, QUADRATICA, ARMONICA Esercizio 1. Uno scommettitore puntando una somma iniziale

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla

Dettagli

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 - Distribuzione binomiale - Distribuzione Normale Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona DISTRIBUZIONI TEORICHE DI PROBABILITA

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua Università di Cassino Esercitazioni di Statistica del 29 Gennaio 200 Dott. Mirko Bevilacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (kg) LAUREA SCARPA OCCHI CAPELLI M 79 65

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z,

Dettagli

DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE

DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE Sapendo che la variabile dominanza si distribuisce normalmente con media = 32 e deviazione standard = 5, trovare, in un gruppo di 80 soggetti,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 05-Deviazione standard e punteggi z vers. 1.1 (22 ottobre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

I principali tipi di grafici

I principali tipi di grafici I principali tipi di grafici Esiste una grande varietà di rappresentazioni grafiche. I grafici più semplici e nello stesso tempo più efficaci e comunemente utilizzati sono: I GRAFICI A BARRE I GRAFICI

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

Obiettivi Strumenti Cosa ci faremo? Probabilità, distribuzioni campionarie. Stimatori. Indici: media, varianza,

Obiettivi Strumenti Cosa ci faremo? Probabilità, distribuzioni campionarie. Stimatori. Indici: media, varianza, Obiettivi Strumenti Cosa ci faremo? inferenza Probabilità, distribuzioni campionarie uso stima Stimatori significato teorico descrizione Indici: media, varianza, calcolo Misure di posizione e di tendenza

Dettagli

Statistica. Campione

Statistica. Campione 1 STATISTICA DESCRITTIVA Temi considerati 1) 2) Distribuzioni statistiche 3) Rappresentazioni grafiche 4) Misure di tendenza centrale 5) Medie ferme o basali 6) Medie lasche o di posizione 7) Dispersione

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Esempio: Media, Mediana, Moda

Esempio: Media, Mediana, Moda Esempio: Media, Mediana, Moda 7 6 5 4 3 2 1 0 classe ri fi fi / n 1-5 3 5 0,25 5-9 7 6 0,300 9-13 11 4 0,200 13-17 15 3 0,150 17-21 19 2 0,100 5 6 4 20 1,000 3 7 11 15 19 3 2 MEDIA: x = 9.2 si calcola

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl 1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per

Dettagli

MISURE DI DISPERSIONE

MISURE DI DISPERSIONE MISURE DI DISPERSIONE 78 MISURE DI DISPERSIONE Un insieme di dati numerici può essere sintetizzato da alcuni valori tipici, che indicano il grado di variabilità dei dati stessi. Grado di Variabilità o

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica / 27 Outline () Statistica 2 / 27 Outline 2 () Statistica 2 / 27 Outline 2 3 () Statistica 2 / 27 Outline

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Rappresentazioni grafiche

Rappresentazioni grafiche Rappresentazioni grafiche Su una popolazione di n = 20 unità sono stati rilevati i seguenti fenomeni: stato civile (X) livello di scolarità (Y ) numero di figli a carico (Z) reddito in migliaia di (W )

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva

LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva LE MISURE DI TENDENZA CENTRALE Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva Individuare un indice che rappresenti significativamente un insieme di dati statistici

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli

Casa dello Studente. Casa dello Studente

Casa dello Studente. Casa dello Studente Esercitazione - 14 aprile 2016 ESERCIZIO 1 Di seguito si riporta il giudizio (punteggio da 0 a 5) espresso da un gruppo di studenti rispetto alle diverse residenze studentesche di un Ateneo: a) Si calcolino

Dettagli

Fonte: Esempio a fini didattici

Fonte: Esempio a fini didattici I principali tipi di grafici Esiste una grande varietà di rappresentazioni grafiche. I grafici più semplici e nello stesso tempo più efficaci e comunemente utilizzati sono: i grafici a barre i grafici

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Le rappresentazioni grafiche

Le rappresentazioni grafiche Le rappresentazioni grafiche Descrivono diversi aspetti dell informazione contenuta nei dati e si basano sulla rappresentazione di corrispondenze tra dati numerici e enti geometrici elementari (punti,

Dettagli

Dispensa sulla funzione gaussiana

Dispensa sulla funzione gaussiana Sapienza Università di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulla funzione gaussiana Paola Loreti e Cristina Pocci A. A. 011-01 1 Introduzione:

Dettagli

Esercitazione n 2. Costruzione di grafici

Esercitazione n 2. Costruzione di grafici Esercitazione n 2 Costruzione di grafici I grafici I grafici sono rappresentazione di dati numerici e/o di funzioni. Devono facilitare all utente la visualizzazione e la comprensione dei numeri e del fenomeno

Dettagli

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici

Dettagli

Esercizi di Calcolo combinatorio: disposizioni

Esercizi di Calcolo combinatorio: disposizioni Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

Le rappresentazioni grafiche

Le rappresentazioni grafiche Le rappresentazioni grafiche Rappresentazione grafica La rappresentazione grafica è un disegno ottenuto facendo corrispondere ai numeri delle tabelle: - enti geometrici elementari (punti, linee, superfici.)

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 7-Punti z e punti T vers. 1.0a (21 marzo 2011) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia)

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

Distanza tra punti e punto medio di un segmento. x1 + x 2

Distanza tra punti e punto medio di un segmento. x1 + x 2 Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema

Dettagli

http://www.biostatistica.unich.it 1 STATISTICA DESCRITTIVA Le misure di tendenza centrale 2 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 3 Esempio Nella

Dettagli

STATISTICA (modulo I - Statistica Descrittiva) Soluzione Esercitazione I

STATISTICA (modulo I - Statistica Descrittiva) Soluzione Esercitazione I 2. e 3. STATISTICA (modulo I - Statistica Descrittiva) Soluzione Esercitazione I 1. Le unità statistiche sono costituite dai singoli ristoranti, mentre la popolazione è costituita da tutte le unità del

Dettagli

Il test (o i test) del Chi-quadrato ( 2 )

Il test (o i test) del Chi-quadrato ( 2 ) Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero

Dettagli

Questionario 1. Sono assegnati i seguenti dati

Questionario 1. Sono assegnati i seguenti dati Questionario 1. Sono assegnati i seguenti dati 30 30 10 30 50 30 60 60 30 20 20 20 30 20 30 30 20 10 10 40 20 30 10 10 10 30 40 30 20 20 40 40 40 dire se i dati illustrati sono unità statistiche valori

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

Statistica. Matematica con Elementi di Statistica a.a. 2015/16

Statistica. Matematica con Elementi di Statistica a.a. 2015/16 Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Esercizi in preparazione all esame di. Laboratorio del corso di Principi di Informatica. Prof.sse M. Anselmo e R. Zizza. a.a.

Esercizi in preparazione all esame di. Laboratorio del corso di Principi di Informatica. Prof.sse M. Anselmo e R. Zizza. a.a. Esercizi in preparazione all esame di Laboratorio del corso di Principi di Informatica Prof.sse M. Anselmo e R. Zizza a.a. 2012/13 NOTA: E necessario salvare il file come .xlsx e inserire

Dettagli

STATISTICA NOZIONI DI BASE

STATISTICA NOZIONI DI BASE STATISTICA NOZIONI DI BASE Italo Nofroni Statistica medica - Sapienza - Roma Si definisce statistica la scienza cha ha per oggetto la raccolta, l analisi e l interpretazione dei dati (intensità e/o frequenze)

Dettagli

standardizzazione dei punteggi di un test

standardizzazione dei punteggi di un test DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

La Variabilità statistica

La Variabilità statistica La Variabilità statistica Una peculiarità dei caratteri rilevati nelle unità statistiche di un collettivo, è quella di presentare valori o attributi in tutto o in parte diversi. Si chiama variabilità (nel

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli