Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali."

Transcript

1 Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici

2 Energia potenziale di due cariche Si può dimostrare che la forza di Coulomb è conservativa e quindi esiste una energia potenziale elettrostatica. Consideriamo per semplicità una carica q 1 nel campo generato da un altra carica q 2 fissa nell origine. L energia potenziale si ricava dal lavoro fatto dalla forza elettrica fra r A e r B : U(r B ) U(r A ) = B A F d s ed ha la seguente espressione: U(r) = kq 1q 2 r Il risultato è analogo al caso della forza di gravità; l energia potenziale gravitazionale U(r) = GMm/r si riduce alla forma nota U = mgh sulla superficie della terra

3 Energia potenziale elettrostatica II Nel caso in cui abbiamo molte cariche, l energia potenziale U è data da U( r 1, r 2,...) = i>j j kq i q j r i r j ovvero dalla somma dell energia potenziale di tutte le coppie di cariche. Se consideriamo invece una carica q in un campo elettrico E dato, possiamo definire l energia potenziale U tramite l espressione U( r B ) U( r A ) = B A q E d s (possiamo prendere U( r) = 0 per un qualche valore di r, come nell espressione dell energia potenziale di due cariche in cui si è assunto U( ) = 0; oppure limitarci a considerare differenze di energia potenziale che sono le sole significative)

4 Potenziale elettrico Il potenziale elettrico, o semplicemente potenziale, di solito indicato con V, è definito a partire dall energia potenziale U di una carica q come: V = U q (di nuovo, definito a meno di una costante come l energia potenziale) Il potenziale si misura in Volt: 1 V = 1 J/C. Si usa spesso come unità di misura dell energia in sistemi microscopici l elettronvolt (ev): 1eV è l energia acquistata da un elettrone che attraversa una differenza di potenziale di 1 V. 1 ev = C 1 V = J. Si usa spesso come unità di misura del campo elettrico il V/m

5 Potenziale e campo elettrico Fra il potenziale e il campo elettrico intercorre la stessa relazione che fra l energia potenziale e le forze (conservative): Dal campo elettrico si ricava il potenziale tramite il lavoro fatto dal campo (con segno negativo): V B V A = B A E d s Dal potenziale si ricava il campo elettrico tramite derivazione. Per un potenziale in una sola dimensione: In tre dimensioni: E( r) = dv (x) E(x) = dx. ( V (x, y, z), x V (x, y, z), y ) V (x, y, z) z (la quantità fra parentesi è nota come gradiente di una funzione)

6 Differenza di potenziale, campo elettrico uniforme Se il campo elettrico E è uniforme, la differenza di potenziale V = V B V A fra due punti vale V = B A E d s = E(x B x A ) Se la carica q è positiva, è spinta dal campo verso destra, dove V = Ex < 0: il potenziale diminuisce. Anche l energia potenziale diminuisce ( U = q V ) mentre l energia cinetica aumenta. Se q è negativa, sarà spinta dal campo verso sinistra, dove il potenziale aumenta: V = Ex > 0 (mentre U = q V diminuisce). Possiamo scrivere per il potenziale di un campo costante la forma: V (x) = Ex + V (x = 0) o più in generale V ( r) = E r + V ( r = 0)

7 Differenza di potenziale, campo elettrico uniforme II Assumiamo campo elettrico uniforme, E = V/m, distanza d = 0.5m. Differenza di potenziale fra le armature? V = V B V A = Ed = V. Variazione di energia potenziale? U = e V = J. A questo punto potete rispondere alla domanda: quanto vale l energia cinetica finale del protone? Sia il potenziale che l energia potenziale sono più bassi in B che in A. Riuscite a vedere la somiglianza fra questo caso e un corpo nel campo gravitazionale terrestre descritto da un energia potenzlale U = mgh?

8 Potenziale di cariche puntiformi Il potenziale generato da una carica puntiforme q si ricava dall espressione dell energia potenziale di due cariche puntiformi: U(r) = kq 1q r da cui V (r) = kq. (assumiamo V ( ) = 0) r In presenza di più cariche puntiformi, vale il principio di sovrapposizione lineare: il potenziale totale è la somma dei contributi delle varie cariche, V ( r) = k q i, dove r i è la distanza del punto r dalla carica q i. r i i Per una distribuzione continua di carica, la somma dq ρ( r) diventa un integrale: V = k r = k r dxdydz, dove r è la distanza della carica dq dal punto P dove si calcola il potenziale. E sempre complicato da calcolare ma più semplice che calcolare il campo elettrico!

9 Esempio: potenziale di un dipolo E la somma dei potenziali delle due cariche: V ( r) = V + ( r)+v ( r) = kq ( ) 1 r r + 1 r r ( r +, r posizione delle due cariche; r distanza dal centro del dipolo al punto P ). Si dimostra che per r >> a il potenziale è approssimabile come V ( r) k D ˆr r 2, D = e( r+ r ) Notare che lungo l asse y, r r + = r r e quindi V = 0. Lo stesso vale per tutto il piano yz ortogonale al dipolo e passante per il centro. Un piano su cui il potenziale ha valore costante si chiama equipotenziale.

10 Superfici equipotenziali Su di una superficie equipotenziale il potenziale ha un valore costante. Il campo elettrico è ortogonale ad una superficie equipotenziale (in caso contrario, la superficie non può essere equipotenziale!). Di conseguenza, le linee di forza sono ortogonali ad una superficie equipotenziale. Qui sopra: superfici equipotenziali per campo elettrico costante (piani), per campo elettrico di una carica (sfere), per un dipolo (forme più complesse, ma notare il piano equipotenziale a metà fra le cariche).

11 Conduttori e Potenziale Abbiamo visto che per un conduttore (ideale) il campo elettrico: è nullo ovunque all interno, e è ortogonale alla superficie e vale E = σ/ɛ 0, σ = densità di carica superficiale del conduttore Di conseguenza, conduttore: qualunque sia la carica sul il potenziale è costante su tutto il conduttore la sua superficie è equipotenziale Possiamo quindi parlare di conduttore a potenziale V perchè V ha un valore costante. In figura: potenziale e campo elettrico per una sfera metallica carica.

12 Condensatori Un qualunque sistema di conduttori che possa immagazzinare carica si chiama condensatore. Un condensatore particolarmente semplice e importante è il condensatore piano, formato da due lastre metalliche (armature) di area A tenute parallele a distanza d. Collegato ad una batteria che produce una differenza di potenziale V, il condensatore si carica di una carica +Q su di un armatura, Q sull altra. Linee di forza del campo elettrico per un condensatore piano. Il campo è quasi costante fra le armature, salvo vicino ai bordi, e quasi nullo al di fuori

13 Capacità di un condensatore La grandezza che caratterizza un condensatore è la capacità, ovvero il rapporto fra carica immagazzinata su di un armatura, Q, e differenza di potenziale fra le armature, V : Q = CV La capacità è veramente ciò che il nome suggerisce: capacità di immagazzinare carica. E una grandezza sempre positiva! La capacità si misura in Farad (F): 1 F = 1 C/V. In pratica, 1F è una capacità enorme: si usano da microfarad (µf) a picofarad (pf). La capacità di un condensatore dipende dalle sue caratteristiche geometriche e dalla presenza di dielettrico (materiale isolante polarizzabile).

14 Capacità di un condensatore piano Campo elettrico fra due lastre uniformemente cariche: E = σ ɛ 0 = Q Aɛ 0 Differenza di potenziale fra le armature di un condensatore piano: da cui: V = Ed = Q d Aɛ 0 C = ɛ 0A d La capacità aumenta all aumentare della superficie delle armature e al diminuire della distanza. Esempio: A = m 2, d=1 mm, capacità: C = ɛ ( ) 0A = d F = F = 3.54pF

15 Energia elettrostatica di un condensatore Portare una carica q da un armatura a potenziale 0 all altra a potenziale V richiede un lavoro W = V q. Calcoliamo il lavoro fatto per caricare il condensatore da q = 0 a q = Q, carica finale, ricordandoci che V V (q) = q/c: W = Q 0 V (q)dq = Q 0 q C dq = 1 C q 2 2 Q 0 = Q2 2C L energia potenziale U immagazzinata in un condensatore di capacità C con una carica Q = CV è quindi U = Q2 2C = 1 2 CV 2 Per un condensatore piano: C = aɛ 0 A/d, V = Ed, U = 1 2 (ɛ 0Ad)E 2. Notare la dipendenza dell energia elettrostatica da E 2 : è un risultato generale

16 Condensatore con dielettrico Un dielettrico è un materiale isolante polarizzabile: per esempio, contenente dipoli che sotto il campo elettrico si allineano. La polarizzazione produce un campo opposto al campo esterno che ne riduce la grandezza di un fattore ɛ > 1 (costante dielettrica). ɛ può valere da poco più di 1 fino a qualche decina. Per un conduttore ɛ =. A parità di carica immagazzinata, la differenza di potenziale fra le armature di un condensatore con dielettrico è ridotta di ɛ, per cui la capacità aumenta di ɛ: C = ɛɛ 0A d

17 Dipolo in un campo elettrico Perchè i dipoli si allineano in presenza di un campo elettrico? le forze agenti sulle due cariche di ogni dipolo producono un momento torcente: τ = 2qEa sin θẑ = DE sin θẑ (il segno è negativo perché la rotazione è in verso orario; ẑ esce dal foglio) Si può associare ad un dipolo D definito come in precedenza in un campo elettrico E una energia potenziale, funzione dell angolo θ: U(θ) = D E = DE cos θ Il momento torcente si ricava da τ = du dθ = DE sin θ

18 Condensatore con dielettrico (2) Consideriamo un condensatore di capacità C 0 in assenza di dielettrico, carico con carica Q, isolato. Inseriamo un dielettrico di costante dielettrica ɛ: Il campo elettrico nel condensatore, e la differenza di potenziale, diminuiscono di un fattore ɛ: E = E 0 ɛ, V = V 0 ɛ. La capacità aumenta di un fattore ɛ: C = ɛc 0 L energia elettrostatica: U = 1 2 CV 2 = 1 Q 2 2 C diminuisce di un fattore ɛ: U = U 0 /ɛ Il dielettrico è risucchiato nel condensatore: l energia diminuisce. E se colleghiamo il condensatore ad una batteria che tiene il potenziale costante?

19 Condensatori in parallelo Per due condensatori C 1 e C 2 in parallelo, abbiamo V 1 = V 2 e Q 1 = C 1 V, Q 2 = C 2 V, da cui Q = Q 1 + Q 2 = (C 1 + C 2 )V, ovvero C eq = C 1 + C 2.

20 Condensatori in serie In questo caso, abbiamo che Q 1 = Q 2 = Q da cui V 1 = Q/C 1, V 2 = Q/C 2, da cui V = V 1 + V 2 = Q(1/C 1 + 1/C 2 ), ovvero 1/C eq = 1/C 1 + 1/C 2.

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

23.2 Il campo elettrico

23.2 Il campo elettrico N.Giglietto A.A. 2005/06-23.3-Linee di forza del campo elettrico - 1 Cap 23- Campi Se mettiamo una carica in una regione dove c è un altra carica essa risentirà della sua presenza manifestando una forza

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Fisica II. 3 Esercitazioni

Fisica II. 3 Esercitazioni etem Esercizi svolti Esercizio 3. alcolare le componenti cartesiane del campo elettrico generato da un dipolo p orientato lungo l asse x in un punto lontano rispetto alle dimensioni del dipolo. Soluzione:

Dettagli

Capacità e energia elettrica immagazzinata

Capacità e energia elettrica immagazzinata Condensatori obsoleti Capacità e energia elettrica immagazzinata Docente: Angelo Carbone Condensatori moderni in ceramica multistrato MLCC Condensatori Un condensatore è costituito da due conduttori che

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti)

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti) : materiali, corpi, al cui interno le carche elettriche possono muoversi liberamente. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari soluzioni elettrolitiche. Si muovono anche gli

Dettagli

Il condensatore. 25/10/2002 Isidoro Ferrante A.A. 2004/2005 1

Il condensatore. 25/10/2002 Isidoro Ferrante A.A. 2004/2005 1 Il condensatore Un condensatore è costituito in linea di principio da due conduttori isolati e posti a distanza finita, detti armature. aricando i due conduttori con carica opposta, si forma tra di essi

Dettagli

Il potenziale elettrico

Il potenziale elettrico Il elettrico Ingegneria Energetica Docente: Angelo Carbone Energia del elettrico e differenza di Relazione tra il elettrico e il Il elettrico dovuto a cariche puntiformi Il elettrico dovuto a una generica

Dettagli

E. Modica A.S. 2010/2011

E. Modica A.S. 2010/2011 I it Istituto Provinciale di Cultura e Lingue Ninni Cassarà A.S. 2010/2011 serie it conduttore Se si considera sferico di raggio r avente una carica totale pari a Q, il potenziale avrà la seguente espressione:

Dettagli

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori Fisica Generale B 2. Elettrostatica dei Conduttori Metallici http://campus.cib.unibo.it/247/ Isolanti o Dielettrici In un isolante (detto anche dielettrico), le cariche elettriche in dotazione a una molecola

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 2 Circuiti elettrici Sommario

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. Elettricità 1 ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, acquistano una carica elettrica netta, cioè essi acquistano la proprietà di attrarre o di respingere

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

IL CAMPO ELETTROSTATICO. G. Pugliese 1

IL CAMPO ELETTROSTATICO. G. Pugliese 1 IL CAMPO LTTROSTATICO G. Pugliese 1 Concetto di campo F G mm r 2 ur (ntrambi forze centrali) F qq 4πε o r 2 ur L azione che si esercita tra due corpi carichi (o tra due masse) si manifesta direttamente

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc. Interazioni fondamentali (origine delle forze) orte : corto raggio ~10-14 m lega i protoni ed i neutroni per formare i nuclei Elettromagnetica : lungo raggio lega elettroni e protoni per formare atomi,

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare la

Dettagli

FISICA 2 con esercitazioni A.A. 2011/2012. Fisica II CdL Chimica

FISICA 2 con esercitazioni A.A. 2011/2012. Fisica II CdL Chimica FISICA 2 con esercitazioni A.A. 2011/2012 Facciamo conoscenza Fortunato Neri Dipartimento di Fisica della Materia e Ingegneria Elettronica tel. 090 676-5007 e-mail: fneri@unime.it Webpage: http://dfmtfa.unime.it/profs/neri

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

L elettrizzazione. Progetto: Istruzione di base per giovani adulti lavoratori 2 a opportunità

L elettrizzazione. Progetto: Istruzione di base per giovani adulti lavoratori 2 a opportunità 1 L elettrizzazione Si può notare che corpi di materiale differente (plastica, vetro ecc.) acquisiscono la proprietà di attirare piccoli pezzetti di carta dopo essere stati strofinati con un panno di stoffa

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Elettrostatica nel vuoto

Elettrostatica nel vuoto Elettrostatica nel vuoto Come abbiamo visto nella parte di meccanica le forze sono o di contatto (attrito, pressione, forza elastica) o a distanza (gravitazione): osservazioni sperimentali hanno mostrato

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

a.a. di immatricolazione matricola Un elettrone è lanciato con velocità iniziale v 0

a.a. di immatricolazione matricola Un elettrone è lanciato con velocità iniziale v 0 Facoltà di FARMACIA a.a. 2009 Cog 2010 ESE del Scheda IXa a.a. di imzione firma FISICA N si scrivano le dimensioni fisiche (nel Sistema Internazionale) delle seguenti grandezze: campo elettrico forza elettrica

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Elettrostatica. pag. 1. Elettrostatica

Elettrostatica. pag. 1. Elettrostatica Carica elettrica Legge di Coulomb Campo elettrico Principio di sovrapposizione Energia potenziale del campo elettrico Moto di una carica in un campo elettrico statico Teorema di Gauss Campo elettrico e

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che:

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: A. 4 elettroni orbitano intorno al nucleo che contiene 4 protoni. B. Attorno al nucleo orbitano 8 elettroni. C. Il nucleo è costituito

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 21.10.2015 Equazione di Laplace Conduttori in un campo elettrostatico Anno Accademico 2015/2016 Energia del campo

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

Testi usati per la proiezione con lavagna luminosa.

Testi usati per la proiezione con lavagna luminosa. Università di Siena, Facoltà di Ingegneria, Corso di Fisica 2 (sede di AR), AA2011-2012, slides lezione n.1, pag.1/12 In queste pagine: Testi usati per la proiezione con lavagna luminosa. Si tratta di

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Esempi di forze conservative Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il orso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche.

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Campo elettrico E Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Il concetto di campo elettrico venne introdotto da Michael

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali eometria delle ree Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali In realtà lo studio della Meccanica delle Strutture non si accontenta di

Dettagli

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme.

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme. PROGRAMMA PREVISTO Testo di riferimento: Fisica Percorsi e metodi Vol. 2 (J. D. Wilson, A. J. Buffa) Le unità didattiche a fondo chiaro sono irrinunciabili, le unità didattiche a fondo scuro potranno essere

Dettagli

Esercizi di Fisica II: Teorema di Gauss 1

Esercizi di Fisica II: Teorema di Gauss 1 Flusso = E n S= E Scos(θ) = Q/e 0 Esercizi di Fisica II: Teorema di Gauss 1 e 0 8.8 10-12 N -1 m -2 C 2,e 1.6 10-19 C Esercizio 1: Flusso elementare! Un campo elettrico di intensità E=1800N/C forma un

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ;

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ; PROBLEMI I primi tre problemi sono tratti dal libro P. Fleury, J.P. Mathieu, Esercizi di Fisica, Zanichelli (Bologna, 1970) che contiene i testi e le relative soluzioni, indicati dal loro numero e pagina

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

LINEE CON CAVO COASSIALE

LINEE CON CAVO COASSIALE LINEE CON CAVO COASSIALE Coefficiente di autoinduzione di un cavo coassiale Sia dato il cavo coassiale di fig. 1 Fig. 1 Cavo coassiale esso è costituito da due conduttori coassiali lunghi, di sezione e

Dettagli

Programma di Matematica - 5A

Programma di Matematica - 5A Programma di Matematica - 5A U.D.1 U.D.2 U.D.3 U.D.4 Premesse all'analisi infinitesimale: Intervalli numerici limitati e illimitati, massimo e minimo, estremo superiore e inferiore. Punto di accumulazione

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t Corrente elettrica In un buon conduttore è disponibile una notevole quantità di elettroni liberi di muoversi Se applico un campo elettrico E essi sono accelerati a = e E/m La velocita' cresce linearmente

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISIA SPERIMENTALE II! orso di laurea in himica (6FU, 48 ORE)! ì Docente: laudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono Ufficio

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Elettromagnetismo

Elettromagnetismo Elettromagnetismo 1. Una bolla di sapone di raggio r = 7.0 cm è caricata al potenziale V 1 = 150 V. La parete della bolla ha spessore s = 5.2 x 10-6 cm. Se si fa scoppiare la bolla e si suppone di raccogliere

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo I FENOMENI ELETTRICI Carica elettrica Forza di Coulomb Campo elettrico Potenziale elettrico Intensità di corrente Leggi di Ohm Resistenza e resistivita Effetto termico della corrente Elettrolisi Carica

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

Insegnante: Prof.ssa La Salandra Incoronata

Insegnante: Prof.ssa La Salandra Incoronata LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata TERMODINAMICA: LE LEGGIDEI GAS IDEALI E LA LORO INTERPRETAZIONE

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

How to compute the sun vector for path planning

How to compute the sun vector for path planning How to compute the sun vector for path planning 1 Calcolo dell illuminazione delle celle solari Si consideri la Fig. 1. Il rover si sposta sulla mappa, variando nel tempo la sua posizione p = ( x y z )

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Proprietà elettriche della materia

Proprietà elettriche della materia Proprietà elettriche della materia Conduttori Materiali in cui le cariche elettriche scorrono con facilità. In un metallo gli elettroni più esterni di ciascun atomo formano una specie di gas all interno

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Fili, finiti e infiniti, uniformemente carichi

Fili, finiti e infiniti, uniformemente carichi Fili, finiti e infiniti, uniformemente carichi Roberto De Luca, Aprile 003 Fili, finiti e infiniti, uniformemente carichi Roberto De Luca DIIMA - Università degli Studi di Salerno 84084 Fisciano (SA).

Dettagli

A1.1 Elettrostatica. Particella Carica elettrica Massa. Elettrone 1,602 x C 9,108 x kg. Protone 1,602 x C 1,672 x kg

A1.1 Elettrostatica. Particella Carica elettrica Massa. Elettrone 1,602 x C 9,108 x kg. Protone 1,602 x C 1,672 x kg A1.1 Elettrostatica Nell affrontare lo studio dell elettrotecnica si segue di solito un percorso che vede, in successione, lo studio dell elettrostatica (campo elettrico), quindi della corrente elettrica,

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

Alcune esperienze di laboratorio sull elettromagnetismo

Alcune esperienze di laboratorio sull elettromagnetismo Alcune esperienze di laboratorio sull elettromagnetismo - Scarica del condensatore A - Oscilloscopio didattico Q - Motorino elettrico A - Sistema molla-magnete Q - Trasformatore didattico A P. Bernardini

Dettagli

CONDUTTORI IN EQUILIBRIO ELETTROSTATICO

CONDUTTORI IN EQUILIBRIO ELETTROSTATICO CONDUTTORI IN EQUILIBRIO ELETTROSTATICO Un insieme di conduttori si dice in equilibrio elettrostatico quando: Non vi è movimento di carica elettrica nel sistema Non vi è variazione nel campo elettrico

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

campo magnetico Introduzione

campo magnetico Introduzione campo magnetico ntroduzione F i s i c a s p e r i m e n t a l e Si era detto: La forza elettrica è descritta dalla legge di Coulomb Tuttavia: La verifica sperimentale era fatta in condizioni statiche La

Dettagli