acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1"

Transcript

1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1

2 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul livello degli esercizi:(*)fcile, (**) non difficile (***) medi complessità, (****) difficile, (*****) qusi impossiile Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 2

3 teorem L è un linguggio regolre L è definiile con un espressione regolre d un espressione regolre per L si ricv un ASFND pplicndo le proprietà di chiusur dei linguggi regolri (dll ASFND si può poi ricvre un grmmtic regolre che gener L) d un grmmtic regolre che gener L si ricv un espressione regolre risolvendo un sistem di equzioni lineri Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 3

4 il sistem di equzioni lineri si ricv dll grmmtic sostituendo ogni insieme di produzioni del tipo: A 1 B 1 2 B 2... n B n m l modo: A= 1 B B n B n m dl sistem di equzioni lineri si ricv un espressione regolre pplicndo le due tecniche seguenti ripetutmente: sostituzione: si può sostituire un simolo non terminle con un espressione equivlente (es. A=B+,B=cA A = ca + ) eliminzione dell ricursione: si può sostituire l equzione A=α 1 A+α 2 A α n A+β 1 + β β m con l equzione A=(α 1 + α α n )* (β 1 + β β m ) Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 4

5 Esercizi svolti: d grmmtic espressione regolre Esercizio 1(**) ricvre un espressione regolre per il linguggio generto dll seguente grmmtic regolre: S A A A C cc S C A C C d Soluzione si ricv il seguente sistem: S=A+C A=A+C C=cC+d Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 5

6 Esercizi svolti: d grmmtic espressione regolre si pplicno le tecniche di sostituzione ed eliminzione dell ricursione: S=A+C S=A+C S= A + c*d A=A+C A=A+C A = A + c*d C=cC+d C=c*d S=A+c*d S = *c*d + c*d A = *c*d dunque risult: *c*d + c*d che semplifict divent: *c*d Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 6

7 Esercizi svolti: d grmmtic espressione regolre Esercizio 2(**) ricvre un espressione regolre per il linguggio generto dll seguente grmmtic regolre: S X X Y Y X Soluzione S=X S=X S=X S = ()* X=Y+ X = X + X = ()* Y=X Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 7

8 Esercizi svolti: d grmmtic espressione regolre Esercizio 3(***) ricvre un espressione regolre per il linguggio generto dll seguente grmmtic regolre: S X X X Y ε Y Y X Soluzione S=X+ S=X+ S=X+ X=X+Y+ε X=X+Y+ε X = X + *X + ε Y = Y + X Y =*X Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 8

9 Esercizi svolti: d grmmtic espressione regolre S=X+ S=X+ S = (+*)* + X = X + *X + ε X=(+*)* che può essere semplifict l modo: (+*)* Esercizio 4(***) ricvre un espressione regolre per il linguggio generto dll seguente grmmtic regolre: S X X X X Y Y Y Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 9

10 Esercizi svolti: d grmmtic espressione regolre Soluzione S = X X = X + X + Y + Y =Y+ S=X S = X X = X + X + Y + Y = * S=X X = X + X + * + X = (+)*(* + ) S = (+)*(* + ) che si semplific l modo: (+)** Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 10

11 Esercizi d svolgere: d grmmtic espr. regolre Esercizio 5(***) ricvre un espressione regolre per il linguggio generto d ciscun delle seguenti grmmtiche regolri: 1) S A A A A 2) S X X X X 3) S B C B X X B C cc c Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 11

12 teorem è possiile decidere se un linguggio regolre L è vuoto, finito o infinito è sufficiente studire un ASF A che riconosce L: se n èilnumero disttidia,llor: Lèvuoto se e solo se A non ccett lcun string di lunghezz minore di n Lèinfinito se e solo se A ccett qulche string di lunghezz k [n, 2n) ltrimenti Lèfinito Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 12

13 Esercizio 6(*) dire se i linguggi riconosciuti di seguenti ASF sono vuoti, finiti o infiniti q 1 q 0 c q 2 q 3 q 0 q 4 q 2 q 3 c q 4 c q 5 q 0 q 4 c q 2 q 3 c Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 13

14 teorem dti due linguggi regolri L 1 ed L 2 è possiile decidere se: L 1 L 2 L 1 =L 2 inftti: L 1 L 2 L 1 -L 2 = (L 1 -L 2 =c(c(l 1 ) L 2 ) L 1 =L 2 L 1 L 2 ed L 2 L 1 osservzione: L 1 =L 2 equivle nche dire che (L 1 c(l 2 )) (L 2 c(l 1 )) = Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 14

15 Esercizio 7(***) dimostrre formlmente che il linguggio L 1 riconosciuto dll ASF A 1 è contenuto nel linguggio L 2 riconosciuto dll ASF A 2. A 1 q C q D q E A 2 q A q B Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 15

16 Soluzione dimostrimo che A = A 1 -A 2 è un utom che riconosce il linguggio vuoto A 2 c(a 1 ) A 2 q A q B q 0 q F q C, q D q E c(a 1 ) Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 16

17 ASF c(a 1 ) A 2 q BD q AF q 0 q BE q BF q F, q AC quindi, il complementre di questo ASF non vrà stti finli, e dunque riconoscerà il linguggio vuoto. Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 17

18 teorem si L un linguggio sull lfeto ; si dt l seguente relzione di equivlenz su *: xr L y ( z * xz L yz L) R L h indice finito L è regolre osservzioni: si ricordi che l indice di R L è il numero delle su clssi di equivlenz, cioè il numero di elementi dell insieme quoziente R L / * il terom di Myhill-Nerode fornisce un crtterizzzione dei linguggi regolri, e può quindi essere usto per provre si l regolrità che l non regolrità di un linguggio Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 18

19 Esercizi svolti sul teorem di Myhill-Nerode Esercizio 8(**) determinre tutte le clssi di equivlenz dell relzione R L per il linguggio L = **. Soluzione: esistono tre distinte clssi di equivlenz: C 1 ={ n : n 0} (not: comprende nche ε) C 2 ={ n m : n,m 0} C 3 ={w {,}* : non esiste z tle che wz L} esercizio: mostrre qulche string di C 3 Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 19

20 Esercizi svolti sul teorem di Myhill-Nerode osservzione: le clssi di equivlenz di R L rispetto d un linguggio regolre L sono ssociili gli stti di un opportuno ASF (minimo) che riconosce L esempio per L = **, q 0 q 1 q 2 C 1 ={ n : n 0} q 0 C 2 ={ n m : n,m 0} q 1 C 3 ={w {,}* : non esiste z tle che wz L} q 2 Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 20

21 Esercizi svolti sul teorem di Myhill-Nerode Esercizio 9(***) determinre tutte le clssi di equivlenz dell relzione R L per il linguggio L riconosciuto dl seguente ASF; qul è l indice di R L? q 1 q 4 q 0 q P q 2 q 3 Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 21

22 Esercizi svolti sul teorem di Myhill-Nerode Soluzione considerimo l relzione di equivlenz xr M y δ(q 0,x) = δ(q 0,y); sppimo che (vedi dimostrzione del teorem di Myhill-Nerode) se xr M y xr L y, quindi R M h indice mggiore o ugule quello di R L (le clssi di R L sono otteniili per unione di clssi di R M ) le clssi di R M si ottengono fcilmente dll ASF: C 1 ={ε} q 0 C 2 ={} q 1 C 3 ={*} q 2 C 4 ={*} q 3 C 5 ={**} q 4 (not che C 5 =L) C 6 ={w {,}* : non esiste z tle che wz L} q P Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 22

23 Esercizi svolti sul teorem di Myhill-Nerode C 1 ={ε} q 0 C 2 ={} q 1 C 3 ={*} q 2 C 4 ={*} q 3 C 5 ={**} q 4 (not che C 5 =L) C 6 ={w {,}* : non esiste z tle che wz L} q P per ottenere le clssi di equivlenz di R L si osserv che le clssi C 2 e C 4 devono essere unite, in qunto R L ( * ); inoltre risult εr L (*), quindi nche C 1 ec 3 deono essere unite; le clssi di equivlenz di R L sono dunque le seguenti: Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 23

24 Esercizi svolti sul teorem di Myhill-Nerode C 1 ={*} q 0 (unione di C 1 ec 3 ) C 2 ={*} q 1 (unione di C 2 ec 4 ) C 3 ={**} q 3 (equivle C 5 ) C 4 ={w {,}* : non esiste z tle che wz L} q P (equivle C 6 ) si può in effetti costruire un ASF (minimo) con soli 4 stti che riconosce L q 0 q 1 q 3 q P Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 24

25 Esercizio svolti sul teorem di Myhill-Nerode Esercizio 10(***) determinre le clssi di equivlenz dell relzione R L di Myhill-Nerode per il seguente linguggio regolre: L = ( + c)*. Soluzione considerimo un ASF che riconosce L q 0 q P,c,c q 1 q 3 q 2 c Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 25

26 Esercizio svolti sul teorem di Myhill-Nerode le clssi di R M sono: C 1 ={ε} q 0 C 2 ={} q 1 C 3 ={} q 2 C 4 ={*, c*} q 3 C 5 ={w {,}* : non esiste z tle che wz L} q P d ltro cnto, è fcile osservre che non è possiile unire nessun di queste clssi nell relzione R L (l AFS h il minimo numero di stti); quindi le clssi di R M coincidono con quelle di R L. Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 26

27 Esercizio svolti sul teorem di Myhill-Nerode Esercizio 11(***) dimostrre, utilizzndo il teorem di Myhill-Nerode, che il linguggio L = { n n : n 0} non è regolre; quli sono le clssi di equivlenz dell relzione R L? Soluzione l relzione R L h un clsse di equivlenz { k } distint per ogni nturle k; inftti, comunque scelti k>h, risult che l string k k pprtiene l linguggio, mentre non vi pprtiene l string h k ; dunque, R L h sicurmente un numero infinito di clssi di equivlenz, e pertnto L non è regolre. tutte le clssi di equivlenz di R L sono le seguenti: Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 27

28 Esercizio svolti sul teorem di Myhill-Nerode {ε} { k } k >0 { k h } k, h > 0 {w {,}* : non esiste z tle che wz L} Esercizio 12(****) dto il linguggio L = { n m c n+m : n,m 1}, determinre tutte le clssi di equivlenz dell relzione R L. Soluzione osservzioni preliminre: le stringhe,,, pprtengono tutte ll stess clsse di equivlenz; Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 28

29 Esercizi svolti sul teorem di Myhill-Nerode più in generle: per ogni k > 1 le stringhe del tipo x = n m : n,m 1edn+m=k pprtengono ll stess clsse di equivlenz, inftti xz L z= h c k+h (h 0); quindi per ogni k >1 B k ={ n m : n,m 1edn+m=k } è un clsse di equivlenz distint; rgionndo nlogmente sopr, per ogni k > 0 le stringhe del tipo x= n m c h :(n+m) - h = k ed n,m,h 1, pprtengono ll stess clsse di equivlenz, inftti xz L z=c k ; quindi per ogni k >0 C k ={ n m c h :(n+m) - h = k ed n,m,h 1} è un clsse di equivlenz distint; le ltre clssi di equivlenz sono: A k ={ k } per ogni k 0 (notre che A 0 ={ε}) e l clsse D={w {,,c}* : non esiste z tle che wz L} Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 29

30 Esercizi d svolgere sul teorem di Myhill-Nerode Esercizio 13(***) dto il linguggio L = *()*, determinre tutte le clssi di equivlenz dell relzione R L. Esercizio 14(***) dimostrre, utilizzndo il teorem di Myhill-Nerode, che il linguggio L = { n m c n : n,m 0} non è regolre; determinre inoltre tutte le clssi di equivlenz dell relzione R L. Esercizio 15(****) dto il linguggio L = { n m c n+m : n,m 0}, determinre tutte le clssi di equivlenz dell relzione R L. (ttenzione: in questo cso possono nche mncre delle o delle } Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 30

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

ESERCITAZIONE I. Linguaggi Regolari

ESERCITAZIONE I. Linguaggi Regolari ESERCITAZIONE I Linguggi Regolri 2 INTRODUZIONE TIPI DI TRASFORMAZIONI ASFD ASFND ER GR Il percorso di trsformzioni in grigio srà il primo d essere nlizzto, mentre il rosso verrà trttto in seguito. Il

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 9 Sommrio. Crtterizzimo l equivlenz elementre in termini di sistemi di isomorfismi przili e di giochi di Ehrenfeucht-Frïssé. 1. Giochi di Ehrenfeucht-Frïssé

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

LINGUAGGI FORMALI Esercizi

LINGUAGGI FORMALI Esercizi LINGUAGGI FORMALI Esercizi PPPPPP Nicol Fnizzi LINGUAGGI DI PROGRAMMAZIONE Corso di Informtic T.P.S. Diprtimento di Informtic Università di Bri Aldo Moro [2014/01/28-13:30:23] [ 2 / 14 ] Indice 1 Introduzione

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

LINGUAGGI FORMALI E AUTOMI

LINGUAGGI FORMALI E AUTOMI LINGUAGGI FORMALI E AUTOMI (DISPENSE) ALBERTO BERTONI, BEATRICE PALANO 1 Cpitolo 1: Linguggi e Grmmtiche 1. Monoide delle prole, Linguggi e operzioni tr linguggi In generle, con linguggio si intende l

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Esercizi su spazi ed operatori lineari

Esercizi su spazi ed operatori lineari Esercizi su spzi ed opertori lineri Corso di Fisic Mtemtic 2,.. 2013-2014 Diprtimento di Mtemtic, Università di Milno 23 Ottobre 2013 1 Spzio L 2 Esercizio 1. Per = 0, b = 1, dire quli delle seguenti funzioni

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Lezione 1 Insiemi e numeri

Lezione 1 Insiemi e numeri Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

TITOLAZIONI ACIDO-BASE

TITOLAZIONI ACIDO-BASE TITOLAZIONI ACIDO-BASE Soluzioni stndrd Le soluzioni stndrd impiegte nelle titolzioni di neutrlizzzione sono cidi forti o bsi forti poiché queste sostnze regiscono completmente con l nlit, fornendo in

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica Esercizi di Informtic Teoric M.S.Pini, C.Pizzi Diprtimento di Ingegneri dell Informzione Università degli Studi di Pdov Esercizio 14 1. Costruire un PDA che riconosc il linguggio L = {0 n 1 n, n 1} per

Dettagli

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate. Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Sistemi lineari Sistemi lineari quadrati

Sistemi lineari Sistemi lineari quadrati Sistemi lineri Sistemi lineri qudrti Definizione e crtteristiche di sistem qudrto (/) Dti un mtrice qudrt A(n n) ed un vettore (colonn) b d n componenti; Determinimo in modo tle che: A b Quest relzione

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

La Logica BAN. Formalismo

La Logica BAN. Formalismo Network Security Elements of pplied Cryptogrphy nlisi e progetto di protocolli crittogrfici L logic N Principi di progettzione Csi di studio: Needhm-Schroeder, Otwy- Rees; SSL (old version); 509; GSM Il

Dettagli

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori L fisic come scienz sperimentle Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Topologia Algebrica e Analisi Complessa

Topologia Algebrica e Analisi Complessa Ginluc Occhett Note di Topologi Algeric e Anlisi Compless Diprtimento di Mtemtic Università di Trento Vi Sommrive 14 38050 - ovo (TN) Not per l lettur Queste note rccolgono gli rgomenti (lcuni vriili

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

TOPOLOGIA GENERALE. Gianluca Occhetta. e primi elementi di topologia algebrica. Note di

TOPOLOGIA GENERALE. Gianluca Occhetta. e primi elementi di topologia algebrica. Note di Ginluc Occhett Note di TOOLOGIA GENERALE e primi elementi di topologi lgeric Diprtimento di Mtemtic Università di Trento Vi Sommrive 14 38050 - ovo (TN) Not per l lettur Queste note rccolgono gli rgomenti

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Frncesc Pelosi Diprtimento di Mtemtic, Università di Rom Tor Vergt CALCOLO NUMERICO.. 008 009 http://www.mt.unirom.it/ pelosi/ INTEGRAZIONE NUMERICA p.1/0 INTEGRAZIONE NUMERICA Dt

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli