INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO"

Transcript

1 INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e atrc d Jones Lo stato d polarzzazone d un fasco completamente polarzzato può essere descrtto medante l vettore d Jones t t Y X r In partcolare s hanno le seguent corrspondenze fra uno stato d polarzzazone e la sua rappresentazone vettorale: 45 lneare a crcolare destra vertcale e orzzontal L azone d un dspostvo ottco vene generalmente descrtta da una matrce d dmensone x che trasforma uno stato d polarzzazone rappresentato da IN n uno stato con polarzzazone OUT IN Un polarzzatore che trasmette la polarzzazone orzzontale può essere descrtto medante la matrce P La lamna / e la lamna /4 con asse ottco dsposto vertcalmente sono rappresentate dalle seguent matrc: 4 / / uotando d un angolo le lamne, le matrc vengono trasformate nel seguente modo ' / / ' / / dove cos sn sn cos ved nota n fondo: Trasformazon d coordnate con matrc d Jones.

2 Questo vale per qualsas dspostvo che trasforma lo stato d polarzzazone della radazone e può essere dmostrato nella manera seguente: Il generco stato d polarzzazone rappresentato dal vettore d Stokes J nella base x y vene espresso n una nuova base x y, con x che forma un angolo con x, come J J La trasformazone ntrodotta dalla matrce generca su J sarà: J J. Nella base x -y s ha J J J. Dal momento che J -J J -J J J. Vedamo alcun cas partcolar. cos sen - otatore d polarzzazone: sen cos - Polarzzatore orentato secondo l generco angolo. Avremo: P cos sen sen cos cos sen sen cos cos cossen cossen sen - Lamna / ruotata d un angolo rspetto alla drezone d una polarzzazone lneare n ngresso. Applcando la relazone ' / / s ottene faclmente: cos sen ' /. sen cos L effetto è qund quello d una rotazone della polarzzazone d un angolo - Due lamne /4 dentche, dsposte n sequenza e ruotate dello stesso angolo. facle verfcare che s ottene la matrce corrspondente a una lamna / complessva ruotata d un angolo. Questo rsultato è ovvo dal momento che due sfasament π/ delle due lamne /4 s sommano dando luogo a π. - Con lo stesso ragonamento s ottene che due lamne /4 dentche, dsposte n sequenza e ruotate d due angol ugual n modulo ma con segno opposto, danno luogo alla matrce denttà I. - Studare anche come s trasforma una polarzzazone lneare a ± 45 e una polarzzazone crcolare destra o snstra che entrano n una lamna /4 o / orentata con l asse ottco lungo x o lungo y.

3 Vettore d Stokes Fgura : Sfera d Poncaré e sstema d coordnate Stokes, che mostra la poszone della polarzzazone orzzontale Lnear at, vertcale Lnear at 9, crcolare destra/snstra CP/LCP, e lneare a ±45. Gl stat con polarzzazone pura s trovano sulla superfce V mentre gl stat mst s trovano all nterno della sfera V<. Un qualunque stato d polarzzazone d un onda elettromagnetca può essere rappresentato utlzzando la sfera d Poncaré. Questo può essere ottenuto con quattro parametr d Stokes S con,..,3. Con opportuna normalzzazone, S. I parametr d Stokes {S,S,S 3 costtuscono le coordnate cartesane dello stato d polarzzazone sulla sfera d Poncarè. Il grado d polarzzazone è defnto come V S + S + S 3 / V per fasc completamente polarzzat mentre V< per fasc parzalmente polarzzat. In partcolare s hanno le seguent corrspondenze fra stato d polarzzazone e rappresentazone vettorale d Stokes: orzzontale vertcale Crcolare destra fasco completamente depolarzzato lneare a 45

4 SPINZA N. 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO L obettvo d questa esperenza consste nelo studare l funzonamento d lamne d rtardo a ½ e ¼ d lunghezza d onda e nella caratterzzazone dello stato d polarzzazone della luce utlzzando parametr d Stokes. PBS Funzonamento delle lamne d rtardo Ogn gruppo ha a sua dsposzone una lamna / e una lamna /4. D WP WP PBS Una lamna d rtardo è data da un materale brfrangente che presenta un asse ottco caratterstco. ssa ntroduce uno sfasamento ottco par a /, fra la componente del campo elettromagnetco parallela all asse ottco e quella ortogonale ad esso. Nelle prme msure verrà caratterzzato l funzonamento d entrambe le lamne. spermento: In assenza delle lamne WP e WP l beam spltter polarzzatore PBS vene allneato ortogonalmente al raggo ncdente e n modo che la componente rflessa s mantenga all altezza d rfermento d 4 cm a cu vagga l fasco laser. Allneare allo stesso modo anche PBS, n modo da massmzzare l ntenstà rvelata dal detector D. In questa condzone due PBS trasmettono entramb la polarzzazone orzzontale H. Lamna /: Il prmo passo è la taratura della lamna: bsogna determnare la drezone dell asse ottco. S nsersce la lamna / WP sul cammno del fasco laser. ffettuate una sere d msure dell ntenstà al varare dell angolo d orentazone della lamna. ffettuate un ft con una funzone del tpo cos A + Β. Determnate qund la poszone angolare nella quale l asse ottco della lamna è vertcale: n questa poszone l ntenstà letta dal detector è massma. Questa poszone è unca? Quale è la polarzzazone del fasco laser all ngresso d PBS se la lamna vene poszonata all angolo + 45? Lamna /4: a Anche n questo caso l prmo passo è la taratura della lamna. Con la lamna / WP orentata nella poszone angolare nserre la lamna /4 WP. ffettuate una sere d msure dell ntenstà al varare dell angolo d poszonamento ζ della lamna. ffettuate un ft con una funzone del tpo cos A + Β. Determnate qund la poszone angolare ζ nella quale l asse ottco della lamna è vertcale: n questa poszone l ntenstà letta dal detector è massma. In condzon deal l ntenstà

5 letta dal detector quando la lamna è poszonata all angolo ζ + 45 dovrebbe essere la metà del massmo. Se questo non avvene, quale può essere la ragone? b S poszon adesso la lamna /4 WP all angolo ζ + 45 ed effettuare una sere d msure dell ntenstà al varare della poszone angolare della lamna / WP. Spegare l rsultato ottenuto. La determnazone degl angol e ζ servranno da rfermento nell espermento successvo. La msura con una lamna /4 può essere pù delcata che con una lamna / a causa della sua maggore crtctà d allneamento. S consgla eventualmente d provare a ruotare n orzzontale la lamna WP uscendo dalla condzone d non ortogonaltà rspetto al fasco laser sura de parametr d Stokes d un fasco LAS Fgura : La sfera d Poncaré ed l sstema d coordnate Stokes, che mostra la poszone della polarzzazone orzzontale H, vertcale V, crcolare destra e snstra, L, e lneare a ±45. Gl stat con polarzzazone pura s trovano sulla superfce V mentre gl stat mst s trovano all nterno della sfera V<. Per la caratterzzazone dello stato d polarzzazone d un fasco lumnoso vengono msurate le seguent 4 grandezze, con due PBS nsert: I : ntenstà totale del fasco I I + I I : ntenstà della componente con polarzzazone vertcale [ / 4, / 45 ] I : ntenstà della componente con polarzzazone orzzontale [ / 4, / ] I : ntenstà della componente con polarzzazone lneare a 45 [ / 4 45, /.5 ] I 3 : ntenstà della componente con polarzzazone crcolare destra [ / 4, /.5 ] I quattro parametr d Stokes normalzzat vengono determnat medante le seguent espresson S I / I S I - I / I S I - I / I S 3 I 3 - I / I Il grado d polarzzazone è defnto come V S + S + S 3 / V per fasc completamente polarzzat mentre V< per fasc parzalmente polarzzat. spermento: Caratterzzare lo stato d polarzzazone del laser con PBS nserto: l fasco è completamente polarzzato? muovere PBS e caratterzzate drettamente lo stato d polarzzazone del laser. Quale è lo stato d polarzzazone? Lneare? Completamente polarzzato? Non polarzzato? possble anche utlzzare un semplce polarod al posto d PBS per condurre le msure descrtte. Questa alternatva permette d utlzzare per l anals d Stokes due PBS n sere dopo WP e WP. In questo modo s mglora la precsone con cu vene msurato l grado d polarzzazone V.

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Sommario. 1. Scopo dell esperienza Presupposti teorici Descrizione dell apparato sperimentale Descrizione dell esperimento 7

Sommario. 1. Scopo dell esperienza Presupposti teorici Descrizione dell apparato sperimentale Descrizione dell esperimento 7 Sommaro Pag. 1. Scopo dell esperenza. Presuppost teorc 3 3. Descrzone dell apparato spermentale 6 4. Descrzone dell espermento 7 5. Dat spermental e loro elaborazone 9 5.1 Set d msura con fondo scala 1

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

Sviluppo delle lamiere

Sviluppo delle lamiere Svluppo delle lamere Per ottenere un prodotto fnto d lamera pegata è fondamentale calcolare lo svluppo dell elemento prma d essere pegato. I CAD 3D usano l fattore neutro. AUTORE: Grazano Bonett Svluppo

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

1. DIODO. 1.1 Caratteristica v-i di un diodo a semiconduttore

1. DIODO. 1.1 Caratteristica v-i di un diodo a semiconduttore 1 1. DIODO Il dodo è un bpolo ressto non lneare, che troa largo mpego n molte applcazon d grande nteresse, qual relator d segnal rado, conerttor d potenza (raddrzzator, moltplcator d tensone), lmtator

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose?

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose? Captolo 8 Ottca geometrca 1. Come s rflette la luce? Cosa è la luce? Spacente: per l momento non rsponderemo a questa domanda. Invece d dre cosa la luce sa, ne analzzeremo dapprma l comportamento, utlzzando

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Determinazione del momento d inerzia di una massa puntiforme

Determinazione del momento d inerzia di una massa puntiforme Determnazone del momento d nerza d una massa puntorme Materale utlzzato Set d accessor per mot rotator Sensore d rotazone Portamasse e masse agguntve Statvo con base Blanca elettronca Calbro nteracca GLX

Dettagli

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO ( Il Magnetsmo La forze magnetca La forza Gà a temp d Talete (VI secolo a.c.), nell Antca Greca, era noto un mnerale d ferro n grado d attrare

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO

VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO In questo esempo eseguremo l progetto e la verfca delle armature trasversal d una trave contnua necessare per

Dettagli

Momento di forza su una spira immersa in un campo di induzione magnetica: il momento magnetico.

Momento di forza su una spira immersa in un campo di induzione magnetica: il momento magnetico. Momento d forza su una spra mmersa n un campo d nduzone magnetca: l momento magnetco. In precedenza abbamo vsto che la forza totale agente su una spra percorsa da una corrente mmersa n un campo d nduzone

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sstem 7 Nel captolo precedente abbamo studato la cnematca e la dnamca d un punto materale. Questo captolo fornsce le bas per lo studo d sstem fsc pù complcat, o meglo, d sstem fsc per qual

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Il pendolo fisico. Se l asse è orizzontale, l equazione del moto è, trascurando gli attriti che causano lo smorzamento dell oscillazione, d Mgd 2

Il pendolo fisico. Se l asse è orizzontale, l equazione del moto è, trascurando gli attriti che causano lo smorzamento dell oscillazione, d Mgd 2 l pendolo fsco Un pendolo fsco è un corpo rgdo lbero d rotare attorno ad un asse fsso non passante per l suo centro d massa. l moto del pendolo è completamente descrtto dall angolo d rotazone θ(t), che

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

$%&'$%()($ * +,* -. )) )/

$%&'$%()($ * +,* -. )) )/ !"# $%&'$%()($ * +,* -. )) )/ 1 0 *",13.4 5. '. 1.'$$$ 0 0 *,6 7. 4! 5.! 8 1.)&&9 0 ) ' " / : ; %! 6 " > @ # 5 &' ;" >. ;" >. >.. ; >. # 6 C "! #!#! )!*#!!#!+@

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

- Riproduzione riservata - 1

- Riproduzione riservata - 1 Razze: Setter Inglese Bracco Francese tpo Prene D Franco Barsottn Va Bugallo 1b 56040 Crespna (PI) www.allevamentodelbugallo.t nfo@allevamentodelbugallo.t Parentela e consangunetà; Parentela; genetcamente

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007 Elettronca dello Stato Soldo Prova scrtta del 4 settebre 7 Cognoe e Noe Matrcola Fla Posto Es.) In un esperento d dffrazone d ragg n un crstallo cubco, la cella untara del retcolo recproco s trova ad essere

Dettagli

Lezioni di Sismologia

Lezioni di Sismologia Antono Schettno Lezon d Ssmologa Unverstà d Camerno Stampato all Unverstà d Camerno Copyrght 7 Antono Schettno Tutt drtt rservat I Indce Stress e Stran. Il Tensore dello Stress. Il Tensore dello Stran

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Università degli Studi di Torino D.E.I.A.F.A. Forze conservative. Forze conservative (1)

Università degli Studi di Torino D.E.I.A.F.A. Forze conservative. Forze conservative (1) Unverstà degl Stud d Torno D.E.I.A..A. orze conservatve Unverstà degl Stud d Torno D.E.I.A..A. orze conservatve () Una orza s dce conservatva se l lavoro da essa computo su un corpo che s muove tra due

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε T A Q ε T A Trasmssone del calore per rraggamento Indce. Lo spettro elettromagnetco e la radazone termca. Interazone della radazone termca con la matera 3. La

Dettagli

Dispensa LE RETI TOPOGRAFICHE. Elementi per il calcolo e la compensazione

Dispensa LE RETI TOPOGRAFICHE. Elementi per il calcolo e la compensazione Unverstà degl Stud d Palermo Facoltà d Ingegnera Dspensa LE RETI TOPOGRFICHE Element per l calcolo e la compensazone Vncenzo Franco Mauro Lo rutto Maggo . RILEVMENTO TOPOGRFICO..... SCHEMI MISURE STRETTMENTE

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

MISURA DI CAMPI MAGNETICI A BASSA E MEDIA FREQUENZA A. Agosto (*), G. Crotti (*), D. Giordano (**)

MISURA DI CAMPI MAGNETICI A BASSA E MEDIA FREQUENZA A. Agosto (*), G. Crotti (*), D. Giordano (**) MISURA DI CAMPI MAGNETICI A BASSA E MEDIA FREQUENZA A. Agosto (*), G. Crott (*), D. Gordano (**) (*) I.N.RI.M, Isttuto Nazonale d Rcerca Metrologca Strada delle Cacce, 91-10135 Torno crott@nrm.t (**) Poltecnco

Dettagli

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω NRGIA CINTICA DI ROTAZION k m R ) ( k R m R m spressone generca dell energa cnetca d rotazone: I k Se la rotazone aene ntorno ad un asse prncpale d nerza, allora: I L da cu: I L k NRGIA CINTICA DI ROTOTRASLAZION

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

PONTE DELLA MUSICA - ROMA Analisi modale operazionale

PONTE DELLA MUSICA - ROMA Analisi modale operazionale g 0.01 g 0.04 g 5.00e-3 g 0.08 g 8.00e-3 g -9.00e-3 20:VACALE:14:+Y 0.00 s 2200.00-0.08 21:VACALE:14:+Z 0.00 s 2200.00-7.00e-3 22:VACALE:12:+Y 0.00 s 2200.00-0.05 23:VACALE:12:+Z 0.00 s 2200.00-0.01 24:VACALE:13:+X

Dettagli

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore Modello per la stma della produzone d una dscarca gestta a boreattore 1 Produzone d Bogas Nella letteratura tecnca sono stat propost dvers modell per stmare la produzone d bogas sulla base della qualtà

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Obiettivi Il concetto di Resilienza applicato ai territori rurali Una proposta p metodologica Un esempio: diversità e sviluppo

Obiettivi Il concetto di Resilienza applicato ai territori rurali Una proposta p metodologica Un esempio: diversità e sviluppo Obettv Il concetto d Reslenza applcato a terrtor rural Una proposta p metodologca Un esempo: dverstà e svluppo Concluson Interpretare terrtor rural come sstem soco-ecologc Analzzare le propretà della reslenza

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

impianti di prima pioggia

impianti di prima pioggia SHUNT ITALIANA TECHNOLOGY S.r.l. dvsone depurazone acque mpant d prma pogga un futuro per l acqua... 0867 CAPONAGO (MB) - Va G. Galle, - Tel. 0.95.96.6 - Fax 0.95.74..54 - dvacque@shunt.t - www.shunt.t

Dettagli

Capitolo III. Transistori bipolari a giunzione

Capitolo III. Transistori bipolari a giunzione Captolo III Transstor bpolar a gunzone Il dodo è un dsposto a due termnal, mentre transstor bpolar sono a tre termnal. I dspost a tre termnal sono quell pù usat perché possono essere utlzzat n una molttudne

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

INFLUENZA DEL RODAGGIO SULLE CONDIZIONI DI FUNZIONAMENTO DI MACCHINE VOLUMETRICHE AD INGRANAGGI ESTERNI

INFLUENZA DEL RODAGGIO SULLE CONDIZIONI DI FUNZIONAMENTO DI MACCHINE VOLUMETRICHE AD INGRANAGGI ESTERNI M.Borgh, M. Mlan, F. Paltrner, M. Gudett 1 INFLUENZA DEL RODAGGIO SULLE CONDIZIONI DI FUNZIONAMENTO DI MACCHINE VOLUMETRICHE AD INGRANAGGI ESTERNI M. Borgh (1, M. Mlan (1, F. Paltrner (1, M. Gudett ( (1

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

CONFORMITA DEL PROGETTO

CONFORMITA DEL PROGETTO AMGA - Azenda Multservz S.p.A. - Udne pag. 1 d 6 INDICE 1. PREMESSA...2 2. CALCOLI IDRAULICI...3 3. CONFORMITA DEL PROGETTO...6 R_Idr_Industre_1 Str.doc AMGA - Azenda Multservz S.p.A. - Udne pag. 2 d 6

Dettagli

pendii naturali e delle scarpate artificiali, le tensioni di taglio stesso lungo potenziali superfici di scorrimento.

pendii naturali e delle scarpate artificiali, le tensioni di taglio stesso lungo potenziali superfici di scorrimento. Anals d stabltà de pend Quando l pano campagna non è orzzontale, come nel caso de pend natural e delle scarpate artfcal, le tenson d taglo ndotte dalle forze gravtazonal tendono a smuovere l terreno stesso

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

Turbomacchine. Un ulteriore classificazione avviene in base alle modalità con cui l energia viene scambiata:

Turbomacchine. Un ulteriore classificazione avviene in base alle modalità con cui l energia viene scambiata: 1/11 a) Classfcazone delle macchne draulche b) Element costtutv d una turbomacchna c) Trangol d veloctà d) Turbomacchna radale e) Turbomacchna assale f) Esempo d calcolo Turbomacchne S defnsce come macchna

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello d FISICA, febbrao 11 1) Un autocarro con massa a peno carco par a M = 1.1 1 4 kg percorre con veloctà costante v = 7 km/h, un tratto stradale rettlneo. A causa

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

I balconi appoggiati su mensole

I balconi appoggiati su mensole 1 I balcon appoggat su mensole Con un sstema costruttvo ogg n dsuso, per l mpego d nuov metod che garantscono una maggore scurezza, nelle costruzon realzzate sno a crca un secolo fa balcon venvano ottenut

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Campi magnetici variabili nel tempo. Esercizi.

Campi magnetici variabili nel tempo. Esercizi. Camp magnetc varabl nel tempo. Esercz. Mauro Sata Versone provvsora. Novembre 2014 1 Per comment o segnalazon d error scrvere, per favore, a: maurosata@tscalnet.t Indce 1 Induzone elettromagnetca. 1 2

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

Vittorio Casella. GPS Il posizionamento assoluto. Dispense

Vittorio Casella. GPS Il posizionamento assoluto. Dispense Vttoro Casella Laboratoro d Geomatca DIET Unverstà d Pava emal: vttoro.casella@unpv.t GPS Il poszonamento assoluto Dspense Vttoro Casella GS poszonamento assoluto Pag. 1 of 35 slde_gps_3_poszonamento_assoluto.docx

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

5.3 LE TURBINE RADIALI

5.3 LE TURBINE RADIALI 5.3 LE TURBINE RADIALI 5.3. INTRODUZIONE Se la omponente d portata della velotà del fludo, nvee he parallela all asse d rotazone della mahna, è ad esso ortogonale, la turbna s de radale, entrfuga o entrpeta

Dettagli

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata Taratura: serve a trovare l legame tra l valore letto sullo strumento e l valore della grandezza fsca msurata Msure Meccanche e Termche Dsturb d trasduttor anello dnamometrco trasduttore d spostamento

Dettagli

Materials Handling and Logistics Technology. Linea guida. Settembre 2010

Materials Handling and Logistics Technology. Linea guida. Settembre 2010 Materals Handlng and Logstcs Technology Lnea guda Settembre 2010 2 PAVIMENTI PER L USO DI CARRELLI PER VNA 1 Scopo 3 2 Rferment 3 3 Defnzon 4 4 Requst 5 4.1 Pavment 5 4.1.1 Generaltà 5 4.1.2 Deflessone

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli