VADEMECUM ELETTROCARDIOGRAFIA DI BASE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "VADEMECUM ELETTROCARDIOGRAFIA DI BASE"

Transcript

1 VADEMECUM ELETTROCARDIOGRAFIA DI BASE 1

2 La figura a fianco mostra un ECG normale. Esso consiste nella registrazione di dodici (12) derivazioni il cui uso si è consolidato nel tempo insieme allo sviluppo della elettrocardiografia stessa. Consiste di tre derivazioni bipolari D1 D2 D3. Consiste di tre derivazioni unipolari avr avl avf. Consiste di sei derivazioni unipolari precordiali V1 V2 V3 V4 V5 V6. I due ostacoli maggiori all'apprendimento della elettrocardiografia risiedono nella : grande diversità degli aspetti ecgrafici nelle 12 derivazioni convenzionali del singolo soggetto normale grande variabilità in ogni derivazione della morfologia elettrocardiografica in una popolazione di soggetti normali 2

3 LA MORFOLOGIA DELL' ECG L'onda elettrocardiografica consiste di tre diverse deflessioni riconoscibili che Einthoven chiamò : onda P complesso QRS onda T Einthoven assegnò alle varie deflessioni delle lettere successive dell'alfabeto poiché non ne conosceva in alcun modo l'origine e pertanto non desiderava suggerire alcun tipo di interpretazioni nel contrassegnarle. In tutte le 12 derivazioni di un normale ECG è possibile riconoscere le tre deflessioni fondamentali. 3

4 Ma come si giunge alla registrazione di un tracciato elettrocardiografico? Che significato hanno queste deflessioni positive, negative e queste linee orizzontali? 4

5 VETTORI MIOCARDICI ECG = PAPARAZZO? 5

6 BMJ

7 AUGUSTUS DESIRE' WALLER Waller had learnt that " each beat of the heart gives an electric change, beginning at one end of the organ and ending at the other ". He was convinced that he could measure these " electromotive properties of the heart " from the skin surface and proceeded to do so with the electrometer connected between the left and right hands or between the front and back paws of his pet bulldog, Jimmie. 7

8 AUGUSTUS DESIRE' WALLER He would often use Jimmie as the subject when he demonstrated his method at lectures by dipping his legs in pots of saline which served as the electrodes A question was raised at the House of Commons and this "cruel procedure" risked being dealt with by the "Cruelty to Animals Act" of The scientist countered these objections and remarked : " If my honourable friend had ever paddled in the sea, he will appreciate fully the sensation obtained thereby from this simple pleasurable experience." Jimmie never complained anyway! Waller is said to have been quite informal and loved entertaining and dashing around with the newly invented motor car. 8

9 STRING GALVANOMETER La prima valutazione sistematica delle differenze di potenziale rilevabili alla superficie del cuore e determinate dal dipolo cardiaco fu possibile grazie ad Einthoven la cui invenzione del galvanometro fornì le prime registrazioni ad alta fedeltà dell'ecg. 9

10 CELLULA CARDIACA ISOLATA La cellula cardiaca in condizioni di riposo è una cellula " polarizzata " cioè ha una carica positiva esterna e una carica negativa interna 10

11 B A CELLULA CARDIACA ISOLATA B Due microelettrodi (A e B) piazzati sulla superficie esterna della cellula cardiaca registrano durante la diastole una linea orizzontale di riferimento (linea di base) che indica l'assenza di differenza di potenziale sulla superficie della cellula. Quando uno dei due microelettrodi (B) viene introdotto all' interno della cellula cardiaca vi è uno spostamento al di sotto della linea di base a -90 mv. Questa nuova linea rappresenta il potenziale diastolico transmembrana (PDT). 11

12 A B Nello stato di riposo due microelettrodi posti sulla superficie della cellula cardiaca non registrano alcuna differenza di potenziale. 12

13 A B Nello stato di riposo non viene pertanto registrata alcuna differenza di potenziale lungo la superficie della cellula cardiaca, non si ha flusso di corrente e quindi in ultima analisi non vi è creazione di alcuna forza vettoriale. 13

14 Nell' ECG di superficie non si ha alcuna deviazione in alto o in basso del pennino per cui si ha l' iscrizione della linea isoelettrica di base. 14

15 In questa condizione si registra una differenza di potenziale lungo la superficie esterna della cellula cardiaca tra la zona di miocardio a negatività esterna e la zona a positività esterna 15

16 DIPOLO CARDIACO In questa condizione si registra una differenza di potenziale lungo la superficie esterna della cellula cardiaca tra la zona di miocardio a negatività esterna e la zona a positività esterna 16

17 DIPOLO CARDIACO Si genera così il " dipolo cardiaco " che è rappresentato quindi da un " vettore " che ha una grandezza e una direzione. Per convenzione il vettore è rappresentato come una " freccia " la cui punta è diretta verso la zona di miocardio a positività esterna 17

18 DIPOLO CARDIACO Quando il vettore è diretto verso il polo positivo del sistema di registrazione ecgrafico il pennino viene deviato verso l' alto e si iscrive un' onda positiva. 18

19 DIPOLO CARDIACO In questa condizione si registra una differenza di potenziale lungo la superficie esterna della cellula cardiaca tra la zona di miocardio a negatività esterna e la zona a positività esterna 19

20 DIPOLO CARDIACO In questa condizione si registra una differenza di potenziale lungo la superficie esterna della cellula cardiaca tra la zona di miocardio a negatività esterna e la zona a positività esterna 20

21 DIPOLO CARDIACO Si genera così il " dipolo cardiaco " che è rappresentato quindi da un " vettore " che ha una grandezza e una direzione. Per convenzione il vettore è rappresentato come una " freccia " la cui punta è diretta verso la zona di miocardio a positività esterna 21

22 DIPOLO CARDIACO Quando il vettore è diretto verso il polo negativo del sistema di registrazione ecgrafico il pennino viene deviato verso il basso e si iscrive un' onda negativa. 22

23 VETTORI CARDIACI Immaginate ora che ciascuna cellula cardiaca dia origine al proprio impulso elettrico. Tutti questi impulsi saranno differenti per direzione, verso ed intensità come si può vedere dall' immagine. Quindi le onde di attivazione sia degli atri che dei ventricoli si diffondono in ogni possibile direzione a partire dal loro punto di origine. Possiamo quindi usare il termine " vettore " per descrivere ciascuno di questi impulsi elettrici. E pertanto possiamo rappresentare tale attività elettrica cardiaca con delle frecce in cui la direzione, il verso e il modulo sono funzione della quantità e sede del tessuto miocardico interessato 23

24 VETTORI MIOCARDICI COMBINAZIONE DI DIREZIONE E GRANDEZZA Nonostante la direzione e la forza reali di un vettore non cambiano la " grandezza apparente " del vettore è influenzata dalla posizione del sistema Cioè la " grandezza apparente " del vettore dipenderà in ultima istanza dalla posizione del sistema di rilevazione stesso. 24

25 TRIANGOLO DI EINTHOVEN Einthoven utilizzò tre elettrodi posizionati nel corpo rispettivamente : sul braccio sinistro sul braccio destro sulla gamba sinistra Einthoven assunse questi elettrodi come gli angoli di un triangolo equilatero per l'appunto "il triangolo di Einthoven". Per semplicità egli diede anche per assunto che il cuore fosse posto al centro di questo triangolo. 25

26 TRIANGOLO DI EINTHOVEN Nell'utilizzare questi elettrodi per stabilire le tre derivazioni standard degli arti Einthoven stabilì arbitrariamente che : i potenziali dell'elettrodo braccio destro fossero zero nella derivazione I i potenziali dell'elettrodo braccio destro fossero zero nella derivazione II i potenziali dell'elettrodo braccio sinistro fossero zero nella derivazione III 26

27 DERIVAZIONE I La derivazione I è la prima delle tre derivazioni standard degli arti (I, II, III). Queste derivazioni registrano i potenziali cardiaci nel piano frontale. l' elettrodo negativo è connesso braccio destro (RA) l'elettrodo positivo è connesso al braccio sinistro (LA) Lead I = LA RA Quando un potenziale di azione inizia nella parte destra del cuore e procede verso la parte sinistra del cuore una deflessione positiva verrà registrata nella derivazione I. 27

28 DERIVAZIONE II La derivazione II è la seconda delle tre derivazioni standard degli arti (I, II, III). Questa derivazione si registra spesso isolata. Nel ritmo sinusale normale presenta un'onda P prominente e un complesso QRS alto. l' elettrodo negativo è connesso braccio destro (RA) l'elettrodo positivo è connesso ala gamba sinistra (LL) Lead II = LL RA Quando un potenziale di azione inizia nella parte destra del cuore e procede verso la parte sinistra del cuore una deflessione positiva verrà registrata nella derivazione II. 28

29 DERIVAZIONE III La derivazione III è l'ultima delle tre derivazioni standard degli arti (I, II, III). l' elettrodo negativo è connesso braccio sinistro (LA) l'elettrodo positivo è connesso ala gamba sinistra (LL) Lead III = LL LA Quando un potenziale di azione inizia nella parte alta del cuore e procede verso la parte bassa del cuore una deflessione positiva verrà registrata nella derivazione III. 29

30 TRIANGOLO DI EINTHOVEN Ancora una volta la scelta di questi collegamenti è stata del tutto casuale e non programmata con uno scopo preciso. Einthoven provò le connessioni finchè non ottenne delle deflessioni verso l'alto in tutte e tre le derivazioni. Fatto questo prese nota che : nella D1 il terminale positivo del galvanometro era collegato al braccio sinistro mentre quello negativo al braccio destro nella D2 il terminale positivo del galvanometro era collegato alla gamba sinistra mentre quello negativo al braccio destro nella D3 il terminale positivo del galvanometro era collegato alla gamba sinistra mentre quello negativo al braccio sinistro Se Einthoven avesse sperimentato su un diverso soggetto forse le connessioni delle derivazioni bipolari avrebbero dovuto essere sistemate in maniera diversa per poter ottenere una deflessione verso l'alto in tutti e tre i casi ed oggi staremmo usando un sistema convenzionale diverso da quello attuale. 30

31 TRIANGOLO DI EINTHOVEN Braccio destro (-) I Braccio sinistro (+) Braccio destro (-) Braccio sinistro (-) II III Gamba sinistra (+) Gamba sinistra (+) 31

32 SISTEMA TRIASSIALE In fisica due vettori si considerano identici se sono paralleli, di identica polarità ed intensità. Dunque possiamo spostare le derivazioni dalla posizione di partenza fino ad un punto posto al centro del cuore, ed esse saranno identiche. I triangolo di Einthoven può essere convertito in un sistema triassiale spostandone i tre lati verso il centro Nel sistema triassiale è più facile rendersi conto della zona di positività e della zona di negatività di ciascuna derivazione 32

33 SISTEMA TRIASSIALE Nel sistema triassiale, ciascun asse forma angoli di 60 rispetto agli altri due. La zona di negatività e quella di positività corrispondono a quelle viste per il triangolo di Einthoven. La I derivazione si trova a 0 La II derivazione si trova a +60 La III derivazione si trova a

34 SISTEMA ESASSIALE Successivamente sono state aggiunte le derivazioni cosiddette "unipolari" degli arti : avr (braccio destro), avl (braccio sinistro) e avf (gamba sinistra). Ciascun asse si trova a 120 rispetto agli altri due. La derivazione avr si trova a -150 La derivazione avl si trova a -30 La derivazione avf si trova a

35 DERIVAZIONI UNIPOLARI DEGLI ARTI Come tutte le derivazioni periferiche anche le derivazioni unipolari degli arti possono essere considerate equidistanti dal cuore e da ogni sua parte. La loro linea di derivazione va dall'elettrodo esplorante al centro del dipolo, vale a dire dal vertice corrispondente del triangolo di Einthoven al centro elettrico apparente del cuore. Queste linee di derivazione possono essere divise in una parte negativa ed in una parte positiva ed il punto isodifasico è in questo caso rappresentato dal centro elettrico del cuore La parte positiva è il tratto compreso tra questo centro e l'arto esplorato mentre la parte negativa è il tratto opposto. 35

36 SISTEMA ESASSIALE Le sei derivazioni formano pertanto un sistema esassiale di riferimento. Le linee continue rappresentano la parte positiva di ciascun asse di derivazione, mentre quelle tratteggiate rappresentano la metà negativa. La derivazione avl si trova a -30 La I derivazione si trova a 0 La II derivazione si trova a +60 La derivazione avf si trova a +90 La III derivazione si trova a +120 La derivazione avr si trova a

37 L'ELETTROCARDIOGRAFO Ora mettendo insieme la parte A e la parte B della figura possiamo creare un sistema a sei assi : il sistema esassiale. E' un sistema di analisi dei vettori che passa per il centro del cuore e disposto su un piano determinando una metà anteriore o frontale ed una parte posteriore. È come se una lamina di vetro dividesse il corpo da orecchio a orecchio " coronal cut " 37.

38 DERIVAZIONI PRECORDIALI Le sei derivazioni toraciche (da V1 a V6) che costituiscono la restante parte dell'ecg a 12 derivazioni convenzionali, sono derivazioni unipolari. Esse quindi registrano la differenza di potenziale tra il terminale centrale di Wilson (V) e gli elettrodi nelle sei posizioni della parete toracica nelle derivazioni toraciche si dà per assunto che il terminale registri un potenziale pari a zero per cui quando un elettrodo sulla parete toracica si trova in un'area di relativa elettropositività come si verifica quando un'onda di depolarizzazione si avvicina all'elettrodo esplorante, viene registrata una deflessione verso l'alto. 38

39 DERIVAZIONI PRECORDIALI Le derivazioni toraciche (V1 V6) sono utili nella valutazione della patologia a carico dei due ventricoli. Ciò è dovuto al fatto che gli elettrodi sono posizionati in modo che il complesso QRS registrato da V1-V2 rifletta l'onda di depolarizzazione del ventricolo destro mentre V5-V6 riflettono la depolarizzazione del ventricolo sinistro. il complesso QRS registrato da V1-V2 riflette l'onda di depolarizzazione del ventricolo Dx il complesso QRS registrato da V5-V6 riflette l'onda di depolarizzazione del ventricolo Sx 39

40 L'ELETTROCARDIOGRAFO Ora ripensiamo gli elettrodi precordiali posti sul torace cioè poste su un piano che è perpendicolare a quello delle sei derivazioni periferiche. Sezionando il cuore sia sul piano frontale che su quello orizzontale otterremo una ricostruzione tridimensionale dell'attività elettrica del cuore. 40

41 IPOTESI DI EINTHOVEN Il campo elettrico prodotto dal cuore può essere rappresentato da un dipolo Il centro dell'attività elettrica cardiaca corrisponde al centro del torace Il tronco umano ha forma sferica Le radici delle braccia e della gamba sinistra costituiscono gli apici di un di un triangolo equilatero "elettricamente remoti" rispetto al cuore ed equidistanti tra di loro Il triangolo equilatero è immerso in un mezzo conduttore omogeneo 41

42 REGISTRAZIONE DEL VETTORE CARDIACO Il triangolo di Einthoven può venire utilizzato per analizzare il singolo vettore cardiaco attraverso la proiezione del potenziale generato dal dipolo cardiaco in ciascuna delle derivazioni bipolari sui suoi tre lati. la coda del vettore cardiaco che rappresenta il potenziale zero è situata al centro del noto triangolo di Einthoven e viene proiettata nel punto medio dei tre lati le proiezioni del vettore cardiaco su ciascun lato del triangolo (e cioè in ogni derivazione derivazione) sono determinate tracciando le perpendicolari da ciascun lato del triangolo alla testa del vettore cardiaco stesso 42

43 SISTEMA ESASSIALE Il vettore medio del QRS è costituito dalla somma di tutti i vettori elettrici generati ad ogni istante in tutte le regioni ventricolari durante la depolarizzazione stessa. La misurazione dell'angolo di tale vettore nel corpo rappresenta un'importante parte delle analisi cliniche elettrocardiografiche. avr avl I III avf II Esiste un metodo semplice che utilizza le sei derivazioni degli arti, assegnando ad ognuna di esse un angolo che, sebbene non sia preciso, risulta utile nel calcolo del vettore medio del QRS in modo da distinguere tra un ECG normale ed uno anomalo e di precisare le anomalie del tracciato ecgrafico. 43

44 SISTEMA ESASSIALE Mettendo insieme la parte A e la parte B della figura sottostante, otteniamo quello che tradizionalmente viene chiamato sistema esassiale di riferimento che quindi è rappresentato da un cerchio che comprende tutte e sei le derivazioni periferiche. ogni derivazione ha una metà positiva ed una metà negativa il polo positivo è quello che dà il nome dell'elettrodo 44

45 SISTEMA ESASSIALE Nei casi precedenti abbiamo visto come è possibile individuare con approssimazione piuttosto ragionevole il quadrante nel quale si trova l'asse cardiaco. Tuttavia le vere misure patologiche del sistema esassiale sono differenti da quelle che delimitano i quattro quadranti 0-90 ASSE NORMALE < -30 DEVIAZIONE ASSIALE SINISTRA > 90 DEVIAZIONE ASSIALE DESTRA 45

46 SISTEMA ESASSIALE Pochi steps per determinare l'asse elettrico Trovare il quadrante Isolare la derivazione isoelettrica Isolare la derivazione più vicina Isolare il vettore 46

47 SISTEMA ESASSIALE 1 STEP FIND THE QUADRANT 47

48 SISTEMA ESASSIALE 2 STEP ISOLATE THE ISOELECTRIC LEAD Osserviamo le sei derivazioni per individuare la derivazione isoelettrica. A tal fine ricordiamo che la derivazione isoelettrica ha quasi sempre il voltaggio più piccolo. Non necessariamente deve essere isoelettrica. Se possibile scegli la derivazione più piccola e più isoelettrica Se due derivazioni presentano lo stesso voltaggio scegli quella più isoelettrica Nella figura a fianco il terzo complesso è quello più piccolo. Questa è quindi la derivazione isoelettrica 48

49 SISTEMA ESASSIALE 3 STEP ISOLATE THE CLOSEST LEAD Quando passiamo al terzo step si deve avere in mente la lettera T per individuare la derivazione più vicina. La " T " posta a destra mostra una freccia rossa che punta a 90 dalla linea principale La linea principale nera rappresenta la derivazione isoelettrica e l'asse elettrico può puntare in una sola direzione che viene rappresentata dalla freccia rossa. 49

50 SISTEMA ESASSIALE 3 STEP ISOLATE THE CLOSEST LEAD Ora poniamo la linea nera principale in direzione della derivazione isoelettrica con la freccia rossa verso il quadrante che abbiamo isolato nello step 1. 50

51 1 Step : isoliamo il quadrante D1 positiva avf positiva QUADRANTE NORMALE 2 Step : isoliamo la derivazione isoelettrica La derivazione isoelettrica o più piccola è avf 3 Step : isoliamo la derivazione più vicina Poniamo il nostra sistema a T con la linea nera principale sulla derivazione avf puntando con la freccia rossa verso il quadrante normale L'asse punta verso 0. 51

52 Iniziamo con la pratica 52

53 0,08 1a : vettore medio settale sinistro 2a : vettore medio settale destro 0,06 0,01 0,06 0,04 2a : vettore parasettale sinistro 2b : vettore parasettale destro 3a-4b : vettori parete libera VSx 3a-4b : vettore parete libera VDx 0,04 0,02 5a : vettore basale sinistro 5b : vettore basale destro 1 = 1a + 1b 2 = 2a + 2b 3 = 3a + 3b 4 = 4a + 4b 5 = 5a + 5b Suddivisone classica della sequenza di attivazione ventricolare in cinque vettori in successione 53

54 54

55 55

56 56

57 57

58 58

59 SEQUENZA NORMALE ATTIVAZIONE VENTRICOLARE Notate che i complessi sono mostrati in un gradiente di colore cambiando lentamente dal rosso, al giallo, ed al blu. La ragione di queste variazioni risiede nel fatto che gli eventi della depolarizzazione cardiaca sono gli uni successivi agli altri anche se non si tratta di singoli eventi che avvengono separatamente tra di loro. Gli eventi del ciclo cardiaco fluiscono gli uni negli altri in modo organizzato La prima area dei ventricoli che si depolarizza è il setto interventricolare. Questa regione si depolarizza verso l'avanti e verso destra come rappresentato dal vettore rosso. La seconda parte è la parte principale del ventricolo che crea un ampio vettore verso il basso e a sinistra come rappresentato dal vettore giallo Da ultimo si depolarizzano le porzioni basali dei ventricoli in direzione postero superiore e verso destra 59

60 ATTIVAZIONE VENTRICOLARE COMPLESSO QRS 60

61 THE ACTUAL ECG : PAPER AND INK La carta dell'ecg scorre sotto la penna alla velocità di 25 mm/sec. Dunque ciascun quadratino piccolo corrisponde a 1/25 di secondo cioè a 0.04 secondi. Considerato che un quadrato grande è costituito da cinque quadratini piccoli, questo corrisponde a 5 x 0.04 sec = 0.20 secondi. 61

62 THE ACTUAL ECG : PAPER AND INK Riferendoci all'altezza verticale di un'onda facciamo riferimento ai millimetri. Un quadratino piccolo corrisponde quindi a 1 mm. Allo stesso modo un quadrato grande più marcato è alto 5 mm. È molto pratico avere queste misure in mente specialmente quando si discuterà di frequenza e ampiezza delle onde e dei segmenti elettrocardiografici. 62

63 THE ACTUAL ECG : PAPER AND INK La registrazione di ciascuna derivazione dura tre secondi e di conseguenza l'intero ECG dura 12 secondi. La carta è peraltro suddivisa in tre o quattro linee o strisce. Nelle tre strisce superiori sono registrate le dodici derivazioni. La quarta striscia che si trova in basso è la striscia di riferimento del ritmo cardiaco. 63

64 IL BATTITO CARDIACO BASALE La figura illustra gli elementi che compongono il complesso elettrocardiografico 64

65 IL BATTITO CARDIACO BASALE COMPONENTI DI BASE ONDA : è una deflessione dalla linea di base che rappresenta un evento cardiaco SEGMENTO : è una specifica porzione del complesso come viene rappresentato sull'ecg INTERVALLO : è la distanza tra due eventi cardiaci ed è misurata in tempo 65

66 ATTIVAZIONE ATRIALE ONDA P E' la prima onda che si riscontra procedendo dal segmento TP. Essa rappresenta la depolarizzazione di entrambi gli atrii. L'onda P inizia quando il nodo senoatriale si attiva 66

67 ATTIVAZIONE ATRIALE ONDA P L'onda P inizia quando il nodo senoatriale si attiva. L'onda P comprende anche la trasmissione dell'impulso attraverso le tre vie internodali, il fascio di Bachman e anche i miociti atriali. 67

68 ATTIVAZIONE ATRIALE ONDA P Eventi Evento cardiaco rappresentato dall'onda P : Depolarizzazione atriale Durata normale : da 0.08 a 0,11 secondi Asse : da 0 a +75 orientato in basso e a sinistra Onda P è normalmente : positiva in D1 D2 e V4-V6 negativa in avr positiva o negativa nelle rimanenti derivazioni 68

69 ATTIVAZIONE ATRIALE ONDA Tp L'onda Tp che rappresenta la ripolarizzazione degli atrii è orientata in direzione opposta all'onda P. Normalmente non è visibile in quanto si verifica nello stesso istante dell'onda QRS ed è oscurata da questo ben più potente complesso. Peraltro può essere evidenziata in alcuni casi quando dopo l'onda P il complesso QRS è assente. Questa situazione si evidenzia nella dissociazione AV o in caso di battiti non condotti. 69

70 ATTIVAZIONE ATRIALE IL SEGMENTO PR Il segmento PR occupa l'intervallo di tempo tra la fine dell'onda P e l'inizio del complesso QRS. Di solito si trova sulla linea di base. Peraltro può essere sottoslivellato meno di 0.08 mm in circostanze normali e di maggior entità in circostanze patologiche. E' sottoslivellato per motivi patologici nella pericardite e in caso di infarto atriale 70

71 ATTIVAZIONE ATRIALE IL SGMENTO PR Eventi cardiaci rappresentati dal segmento PR : Trasmissione dell'onda di depolarizzazione elettrica attraverso il nodo AV, il fascio di His, la branca destra e sinistra e il sistema di Purkinje. 71

72 ATTIVAZIONE ATRIALE L'INTERVALLO PR L'intervallo PR rappresenta il periodo di tempo intercorrente dall'inizio dell'onda P all'inizio del complesso QRS. Comprende l'onda P e il segmento PR. L'intervallo PR copre tutti gi eventi elettrici : dall'avvio dell' impulso elettrico del nodo senoatriale (SA) fino al momento della depolarizzazione ventricolare. 72

73 ATTIVAZIONE ATRIALE L'INTERVALLO PR La durata normale è compresa tra 0,12-0,20 secondi Se è più corto di 0,11 secondi è considerato PR corto. Se è più lungo di 0.20 secondi costituisce un blocco atrioventicolare (AV) di 1 grado Il termine intervallo PQ è talvolta usato con lo stesso significato se un'onda Q è la componente iniziale del complesso QRS 73

74 ATTIVAZIONE ATRIALE L'INTERVALLO PR Eventi cardiaci rappresentati dall'intervallo PR : avvio dell'impulso elettrico, depolarizzazione atriale, ripolarizzazione atriale, stimolazione AV, Stimolazione del fascio di His, delle due branche e del sistema di Purkinje. Durata normale : 0,11 0,20 secondi. 74

75 IL COMPLESSO QRS Il complesso QRS rappresenta la depolarizzazione ventricolare. È costituita da due o più onde. Ciascuna onda ha la sua propria denominazione. I componenti principali sono le onde Q R S. 75

76 WAVE NOMENCLATURE Le deflessioni del complesso QRS dovrebbero essere denominate con le lettere Q - R - S in accordo con : dimensione collocazione direzione della deflessione Per convenzione viene denominata onda Q la prima deflessione negativa dopo l'onda P. L'onda Q può essere sia presente che assente. Onda R viene denominata la prima deflessione positiva dopo l'onda P. Per cui l'onda R sarà l'onda iniziale del complesso QRS se non è presente l'onda Q. La prima deflessione negativa dopo l'onda R è denominata onda S. 76

77 WAVE NOMENCLATURE Le deflessioni del complesso QRS dovrebbero essere denominate con le lettere Q - R - S in accordo con : dimensione collocazione direzione della deflessione Per convenzione le onde alte o profonde nel complesso QRS sono denominate con lettere maiuscole : Q, R, S, R'. Per convenzione le onde piccole sono denominate con le lettere minuscole q, r, s, r'. Il complesso QRS in figura quindi viene denominato qrs. 77

78 ONDE AGGIUNTIVE : X' (X PRIMO Le variazioni che si verificano nel complesso QRS possono portare a dei complessi di forma bizzarra. In questi casi le onde sono denominate in maniera differente se cambiano direzione ed incrociano la linea di base : Onde Aggiuntive Un'onda così viene denominata X' (X primo) in cui X non rappresenta un'onda reale ma piuttosto un termine che può comprendere sia un'onda R che un'onda S. R' (R primo) e S' (S primo) quindi si riferiscono ad onde aggiuntive del complesso QRS. 78

79 ONDE AGGIUNTIVE : X' (X PRIMO La striscia superiore non contiene tecnicamente onde S. Infatti il termine onda S si riferisce solo a deflessioni negative o a componenti della deflessione che scendono sotto la linea di base. Peraltro è divenuto normale il riferimento di una deflessione in un'onda R a più punte come un'onda S indipendentemente che scenda o no sotto la linea di base. Seguendo questa logica la maggior parte degli autori indicano il secondo picco come onda R'. 79

80 SIGNIFICATO DELL'ONDA Q L'onda Q può avere un significato benigno oppure può essere il segno di tessuto miocardico necrotico. Un onda Q è considerata significativa se : è 0.03 secondi o più larga la sua altezza è uguale o maggiore a un terzo dell'altezza dell'onda R Il verificarsi di uno di questi criteri indica la presenza di infarto miocardico (MI) nella zona coinvolta. In caso contrario sarà il caso di un'onda Q non patologica. 80

81 SIGNIFICATO DELL'ONDA Q Onde Q non significative sono comuni in I, avl e V6 e sono dovute alla attivazione del setto. Sono chiamate " onde Q settali " ( septal Qs ). 81

82 SIGNIFICATO DELL'ONDA Q Non dimenticate di usare il vostro compasso! Misurate la profondità dell'onda Q e successivamente riportate questa distanza per vedere se è compresa per due volte nell'altezza dell'onda R. 82

83 LA DEFLESSIONE INTRINSECOIDE La deflessione intrinsecoide è misurata dall'inizio del complesso QRS all'inizio della discesa dell'onda R nelle derivazioni che cominciano con un'onda R e senza onda Q. Essa rappresenta il tempo che l'impulso elettrico impiega nel percorso dal sistema di Purkinje (posto nell'endocardio) alla superficie dell'epicardio immediatamente sottostante un elettrodo 83

84 LA DEFLESSIONE INTRINSECOIDE E' corto nelle derivazioni precordiali destre V1 e V2 in quanto il ventricolo destro è sottile in confronto al sinistro. È più lungo nelle derivazioni precordiali sinistre V5 e V6 a causa del maggiore spessore del ventricolo sinistro. derivazioni precordiali destre V1-V2 fino a secondi derivazioni precordiali sinistre V5-V6 fino a secondi Ora possiamo immaginare quale potrebbe essere la causa di un prolungamento della deflessione intrinsecoide? Noi vedremo un incremento della deflessione intrinsecoide Se il miocardio è più spesso come nell'ipertrofia ventricolare 84

85 LA DEFLESSIONE INTRINSECOIDE Ora possiamo immaginare quale potrebbe essere la causa di un prolungamento della deflessione intrinsecoide? nell'ipertrofia ventricolare a causa del maggiore spessore della parete nel blocco di branca a causa del ritardo nella conduzione dell'impulso elettrico Limiti superiori alla norma per la deflessione intrinsecoide : Nelle precordiali destre : secondi Nelle precordiali sinistre : secondi 85

86 IL SEGMENTO ST Il sistema ST è quella parte del ciclo cardiaco compreso tra la fine complesso QRS e l'inizio dell'onda T. Il punto in cui il complesso QRS termina e comincia il segmento ST è denominato punto J. In molti casi non può essere identificato con certezza un preciso punto J a causa del sopraslivellamento del tratto ST. In circostanze normali il segmento ST è posto sulla linea di base. Peraltro può scostarsi fino a 1 mm dalla linea di base nelle derivazioni degli arti e fino a 3 mm nelle derivazioni precordiali in pazienti senza patologia. Ciò può dipendere da quello che viene detto quadro di ripolarizzazione precoce. 86

87 IL SEGMENTO ST Il sistema ST è quella parte del ciclo cardiaco compreso tra la fine complesso QRS e l'inizio dell'onda T. Il punto in cui il complesso QRS termina e comincia il segmento ST è denominato punto J Il segmento ST costituisce un tempo elettricamente neutrale per il cuore i ventricoli sono nella fase compresa tra la depolarizzazione (complesso QRS) e la ripolarizzazione (onda T) Dal punto di vista meccanico, esso rappresenta il tempo in cui il miocardio mantiene la contrazione per espellere il sangue dal ventricolo. Come potete immaginare ben poco sangue potrebbe uscire dal ventricolo se questo si contraesse solamente per 0.12 secondi. 87

88 IL SEGMENTO ST Ogni volta si verifichi un sopraslivellamento del tratto ST in un paziente con sintomi ciò deve essere considerato, fino a prova contraria, significativo e sospetto per un danno miocardico o infarto. Non fate l'errore di considerare come una variante della norma un infarto acuto del miocardio! Se un segmento ST non è sopraslivellato abbastanza per soddisfare le linee guide per la terapia di riperfusione non si deve pensare che questo sia benigno. In questi casi dovete sempre avere il sospetto e cercare di ottenere un ECG del paziente eseguito in precedenza per fare un confronto. 88

89 IL SEGMENTO ST Evento cardiaco rappresentato dal segmento ST : periodo elettricamente neutro compreso tra la depolarizzazione e la ripolarizzazione ventricolare Posizione normale : a livello della linea di base. Asse : orientato in basso e a sinistra. 89

90 ONDA T L'onda T rappresenta elettricamente la ripolarizzazione ventricolare. Si tratta di quella deflessione sia positiva che negativa che si verifica dopo il segmento ST e che dovrebbe cominciare nella stessa direzione del complesso QRS. Il sistema del Purkinje è sottostante all'endocardio per cui la depolarizzazione inizia nell'endocardio e si dirige verso l'epicardio. A causa del gradiente pressorio operante sull'endocardio durante la contrazione, l'onda di ripolarizzazione si dirige in direzione opposta cioè dall'epicardio all'endocardio. Quindi un'onda negativa che si allontana dall'elettrodo viene registrata dall'elettrodo stesso come un'onda positiva. 90

91 ONDA T Pertanto le caratteristiche morfologiche dell'onda T normale sono le seguenti : l'onda T dovrebbe avere la stessa direzione del complesso QRS. l'onda T è asimmetrica con la prima parte che sale (o scende) lentamente e l'ultima parte che discende (o sale) velocemente 91

92 ONDA T Il modo per verificare la simmetria o meno dell'onda T è quello di disegnare una linea perpendicolare dalla punta dell'onda alla linea di base e quindi di mettere a confronto la simmetria o meno delle due parti senza tenere conto del segmento ST. Evento cardiaco rappresentato dall'onda T : ripolarizzazione ventricolare Asse : rivolto verso il basso e a sinistra simile all'asse del complesso QRS 92

93 L'INTERVALLO QT L'intervallo QT è quella sezione del complesso elettrocardiografico che comprende il complesso QRS, il segmento ST ed infine l'onda T. (dall' inizio dell'onda Q alla fine dell'onda T ) Rappresenta quindi tutti gli elementi della sistole ventricolare, dall'inizio della depolarizzazione alla fine della ripolarizzazione ventricolare. l'intervallo è variabile in funzione della frequenza cardiaca, dell'età e del sesso e di eventuali anomalie elettrolitiche. Di solito l'intervallo QT può essere più corto della metà delle due precedenti onde R 93

94 L'INTERVALLO QT L'intervallo QT prolungato è foriero di possibili aritmie minacciose per la vita, tra cui la torsione di punta. Pertanto è importante valutare l'intervallo QT. Vi sono diverse forme per valutare il significato dell'intervallo QT ma la più usata è il QTc (corretto). L'intervallo QTc sta ad indicare che è corretto per la frequenza cardiaca. Formula: QTc = QT (ventricular rate 60) Con la riduzione della frequenza cardiaca l'intervallo QT si allunga. Con l'incremento della frequenza cardiaca l'intervallo QT si accorcia. Considerando una piccola tolleranza possiamo dire che un QTc è prolungato se misura oltre 419 millesecondi. 94

95 L'INTERVALLO QT L'intervallo QT prolungato è foriero di possibili aritmie minacciose per la vita, tra cui la torsione di punta. Pertanto è importante valutare l'intervallo QT. Vi sono diverse forme per valutare il significato dell'intervallo QT ma la più usata è il QTc (corretto). L'intervallo QTc sta ad indicare che è corretto per la frequenza cardiaca. Formula: QTc = QT (ventricular rate 60) Eventi cardiaci rappresentati dall'intervallo QT : tutti gli eventi della sistole ventricolare. Durata normale : variabile specialmente in relazione alla frequenza cardiaca. Di solito minore della metà dell'intervallo R-R. Minore di 419 msec. 95

96 L'ONDA U L'onda U è una piccola onda piatta che si può talvolta vedere dopo l'onda T e prima della successiva onda P. Diverse teorie sono state elaborate per spiegare che cosa essa rappresenti e tra queste possiamo ricordare la depolarizzazione ventricolare e la ripolarizzazione dell'endocardio. Nessuno ne è certo. può essere rilevata in pazienti normali specialmente in caso di bradicardia può essere presente anche in condizioni di ipokaliemia. Anzi un punto certo è che non può esserci iperkaliemia in presenza di onda U. 96

97 L'ONDA U L'altro unico significato clinico dell'onda U è che essa può talora rendere inaccurata la misurazione dell'intervallo QT. Questo può risultare più lungo in quanto alcuni apparecchi possono includere l'onda U nelle loro misure. I computers elettrocardiografici sono noti per queste inesattezze di misura può essere rilevata in pazienti normali specialmente in caso di bradicardia può essere presente anche in condizioni di ipokaliemia. Anzi un punto certo è che non può esserci iperkaliemia in presenza di onda U. 97

98 VALUTAZIONE DEL RITMO 98

99 Il metodo più veloce e più semplice per calcolare la frequenza cardiaca sulla base di un solo ciclo cardiaco è prettamente mnemonico; esso prevede infatti che vengano memorizzati una serie di numeri: Su una striscia ECG si individua un battito che cada su una linea piu' spessa della carta millimetrata Se il battito successivo si trovasse sulla linea spessa successiva allora la FC sarebbe di 300 bpm Se il battuto successivo si trovasse sulla seconda linea spessa allora la FC sarebbe di 150 bpm Se il battuto successivo si trovasse sulla terza linea spessa allora la FC sarebbe di 100 bpm 99

100 Con un altro metodo ci si avvale dell'utilizzo del regolo ECG che di solito permette il calcolo della FC sulla base di 2 battiti consecutivi. Si posiziona la freccia del regolo in corrispondenza di un QRS e si leggerà il valore della FC sulla scala numerata del regolo in corrispondenza del secondo battito consecutivo. 100

101 Un ritmo sinusale per definirsi tale deve rispondere a 5 requisiti presenza di onde P prima di ogni complesso QRS presenza di onde P positive in D2 e negative in avr intervallo PR costante ( 0,12 0,20 secondi) morfologia costante dell'onda P (fissando sempre la stessa derivazione) frequenza tra 60 e 100 bpm intervallo PP costante 101

102 ANOMALIA ATRIALE SINISTRA Nell'ingrandimento atriale sinistro il voltaggio e la durata della componente atriale sinistra sono aumentati. E poiché la componente terminale della onda P è di solito determinata dalla depolarizzazione dell'atrio sinistro ne consegue che nell'anomalia atriale sinistra osserveremo un prolungamento della durata della onda P Inoltre l'onda P è spesso bifida in D2 e difasica in V1. E l'area della componente negativa terminale è maggiore della componente positiva iniziale. 102

103 ANOMALIA ATRIALE SINISTRA L'onda P risultante in D2 è ampia (> 0.12 secondi) e bifida con una componente terminale più accentuata. Componente atriale destra Componente atriale sinistra Onda P normale in D2 Onda P in D2 in presenza di anomalia atriale sinistra L'ampiezza e la durata della componente atriale sinistra sono aumentate Onda P in D2 risultante è bifida ed ampia Vi è quindi un aumento di ampiezza e di durata 103

104 ANOMALIA ATRIALE SINISTRA L'onda P risultante in V1 è ampia e difasica. L'area della seconda componente (terminale e negativa) è maggiore della iniziale componente positiva. Componente atriale destra Componente atriale sinistra Onda P normale in V1 Onda P in V1 in presenza di anomalia atriale sinistra L'ampiezza e la durata della componente atriale sinistra sono aumentate Onda P in V1 risultante è bifasica ed ampia Quindi la componente terminale è prevalente 104

105 LEFT ATRIAL ABNORMALITY (LAA) P MITRALICA Onda P mitralica è un riscontro ecgrafico classico ma infrequente nella dilatazione atriale sinistra. è una onda P con durata > 0.12 secondi nelle derivazioni periferiche è una onda P con indentatura a forma di M nelle derivazioni periferiche lo spazio tra le due gobbe è > 0.04 secondi La presenza di due gobbe può essere trovata in onde P con durata < 0.12 secondi Ma non può essere associata in questi casi con ingrandimento atriale sinistro. 105

106 ANOMALIA ATRIALE DESTRA Nell'ingrandimento atriale destro il voltaggio e la durata della componente atriale destra sono aumentati. Questa componente dell'onda P corrisponde normalmente ad una deflessione positiva sia in D2 che in V1. Di conseguenza l'ampiezza dell'onda P in entrambe queste derivazioni è aumentata senza che si verifichi un incremento della durata 106

107 ANOMALIA ATRIALE DESTRA L'onda P risultante in D2 è appuntita e presenta un aumento dell'ampiezza ma non della durata. Componente atriale destra Componente atriale sinistra Onda P normale in D2 Onda P normale in D2 in presenza di anomalia atriale destra L'ampiezza della componente atriale destra è aumentata Onda P in D2 risultante Vi è un aumento di ampiezza ma non della durata La depolarizzazione atriale destra termina normalmente con molto anticipo rispetto alla depolarizzazione atriale sinistra. Per cui il ritardo nella depolarizzazione atriale destra non sarà mai di entità sufficiente a prolungarne la durata oltre l'attivazione atriale sinistra. Per questo motivo l'aumento di durata della depolarizzazione atriale destra non si traduce in un aumento della durata dell'onda P. 107

108 ANOMALIA ATRIALE DESTRA L'onda P risultante in D2 è appuntita e presenta un aumento dell'ampiezza ma non della durata. Componente atriale destra Componente atriale sinistra Onda P normale in V1 Onda P in V1 in presenza di anomalia atriale destra L'ampiezza della componente atriale destra è aumentata Onda P in V1 risultante Vi è un aumento di ampiezza ma non della durata La depolarizzazione atriale destra termina normalmente con molto anticipo rispetto alla depolarizzazione atriale sinistra. Per cui il ritardo nella depolarizzazione atriale destra non sarà mai di entità sufficiente a prolungarne la durata oltre l'attivazione atriale sinistra. Per questo motivo l'aumento di durata della depolarizzazione atriale destra non si traduce in un aumento della durata dell'onda P. 108

109 RIGHT ATRIAL ABNORMALITY (RAA) P POLMONARE Onda P polmonare è un riscontro ecgrafico classico nella dilatazione atriale destra. Onda P appuntita (a tenda) nelle derivazioni periferiche Voltaggio > 2.5 mm nelle derivazioni periferiche Onde P più sporgenti nelle derivazioni D2-D3 Un'onda P appuntita ha la forma di una tenda. Queste possono avere una altezza inferiore ai 2.5 mm motivo per cui la P polmonare è un tipo particolare di onda P appuntita. Quando hanno una altezza inferiore a 2.5 mm le onde P appuntite non sono associate a dilatazione atriale 109

110 RIGHT ATRIAL ABNORMALITY (RAA) P POLMONARE Quando la prima metà della onda P difasica è più alta in V1 rispetto alla prima metà della P in V6 è probabile che si tratti di P Polmonare. 110

111 ALTERAZIONI DELL'AMPIEZZA DEL QRS Notate che l'ecg è riprodotto in dimensioni naturale : tutti i complessi delle derivazioni periferiche hanno ampiezza < 5 mm e che nelle precordiali i complessi sono < 10 mm 111

112 ALTERAZIONI DELL'AMPIEZZA DEL QRS L'ECG mostra complessi QRS abnormemente ampi : per il momento lasciatevi solo impressionare dall'ampiezza pura e semplice di questi complessi ventricolari 112

113 DURATA DEL COMPLESSO QRS Misurate la durata del complesso QRS dal'inizio della prima deflessione che segue l'intervallo PR alla fine del complesso. La sua durata è di norma sec. Il complesso A misura 0.11 sec ed è normale Il complesso B misura 0.15 sec ed è una extrasistole ventricolare Se analizzate solo una derivazione potreste ottenere una durata più corta di quella reale e questo può portare a gravi errori nella vostra interpretazione. Misurate sempre il complesso QRS più lungo del tracciato ECG per non essere ingannati sulla vera durata del complesso! Esistono infatti alcune parti del complesso che sono isoelettriche e che pertanto non sono graficamente visibili all'ecg 113

114 MORFOLOGIA DEI COMPLESSI QRS NELLE PRECORDIALI Il complesso QRS tipico in V1 mostra una piccola onda positiva iniziale seguita da un'onda negativa più grande. Il complesso QRS tipico in V6 mostra una piccola onda negativa iniziale seguita da una ampia onda positiva L'aspetto tipico normale della morfologia del QRS nelle altre derivazioni precordiali è questo riportato nella figura a fianco 114

115 MORFOLOGIA DEI COMPLESSI QRS NELLE PRECORDIALI Devono essere sottolineati tre aspetti fondamentali : l'incremento progressivo dell'ampiezza dell'onda r da V1 a V6 avviene a causa dell'aumento nella medesima sequenza dello spessore del miocardio sottostante gli elettrodi e a causa del fatto che l'attivazione miocardica procede sempre dallo endocardio all'epicardio con direzione coincidente quindi con quella dovuta allo aumento di spessore. Quindi i potenziali risultanti dall'attivazione miocardica non potranno che crescere da v1 a V6. tuttavia poiché V6 ed in minor misura V5 sono più distanti dal cuore degli altri elettrodi precordiali, l'onda R registrata in V6 può essere minore che in V5 e per la stessa ragione può essere minore in V5 che in V4. Ma in questo caso anche in V6 l'onda R sarà minore che in V5. le altre onde positive delle precordiali sinistre traggono origine dall'attivazione della parete libera del ventricolo sinistro. Lo stesso processo dà origine alle onde negative S delle precordiali destre. Perciò in generale, tanto aumenta l'ampiezza delle onde R da V1 a V6 tanto diminuisce la profondità dell'onda S. 115

116 IPETROFIA VENTRICOLARE SINISTRA Quando si parla di ipertrofia ventricolare sinistra parliamo di un aumento della massa muscolare del ventricolo sinistro. Questa massa aumentata può essere il risultato di ipertrofia o di dilatazione. Il punto fondamentale è quindi il seguente : maggiore è la massa muscolare tanto più ampi saranno i vettori generati maggiore è la massa muscolare tanto più il cuore si avvicina agli elettrodi precordiali In ultima analisi c'è più miocardio e questo è più vicino agli elettrodi di registrazione 116

117 IPETROFIA VENTRICOLARE SINISTRA Le derivazioni precordiali sono influenzate in modo significativo dal posizionamento degli elettrodi e dal fatto che le pareti ventricolari sono molte vicine agli elettrodi. In un ventricolo ipertrofico c'è più muscolo e questo è più vicino agli elettrodi. Quando il cuore si ipertrofizza o si dilata, il tessuto si sposta in tutte le direzioni. Per cui essendo i polmoni e gli altri organi più sporgenti verso la parte posteriore della cavità toracica, il cuore viene spostato in misura proporzionalmente maggiore verso la parte anteriore della cavità toracica. Il risultato evidente è che le derivazioni precordiali registrano potenziali maggiori in rapporto alla maggior avvicinamento del cuore agli elettrodi stessi 117

118 IPETROFIA VENTRICOLARE SINISTRA Le manifestazioni elettrocardiografiche dell'ivs comprendono : un aumento del voltaggio lo spostamento dell'asse medio QRS posteriormente, in alto e a sinistra il prolungamento della depolarizzazione con la deflessione intrinsecoide ritardata il graduale spostamento del segmento ST e dell'onda T in una direzione opposta a quella del complesso QRS 118

119 IPETROFIA VENTRICOLARE SINISTRA 119

120 IPETROFIA VENTRICOLARE SINISTRA I vettori iniziali (vettore 1) possono essere : ridotti a causa di un lieve ritardo sinistro globale o di una maggiore competizione dei vettori aumentati della parete laterale del ventricolo sinistro aumentati per ipertrofia della zona media del setto sinistro che si attiva precocemente o per ridotta competizione con quelli ritardati della parete laterale del ventricolo sinistro 120

121 IPETROFIA VENTRICOLARE SINISTRA I vettori intermedi (vettori 3 e 4) aumentano di voltaggio, tendono a portarsi più indietro e meno in basso ed a ritardarsi 121

122 IPETROFIA VENTRICOLARE SINISTRA Esiste un numero totalmente ampio di criteri per IVS che è difficile se non impossibile ricordarli tutti. Cerchiamo i criteri dotati di maggiore correlazione clinica e quelli più facili da ricordare. (S in V1 o V2) + (R in V5 o V6) 35 mm Sokolow Lyon sommare la profondità della onda S in V1 o V2 (prendendo la più profonda delle due) all'altezza dell'onda R in V5 o V6 ( prendendo la più alta delle due). qualunque derivazione precordiale è 45 mm. L'onda R in avl è 11 mm. L'onda R nella derivazione D1 è 15 mm. L'onda R nella derivazione avf è 20 mm. 122

123 BUNDLE BRANCHES Two bundle branches Right bundle branch Left bundle branch Left Anterior Fascicle Left Posterior Fascicle Il fascio di His si divide nelle branche destra e sinistra. La branca sinistra a sua volta si divide nei fascicoli anteriore e posteriore. 123

124 BUNDLE BRANCHES Dovrebbe essere aumentata la larghezza del complesso QRS? La risposta è si. Perché? L'impulso dovrebbe viaggiare normalmente lungo la branca sinistra. Pertanto il VS e quella parte del setto che è innervata dalla branca sinistra dovrebbero attivarsi normalmente. Dall'altro lato, la restante parte del setto ed il VD dovrebbero depolarizzarsi attraverso la via più lenta cellula cellula. Come potete immaginare questa via di depolarizzazione dei ventricoli comporta la comparsa di complessi dallo aspetto anomalo sull'ecg di superficie Poiché la trasmissione lenta cellula cellula richiede un periodo più lungo per depolarizzare questa sezione del cuore il risultato finale è che i complessi sono più larghi, per l'esattezza superiori o uguali a 0.12 secondi. 124

125 BUNDLE BRANCHES Ora, dovrebbe essere diversa la morfologia del complesso QRS? La risposta è si. Perché? L'aggiunta del blocco crea un nuovo vettore che si muove lentamente e che, dal momento che esso si genera dopo l'attivazione della branca sinistra, dovrebbe essere incontrastato. Per cui il vettore cardiaco aggiuntivo ed incontrastato altererà completamente lo aspetto del QRS. 125

126 RIGHT BUNDLE BRANCH BLOCK Il vettore cardiaco 4, aggiuntivo ed incontrastato, altererà completamente l'aspetto del QRS soprattutto nella derivazione V1 V6 D1. 126

127 RIGHT BUNDLE BRANCH BLOCK Nella derivazione V1 il quadro è alquanto differente. Qui il vettore 1 che riflette la depolarizzazione del setto crea una piccola onda r. Quindi i vettori 2 e 3 causano una onda S. Tuttavia l'onda S non arriva ad essere completata in quanto il vettore 4 inizia ad opporvisi e poco dopo si esprime in modo completo ed incontrastato. Pertanto l'elettrodo in V1 vede un vettore largo ed incontrastato che si dirige verso di esso e lo rappresenta come una onda R' più alta. In ultima analisi si forma il tradizionale complesso rsr' o RSR' del BBDx nella V1. Molti paragonano questo complesso alle " orecchie di coniglio " per ovvi motivi. 127

128 RIGHT BUNDLE BRANCH BLOCK Criteri per la diagnosi elettrocardiografica di blocco di branca destro. Il complesso QRS ha una durata superiore o uguale a 0.12 secondi. Ampia onda S finale in D1 e V6. La derivazione precordiale destra V1 presenta dei quadri RSR' ampi. 128

129 Ritmo sinusale a FC di 98 bpm. Asse Elettrico : - 80 Deviazione Assiale Sinistra : Emiblocco Sinistro Anteriore Blocco Branca Destro Ipertrofia ventricolare sinistra Scarsa progressione onda R La derivazione avl mostra una onda R 11 mm 129

130 INCOMPLETE RIGHT BUNDLE BRANCH BLOCK Si parla di blocco di branca destro incompleto quando : sono presenti i criteri elettrocardiografici di BBDx ma la durata del QRS è tra 0.09 e 0.11 secondi Nel blocco di branca destro incompleto lo stimolo che discende attraverso la branca destra subisce sì un ritardo, ma raggiunge le ramificazioni delle fibre di Purkinje ed attiva parte della massa settale destra prima che giunga l'onda di attivazione dalla branca sinistra. In altre parole l'onda di attivazione proveniente dalla branca destra depolarizza una parte del setto interventricolare e del ventricolo destro. 130

ELETTROCARDIOGRAMMA (ECG) E la registrazione, nel tempo, dell attività elettrica del cuore.

ELETTROCARDIOGRAMMA (ECG) E la registrazione, nel tempo, dell attività elettrica del cuore. ELETTROCARDIOGRAMMA (ECG) E la registrazione, nel tempo, dell attività elettrica del cuore. Il succedersi di depolarizzazioni e ripolarizzazioni nelle varie parti del cuore crea una separazione tra zone

Dettagli

ELETTROCARDIOGRAMMA (ECG) L elettrocardiogramma è la registrazione, nel tempo, dell attività elettrica del cuore.

ELETTROCARDIOGRAMMA (ECG) L elettrocardiogramma è la registrazione, nel tempo, dell attività elettrica del cuore. ELETTROCARDIOGRAMMA (ECG) L elettrocardiogramma è la registrazione, nel tempo, dell attività elettrica del cuore. I cambiamenti di polarità delle cellule cardiache generano un campo elettrico all esterno

Dettagli

ESECUZIONE e LETTURA di un ELETTROCARDIOGRAMMA

ESECUZIONE e LETTURA di un ELETTROCARDIOGRAMMA ESECUZIONE e LETTURA di un ELETTROCARDIOGRAMMA SISTEMA MECCANICO OGNI ATTIVITA MECCANICA, ossia ogni CONTRAZIONE del CUORE è preceduta ed è determinata da una ATTIVITA ELETTRICA SISTEMA ELETTRICO Stato

Dettagli

L ELETTROCARDIOGRAMMA

L ELETTROCARDIOGRAMMA CONDUZIONE DELL IMPULSO L eccitamento del cuore ha origine nel nodo senoatriale (SA), dal quale la corrente si propaga alla muscolatura atriale, al nodo atrioventricolare (AV), al sistema di Purkinje,

Dettagli

ECG COSA SAPERE PER NON FARSI PRENDERE DAL PANICO CARDIOLOGIA SASSUOLO DOTT.SA ERMENTINA BAGNI 11 OTTOBE 2016

ECG COSA SAPERE PER NON FARSI PRENDERE DAL PANICO CARDIOLOGIA SASSUOLO DOTT.SA ERMENTINA BAGNI 11 OTTOBE 2016 ECG COSA SAPERE PER NON FARSI PRENDERE DAL PANICO CARDIOLOGIA SASSUOLO DOTT.SA ERMENTINA BAGNI 11 OTTOBE 2016 CUORE : Attività elettrica Attività meccanica L attivazione elettrica e vettori di attivazione

Dettagli

Sequenza di insorgenza dei potenziali d azione d varie parti del cuore

Sequenza di insorgenza dei potenziali d azione d varie parti del cuore Sequenza di insorgenza dei potenziali d azione d nelle varie parti del cuore NSA NAV NSA Atri NAV Fascio His Fibre Purkinje Miociti ventricoli ELETTROCARDIOGRAMMA (ECG) L ECG è la registrazione, nel tempo,

Dettagli

hystamina@hackmed.org John Hampton - CAPITOLO 2 http://www.hackmed.org

hystamina@hackmed.org John Hampton - CAPITOLO 2 http://www.hackmed.org CAPITOLO 2 LA CONDUZIONE ED I SUOI PROBLEMI Abbiamo visto precedentemente che l'attivazione elettrica comincia normalmente nel nodo seno atriale e genera un'onda di depolarizzazione che si propaga dal

Dettagli

L attività meccanica atriale è inefficacie e viene a mancare il contributo atriale al riempimento ventricolare.

L attività meccanica atriale è inefficacie e viene a mancare il contributo atriale al riempimento ventricolare. Fibrillazione Atriale : Difficile identificazione delle Onde P in un tracciato con complessi ventricolari ad intervalli variabili. Intervallo RR variabile. Onda P sostituita da due o più ondulazioni (

Dettagli

Fisiologia cardiovascolare

Fisiologia cardiovascolare Corso Integrato di Fisiologia Umana Fisiologia cardiovascolare L ElettroCardioGramma Anno accademico 2007-2008 1 L ElettroCardioGramma L elettrocardiogramma (ECG) è la registrazione alla superficie del

Dettagli

Fisiologia cardiovascolare

Fisiologia cardiovascolare Corso Integrato di Fisiologia Umana Fisiologia cardiovascolare La funzione cardiaca: Eventi elettrici e meccanici Anno Accademico 2007-2008 1 Anatomia macroscopica del cuore Anno Accademico 2007-2008 2

Dettagli

Fondamenti di elettrocardiografia, anatomia funzionale del sistema di conduzione, genesi elettrofisiologica dell ECG normale

Fondamenti di elettrocardiografia, anatomia funzionale del sistema di conduzione, genesi elettrofisiologica dell ECG normale Corso di elettrocardiografia lezione N 1 5 Maggio 2011 Fondamenti di elettrocardiografia, anatomia funzionale del sistema di conduzione, genesi elettrofisiologica dell ECG normale Dr. M. Zuccarello Dr.

Dettagli

Corso di Fisica Medica 1

Corso di Fisica Medica 1 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Elettrocardiogramma 27/4/2006 Cos è? L elettrocardiogramma è la registrazione grafica dell attività elettrica cardiaca Il cuore, durante

Dettagli

L ELETTROCARDIOGRAFIA DI BASE

L ELETTROCARDIOGRAFIA DI BASE Ospedale san Giovanni Battista di Torino L ELETTROCARDIOGRAFIA DI BASE cpsi Mazzini Diana cpsi Bonanno Vita s.c. cardiologia ospedaliera dott. Marra s.c. cardiologia universitaria prof. Gaita Il cuore:

Dettagli

Nodo seno atriale Nodo atrio-ventricolare

Nodo seno atriale Nodo atrio-ventricolare Nodo seno atriale Nodo atrioventricolare Da Silverthorn, Human Physiology 1 1 Depolarizzazione atriale 2 2 Depolarizzazione del setto 3 Depolarizzazione del ventricolo 3 Da Silverthorn, Human Physiology

Dettagli

Sezione 1. Cenni di elettrofisiologia. Depolarizzazione e ripolarizzazione dei miociti e del sistema di conduzione cardiaco

Sezione 1. Cenni di elettrofisiologia. Depolarizzazione e ripolarizzazione dei miociti e del sistema di conduzione cardiaco Sezione 1 Cenni di elettrofisiologia Ida Ginosa Depolarizzazione e ripolarizzazione dei miociti e del sistema di conduzione cardiaco Il primo contatto con un elettrocardiogramma ci pone di fronte ad un

Dettagli

PREVENZIONE DELLE MORTI IMPROVVISE NEL GIOVANE E NELLO SPORT. Sessione interattiva: ruolo dell elettrocardiografia nella diagnosi e prevenzione

PREVENZIONE DELLE MORTI IMPROVVISE NEL GIOVANE E NELLO SPORT. Sessione interattiva: ruolo dell elettrocardiografia nella diagnosi e prevenzione Congresso Nazionale IRC Napoli 6-7 Giugno 2008 PREVENZIONE DELLE MORTI IMPROVVISE NEL GIOVANE E NELLO SPORT Sessione interattiva: ruolo dell elettrocardiografia nella diagnosi e prevenzione Gianluca Gonzi

Dettagli

ECG FACILE. Traduzione della 5 edizione inglese di: The ECG made easy

ECG FACILE. Traduzione della 5 edizione inglese di: The ECG made easy ECG FACILE Traduzione della 5 edizione inglese di: The ECG made easy John R. Hampton Professore di cardiologia Università di Nottingham, Nottingham, UK Versione italiana a cura di hystamina@hackmed.org

Dettagli

(02.45) INTERPRETARE LE FONDAMENTALI ANOMALIE DI UN TRACCIATO ECG

(02.45) INTERPRETARE LE FONDAMENTALI ANOMALIE DI UN TRACCIATO ECG (02.45) INTERPRETARE LE FONDAMENTALI ANOMALIE DI UN TRACCIATO ECG L elettrocardiogramma (ECG) è uno strumento utile per la diagnosi di tutte quelle situazioni che provocano l alterazione dell attività

Dettagli

IMPARARE A LEGGERE: L ELETTROCARDIOGRAMMA

IMPARARE A LEGGERE: L ELETTROCARDIOGRAMMA IMPARARE A LEGGERE: L ELETTROCARDIOGRAMMA come essere un bravo infermiere senza fare il medico Inf. Paola Arseni UOC di Medicina Interna SO Poggiardo Palazzo della Cultura Poggiardo12 Ottobre 2013 L ECG

Dettagli

GENERAZIONE E CONDUZIONE DELL ECCITAMENTO CARDIACO ed ECG

GENERAZIONE E CONDUZIONE DELL ECCITAMENTO CARDIACO ed ECG GENERAZIONE E CONDUZIONE DELL ECCITAMENTO CARDIACO ed ECG cardiaco_3 Generazione e conduzione dell eccitamento cardiaco Il sincronismo di contrazione delle cellule miocardiche deriva da: - zone con attività

Dettagli

ELETTROCARDIOGRAMMA. dimensioni delle camere cardiache e spessore delle loro pareti;

ELETTROCARDIOGRAMMA. dimensioni delle camere cardiache e spessore delle loro pareti; ELETTROCARDIOGRAMMA Registrazione e riproduzione grafica delle differenze di potenziale elettrico che si creano tra due punti durante un ciclo cardiaco. Su questi tracciati si studia la morfologia, la

Dettagli

ELETTROCARDIOGRAMMA (ECG)

ELETTROCARDIOGRAMMA (ECG) ELETTROCARDIOGRAMMA (ECG) Prof.ssa Grassi Di Lorenzo Volpe L'elettrocardiogramma (ECG) è una registrazione utilizzata molto dal punto di vista diagnostico per analizzare la funzionalità cardiaca dal punto

Dettagli

Da: Schmidt et al.. Fisiologia Umana

Da: Schmidt et al.. Fisiologia Umana Da: Schmidt et al.. Fisiologia Umana 1 ASSE ELETTRICO CARDIACO Nella diagnostica è importante valutare l orientamento del vettore elettrico ventricolare (asse elettrico cardiaco), che dà un indicazione

Dettagli

Elettrologia. www.slidetube.it

Elettrologia. www.slidetube.it Elettrologia ECG : STORIA Sin dal XIX secolo è stato accertato che il cuore genera elettricità. I potenziali elettrici del cuore sono la somma di minime quantità di elettricità generata dalle cellule cardiache

Dettagli

William Harvey ( )

William Harvey ( ) Lezione 21 William Harvey (1578-1657) 1. Schema generale della contrazione cardiaca: la sistole e la diastole 2. Anatomia generale del cuore 3. Le valvole e le corde tendinee 4. Struttura istologica delle

Dettagli

L elettrocardiogramma nella sindrome. di Wolff-Parkinson-White

L elettrocardiogramma nella sindrome. di Wolff-Parkinson-White L elettrocardiogramma nella sindrome 7 di Wolff-Parkinson-White Introduzione Nella sua forma più comune, questa anomalia [la sindrome di Wolff-Parkinson-White (WPW)] è causata dalla presenza congenita

Dettagli

ARITMIE IPOCINETICHE

ARITMIE IPOCINETICHE KROTON 2010 ARITMIE IPOCINETICHE D.Monizzi Cardiologia Territoriale ASP KR 18/09/2010 Cenni sull Attività Elettrica del Cuore Aritmie Ipocinetiche D.Monizzi 2010 Il Cuore atrio sx atrio dx valvola mitrale

Dettagli

PARLIAMO DI. ECG Normale Agata Privitera U.O. di Cardiologia Pediatrica Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.

PARLIAMO DI. ECG Normale Agata Privitera U.O. di Cardiologia Pediatrica Ospedale Santo Bambino CATANIA www.cardiologiapediatricact. PARLIAMO DI ECG Normale Agata Privitera U.O. di Cardiologia Pediatrica Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.com Lettura di Elettrocardiogramma a dodici derivazioni! Lettura di Elettrocardiogramma

Dettagli

Ecg basic II Step. Francesco De Luca. Siracusa 21 maggio U.O. di Cardiologia Pediatrica, Ospedale Santo Bambino CATANIA

Ecg basic II Step. Francesco De Luca. Siracusa 21 maggio U.O. di Cardiologia Pediatrica, Ospedale Santo Bambino CATANIA Ecg basic II Step Francesco De Luca U.O. di Cardiologia Pediatrica, Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.com Siracusa 21 maggio 2016 F. De Luca U.O. Cardiologia Pediatrica Ferrarotto

Dettagli

Ischemia, lesione e infarto

Ischemia, lesione e infarto 12 Ischemia, lesione e infarto 192 Rapida e accurata interpretazione dell ECG Il muscolo cardiaco deve ricevere un apporto ematico sufficiente tramite la propria rete di vasi arteriosi, denominati arterie

Dettagli

Disturbi di conduzione atrio-ventricolari

Disturbi di conduzione atrio-ventricolari Disturbi di conduzione atrio-ventricolari Blocco atrio-ventricolare di I grado 1. Frequenza: 55/min 2. Ritmo: sinusale 3. Conduzione: blocco atrio ventricolare di I grado, PQ 0.32 sec 4. Ripolarizzazione:

Dettagli

hystamina@hackmed.org John Hampton - CAPITOLO 4 http://www.hackmed.org

hystamina@hackmed.org John Hampton - CAPITOLO 4 http://www.hackmed.org CAPITOLO 4 ANOMALIE DELL'ONDA P, QRS E T Quando si interpreta un ECG, si analizza prima di tutto il ritmo e la frequenza. Poi bisogna porsi le seguenti domande, sempre nello stesso ordine: 1. Ci sono delle

Dettagli

CORSO TEORICO-PRATICO DI ELETTROCARDIOGRAFIA PER INFERMIERI

CORSO TEORICO-PRATICO DI ELETTROCARDIOGRAFIA PER INFERMIERI Novi Ligure, 10-11 Dicembre 2007 CORSO TEORICO-PRATICO DI ELETTROCARDIOGRAFIA PER INFERMIERI Gabriele Zaccone Laura Giorcelli L ELETTROCARDIOGRAMMA Laura GIORCELLI L ECG Significato Esecuzione Interpretazione

Dettagli

Evoluzione dell ECG in età pediatrica : dal neonato all adolescente. Novembre 2015

Evoluzione dell ECG in età pediatrica : dal neonato all adolescente. Novembre 2015 Evoluzione dell ECG in età pediatrica : dal neonato all adolescente Novembre 2015 METODOLOGIA di LETTURA Evolutività di : QRS Onda T Fc durata PR durata QRS asse QRS METODOLOGIA DI LETTURA Evolutività

Dettagli

Dispensa Corso di Elettrocardiografia di Base

Dispensa Corso di Elettrocardiografia di Base Dispensa Corso di Elettrocardiografia di Base A cura del dottor Umberto Gnudi 1 Generalità Elettricità cardiaca La contrazione di ogni muscolo si accompagna a modificazioni elettriche chiamate "depolarizzazioni"

Dettagli

L Infermiere e l elettrocardiogramma

L Infermiere e l elettrocardiogramma L Infermiere e l elettrocardiogramma BORRI Michele S.Matteo Centrale Operativa SSUEm 118 Pavia MONTANARI Carlo S.Matteo Centrale Operativa SSUEm 118 Pavia PRAZZOLI Roberto S.Matteo Unità di Terapia Intensiva

Dettagli

LE TACHICARDIE. 8 th Turin Cardiovascular Nursing Convention Advances in Cardiac Arrhythmias and Great Innovations in Cardiology

LE TACHICARDIE. 8 th Turin Cardiovascular Nursing Convention Advances in Cardiac Arrhythmias and Great Innovations in Cardiology 8 th Turin Cardiovascular Nursing Convention Advances in Cardiac Arrhythmias and Great Innovations in Cardiology Corso pratico di Elettrocardiografia LE TACHICARDIE Gerardo Di Filippo SOC Cardiologia,

Dettagli

Lettura e interpretazione dell elettrocardiogramma: nozioni fondamentali. Elementi morfologici essenziali dell elettrocardiogramma

Lettura e interpretazione dell elettrocardiogramma: nozioni fondamentali. Elementi morfologici essenziali dell elettrocardiogramma infermieri impaginato 2 7-09-2009 15:11 Pagina 21 Sezione 2 Lettura e interpretazione dell elettrocardiogramma: nozioni fondamentali Ida Ginosa Elementi morfologici essenziali dell elettrocardiogramma

Dettagli

ECG standard Parametri di normalità Eventi elettro-meccanici. Dott.Walter Donzelli Cardiologia - Carate B.za

ECG standard Parametri di normalità Eventi elettro-meccanici. Dott.Walter Donzelli Cardiologia - Carate B.za ECG standard Parametri di normalità Eventi elettro-meccanici Dott.Walter Donzelli Cardiologia - Carate B.za Tutti abbiamo un cuore Cuo re org ano vita le Il cuore batte su impulso elettrico ELETTROC ARDIOGRA

Dettagli

Incontri Borgomaneresi di Medicina d Urgenza Borgomanero, 01 dicembre 2016 LE SFIDE DELL ECG

Incontri Borgomaneresi di Medicina d Urgenza Borgomanero, 01 dicembre 2016 LE SFIDE DELL ECG Incontri Borgomaneresi di Medicina d Urgenza Borgomanero, 01 dicembre 2016 LE SFIDE DELL ECG Dr Stefano Maffè Divisione Cardiologia ASL No Borgomanero L ELETTROCARDIOGRAMMA Cosa significa L elettrocardiogramma

Dettagli

Corso di elettrocardiografia essenziale

Corso di elettrocardiografia essenziale Lezione 2 Attività elettrica sopraventricolare Corso di elettrocardiografia essenziale L onda P normale Alterazioni della morfologia Alterazioni della frequenza ; aritmie sopraventricolari La conduzione

Dettagli

ONDA P QRS S-T ONDA T

ONDA P QRS S-T ONDA T L ECG NORMALE L elettrocardiogramma e la registrazione grafica dell attività elettrica del cuore trasmessa attraverso i tessuti fino alla cute. La morfologia fondamentale dell ECG e costituita da un onda

Dettagli

Corso di elettrocardiografia essenziale

Corso di elettrocardiografia essenziale Corso di elettrocardiografia essenziale Napoli Novembre 2004 ANMCO SIC GISE SIMEU SIS 118 ECG 12 derivazioni preospedaliero Il personale, chiamato ad intervenire nei casi di pazienti con sospetta SCA,

Dettagli

Gli errori più comuni nell interpretazione dell ECG.

Gli errori più comuni nell interpretazione dell ECG. Gli errori più comuni nell interpretazione dell ECG. Gli errori più comuni nell interpretazione dell ECG. La corretta esecuzione della registrazione ECGrafica Il corretto settaggio dell elettrocardiografo

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG 27/4/2006 Cuore come dipolo elettrico Il cuore considerato come un generatore elettrico complesso, in cui sono presenti

Dettagli

www.slidetube.it b. ELETTROCARDIOGRAMMA

www.slidetube.it b. ELETTROCARDIOGRAMMA b. ELETTROCARDIOGRAMMA Le fibrocellule miocardiche sono polarizzate in condizioni di riposo, cioè possiedono una elettronegatività sulla faccia interna della membrana cellulare, mentre la faccia esterna

Dettagli

Interpretazione ECG nelle S.C.A.

Interpretazione ECG nelle S.C.A. SEZIONE PUGLIA IL DOLORE TORACICO E LE SINDROMI CORONARICHE ACUTE IN MEDICINA D URGENZA Settembre- ottobre 2010 Interpretazione ECG nelle S.C.A. Paola Caporaletti Domande chiave 1. E presente attività

Dettagli

ARITMIE CARDIACHE. Prof. Carlo Guglielmini

ARITMIE CARDIACHE. Prof. Carlo Guglielmini ARITMIE CARDIACHE Prof. Carlo Guglielmini ARITMIA CARDIACA Definizione Alterazione della frequenza, o della regolarità, o della sede di origine dello stimolo cardiaco e/o disturbo di conduzione dello stimolo

Dettagli

Il sistema cardiocircolatorio: anatomia e fisiologia

Il sistema cardiocircolatorio: anatomia e fisiologia Il sistema cardiocircolatorio: anatomia e fisiologia, Specialista in Oncologia Tel. 0226143258 3388198646 http://lemedicinenaturalineimalatidicancro.docvadis.it Studio medico via G. Giacosa 71, 20127 Milano

Dettagli

Cardiopatie con Shunt sn-dx-ecg Agata Privitera U.O. di Cardiologia Pediatrica Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.

Cardiopatie con Shunt sn-dx-ecg Agata Privitera U.O. di Cardiologia Pediatrica Ospedale Santo Bambino CATANIA www.cardiologiapediatricact. PARLIAMO DI Cardiopatie con Shunt sn-dx-ecg Agata Privitera U.O. di Cardiologia Pediatrica Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.com Cardiopatie con shunt sn-dx ECG Shunt interatriale

Dettagli

Elettrocardiografia per Immagini: Rapido Apprendimento Tramite CD-ROM. Gian Piero Carboni

Elettrocardiografia per Immagini: Rapido Apprendimento Tramite CD-ROM. Gian Piero Carboni Elettrocardiografia per Immagini: Rapido Apprendimento Tramite CD-ROM Gian Piero Carboni Il Prof Gian Piero Carboni lavora presso il Policlinico Universitario sin dalla sua fondazione risalente a primi

Dettagli

Corso base di interpretazione e lettura dell'ecg per l'infermiere. a cura di Prof. Francesco Fedele

Corso base di interpretazione e lettura dell'ecg per l'infermiere. a cura di Prof. Francesco Fedele Corso base di interpretazione e lettura dell'ecg per l'infermiere a cura di Prof. Francesco Fedele Corso base di interpretazione e lettura dell'ecg per l'infermiere a cura di Prof. Francesco Fedele La

Dettagli

LE ARITMIE IPOCINETICHE

LE ARITMIE IPOCINETICHE LE ARITMIE IPOCINETICHE Dr Domenico M. Carretta Struttura Complessa di Cardiologia Taranto Occidentale P.O.Castellaneta Definizione Sono delle aritmie dovute, spesso, ad un patologico rallentamento della

Dettagli

IL RITMO CARDIACO E LE SUE ALTERAZIONI

IL RITMO CARDIACO E LE SUE ALTERAZIONI IL RITMO CARDIACO E LE SUE ALTERAZIONI Il ritmo normale del cuore è il ritmo sinusale, con una frequenza regolare tra 60 e 100 battiti al minuto. Questa è la definizione accettata dal Criteria Committee

Dettagli

Proprietà letteraria riservata Editmabi.com s.r.l., Via Ausonio 4, 20123 Milano - tel. 02 4817137

Proprietà letteraria riservata Editmabi.com s.r.l., Via Ausonio 4, 20123 Milano - tel. 02 4817137 Elettrocardiografia per la sopravvivenza (del Medico di Medicina Generale) ISBN 88-8412-023-3 Proprietà letteraria riservata Editmabi.com s.r.l., Via Ausonio 4, 20123 Milano - tel. 02 4817137 Elettrocardiografia

Dettagli

hystamina@hackmed.org John Hampton - CAPITOLO 3 http://www.hackmed.org

hystamina@hackmed.org John Hampton - CAPITOLO 3 http://www.hackmed.org CAPITOLO 3 IL RITMO CARDIACO Fino ad ora, abbiamo considerato soltanto la propagazione dell'onda di depolarizzazione generata dalla normale attivazione del NODO SA. Quando la depolarizzazione comincia

Dettagli

L elettrocardiogramma. Dr. Massimiliano Nieri Cardiologia AUSL 11 Empoli

L elettrocardiogramma. Dr. Massimiliano Nieri Cardiologia AUSL 11 Empoli L elettrocardiogramma Dr. Massimiliano Nieri Cardiologia AUSL 11 Empoli L elettrocardiogramma L elettrocardiogramma L elettrocardiogramma L elettrocardiogramma L elettrocardiogramma Eccitazione del cuore

Dettagli

Vena cava superiore) Arteria polmonare valvole semilunari Arterie polmonari sinistre. Arterie polmonari destre) Vena cava inferiore) Ventricolo destro

Vena cava superiore) Arteria polmonare valvole semilunari Arterie polmonari sinistre. Arterie polmonari destre) Vena cava inferiore) Ventricolo destro Fisiologia cardiaca Arterie polmonari destre) Vena cava superiore) Arteria polmonare valvole semilunari Arterie polmonari sinistre Atrio destro Vene polmonari sinistre Valvola bicuspide (mitrale) Valvola

Dettagli

L ELETTROCARDIOGRAMMA

L ELETTROCARDIOGRAMMA COLLEGIO IPASVI SIRACUSA L ELETTROCARDIOGRAMMA ENNA 30 novembre 2013 Antonio MAMMONE Carmelo FLORIDDIA L ELETTROCARDIOGRAMMA E.C.G. L elettrocardiografia è la principale e più comune metodica di indagine

Dettagli

UNIVERSITA DEGLI STUDI DI VERONA FACOLTA DI MEDICINA E CHIRURGIA ELETTROCARDIOGRAMMA

UNIVERSITA DEGLI STUDI DI VERONA FACOLTA DI MEDICINA E CHIRURGIA ELETTROCARDIOGRAMMA UNIVERSITA DEGLI STUDI DI VERONA FACOLTA DI MEDICINA E CHIRURGIA ELETTROCARDIOGRAMMA Le 12 derivazioni dell ECG di superficie completo. Caratteristiche di un vettore: Grandezza Direzione Polarità

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Prof. Luigi De Biasi VETTORI

Prof. Luigi De Biasi VETTORI VETTORI 1 Grandezze Scalari e vettoriali.1 Le grandezze fisiche (ciò che misurabile e per cui è definita una unità di misura) si dividono due categorie, grandezze scalari e grandezza vettoriali. Si definisce

Dettagli

L elettrocardiogramma nel paziente con soffio

L elettrocardiogramma nel paziente con soffio L elettrocardiogramma nel paziente con soffio Dott. Roberto Santilli Med.Vet., PhD, D.E.C.V.I.M.-C.A. (Cardiology) Clinica Veterinaria Malpensa Samarate Varese - Italy Tecnica Elettrocardiografia Monitoraggio

Dettagli

Seconda Parte Specifica di scuola - Malattie dell'apparato cardiovascolare - 29/07/2015

Seconda Parte Specifica di scuola - Malattie dell'apparato cardiovascolare - 29/07/2015 Domande relative alla specializzazione in: Malattie dell'apparato cardiovascolare Domanda #1 (codice domanda: n.371) : Nella fibrillazione atriale: A: gli atrii vengono eccitati in maniera caotica, disorganizzata,

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Francesco De Luca, Agata Privitera U.O.C. di Cardiologia Pediatrica, Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.

Francesco De Luca, Agata Privitera U.O.C. di Cardiologia Pediatrica, Ospedale Santo Bambino CATANIA www.cardiologiapediatricact. Francesco De Luca, Agata Privitera U.O.C. di Cardiologia Pediatrica, Ospedale Santo Bambino CATANIA www.cardiologiapediatricact.com U.O.C. Cardiologia Pediatrica Ospedale Santo Bambino CT Ingrandimento

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

Interpretazione dell ECG in 5 minuti

Interpretazione dell ECG in 5 minuti Interpretazione dell ECG in 5 minuti L elettrocardiogramma è uno degli esami che vengono più spesso praticati nelle strutture sanitarie e consente di andare ad esplorare l attività elettrica del cuore

Dettagli

Vademecum per l esecuzione dell ECG

Vademecum per l esecuzione dell ECG Vademecum per l esecuzione dell ECG a cura di tutor infermiera Roberta Gasperoni tutor infermiera Cinzia Bucci Coordinatrice Monica Lagrotteria 1 ECG L ECG standard è rappresentato dalla registrazione

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Il sistema cardiovascolare (cenni)

Il sistema cardiovascolare (cenni) Il sistema cardiovascolare (cenni) Il sistema cardiovascolare (cenni) Il movimento del sangue nei vasi è mantenuto dal cuore, la cui funzione è quella di pompare nelle arterie (ad alta pressione), dopo

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Studio Neurofisiologico delle vie sensitive. ENG/EMG SEP Test vegetativi Potenziali evocati laser.

Studio Neurofisiologico delle vie sensitive. ENG/EMG SEP Test vegetativi Potenziali evocati laser. Studio Neurofisiologico delle vie sensitive ENG/EMG SEP Test vegetativi Potenziali evocati laser. ENG - EMG ELETTRONEUROGRAFIA studio delle velocità di conduzione nervose sensitive e motorie Rappresenta

Dettagli

Fondamenti di Elettrocardiografia

Fondamenti di Elettrocardiografia Marcello Bracale L'elettrocardiografo è uno strumento prezioso in quanto consente al medico di valutare il percorso dell'impulso cardiaco semplicemente registrando le variazioni di potenziale elettrico

Dettagli

Dolore. Compito 1 Siete di pattugliamento in occasione di un posto samaritano. Vi imbattete nella seguente situazione.

Dolore. Compito 1 Siete di pattugliamento in occasione di un posto samaritano. Vi imbattete nella seguente situazione. Compito Dolore Tempo: 10 minuti Compito 1 Siete di pattugliamento in occasione di un posto samaritano. Vi imbattete nella seguente situazione. Pensate ad alta voce e spiegate come state procedendo! Ogni

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006 LIVELLO ÉCOLIER E1. (5 punti ) Qual è il multiplo di 11 più vicino a 1000? E2. (7 punti ) Le lettere della parola ELA sono tutte distinte fra loro. Fa corrispondere ad ogni lettera di questa parola una

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

SINDROME DI BRUGADA: 2 casi clinici a confronto. Dott. M. Pignalosa

SINDROME DI BRUGADA: 2 casi clinici a confronto. Dott. M. Pignalosa SINDROME DI BRUGADA: 2 casi clinici a confronto Dott. M. Pignalosa SINDROME DI BRUGADA PATOLOGIA ARITMOGENA GENETICA (IN GENERE LEGATA AL GENE SCN5A) A TRASMISSIONE AUTOSOMICA DOMINANTE CON PENETRANZA

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

CORSO DI ECG PER IP. 12/04/11 Corso ECG 1

CORSO DI ECG PER IP. 12/04/11 Corso ECG 1 CORSO DI ECG PER IP 12/04/11 Corso ECG 1 B1 1.0 Cenni di EF 12/04/11 Corso ECG 2 Diapositiva 2 B1 inizio BIBLIOAL; 14/12/2007 Cellula: cariche el. 12/04/11 Corso ECG 3 Joni dentro e fuori 12/04/11 Corso

Dettagli

Ospedale Rivoli U.O Cardiologia A.Flagelli E.De Luca

Ospedale Rivoli U.O Cardiologia A.Flagelli E.De Luca Ospedale Rivoli U.O Cardiologia A.Flagelli E.De Luca Ischemia ed Infarto del Miocardio Si definisce ischemia miocardica quella situazione in cui il circolo non è più adeguato alle esigenze metaboliche

Dettagli

I POTENZIALI D AZIONE CARDIACI

I POTENZIALI D AZIONE CARDIACI I POTENZIALI D AZIONE CARDIACI La continua successione ordinata e ritmica delle contrazioni atriali e poi ventricolari è regolata da speciali meccanismi che si esplicano nei quattro tessuti principali

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad

Dettagli

Corso di elettrocardiografia per operatori sanitari dell area critica. Effetti degli elettroliti e dei farmaci sull ECG

Corso di elettrocardiografia per operatori sanitari dell area critica. Effetti degli elettroliti e dei farmaci sull ECG Corso di elettrocardiografia per operatori sanitari dell area critica Effetti degli elettroliti e dei farmaci sull ECG Alterazioni elettrolitiche - Ipopotassiemia Aumento della durata della fase 3 del

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

Meccanica cardiaca. La contrazione cardiaca. Cellule di conduzione. Cellule di contrazione. scaricato da 0 mv. 0 mv.

Meccanica cardiaca. La contrazione cardiaca. Cellule di conduzione. Cellule di contrazione. scaricato da  0 mv. 0 mv. Meccanica cardiaca La contraione cardiaca Il cuore consta di due gruppi di cellule, le cellule di contraione e le cellule deputate alla conduione dello stimolo. Le cellule contrattili si depolariano con

Dettagli

IL SISTEMA DI CONDUZIONE CARDIACO

IL SISTEMA DI CONDUZIONE CARDIACO IL SISTEMA DI CONDUZIONE CARDIACO Le strutture specializzate inserite all interno della parete cardiaca generano e trasmettono gli impulsi attraverso il miocardio, provocando prima la contrazione degli

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. Elettricità 1 ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, acquistano una carica elettrica netta, cioè essi acquistano la proprietà di attrarre o di respingere

Dettagli

MONITORAGGIO ECG E RICONOSCIMENTO RITMI

MONITORAGGIO ECG E RICONOSCIMENTO RITMI MONITORAGGIO ECG E RICONOSCIMENTO RITMI E PRESENTE UNA QUALCHE ATTIVITA ELETTRICA? QUALE E LA FREQUENZA VENTRICOLARE (QRS)? IL RITMO (SUCCESSIONE DEI QRS) E REGOLARE O IRREGOLARE? IL COMPLESSO QRS E STRETTO

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche.

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Campo elettrico E Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Il concetto di campo elettrico venne introdotto da Michael

Dettagli