Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti"

Transcript

1 Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo Qusti appunti vogliono ssr un ultrior strumnto didattico pr gli studnti. Ida ch mi é vnuta dopo ssr stato a contatto con bambini studnti afftti da Sclrosi Multipla, costrtti a lungh dgnz prsso il Rparto di Nurologia dll Ospdal di Fidnza (Parma), Division Dirtta da una Ecczional prsona, il Prof. Enrico Montanari a cui mia riconoscnza stima andranno Smpr. A coloro ch vorranno dar un piccolo contributo all Associazion Nazional pr la Lotta Contro la Sclrosi Multipla (szion di Parma) un Grand Grazi!!! Conto Corrnt Postal : Intstato a: AISM di Parma (Associazion Italiana Sclrosi Multipla) di Parma - Indirizzo: Piazzal S. Spolcro, Parma (PR) - Tlfono : Con la sgunt Causal: + Matmatica,- Sclrosi Multipla 1. GENERALITÁ Torma 1.1. Torma Fondamntal dll Algbra Data un quazion di grado n (1.1) a n x n + a n 1 x n a 1 x + a 0 = 0 con a n, a n 1,..., a 0 R (numri Rali), ssa ha n soluzioni x 1, x 2,..., x n ni numri Complssi C, ch soddisfano l quazion. Quindi una quazion di scondo grado ha 2 soluzioni. Ricordiamo ch s c é una soluzion complssa, c é anch la sua coniugata. 1

2 2 Dfinizion 1.2. Equazion di scondo grado Si dfinisc quazion di scondo grado un quazion dov il massimo valor dll sponnt dlla variabil é du. Alcuni smpi (1) 5x 2 + x 7 = 0 (2) x 2 x = 0 () 8x 2 7 = 0 la forma piú gnral di quazion di scondo grado é (1.2) ax 2 + bx + c = 0 con a, b, c numri R. Pr uniformitá di notazion indichrmo, salvo altro splicito avviso, smpr con a il cofficint dlla x 2, con b il cofficint dlla x con c il trmin noto. Dfinizion 1.. Equazion di scondo grado complta Una quazion di scondo grado la si dic complta s i cofficinti a, b, c sono tutti divrsi da zro (1.) ax 2 + bx + c = 0 ad smpio (1.) 5x 2 + x = 0 in qusto caso: a = 5, b =, c = Dfinizion 1.. Equazion di scondo grado pura Una quazion di scondo grado la si dic pura, s manca il trmin noto c. Pr cui si prsnta nlla forma (1.5) ax 2 + bx = 0

3 Dfinizion 1.5. Equazion di scondo grado spuria Una quazion di scondo grado la si dic spuria, s manca il trmin in x. Si prsnta nlla forma (1.6) ax 2 + c = 0 Sia 2. RISOLUZIONE DELLE EQUAZIONI DI 2 o GRADO COMPLETE (2.1) ax 2 + bx + c = 0 una quazion di scondo grado complta, pr prima cosa si dv calcolar il Discriminant (2.2) = b 2 ac succssivamnt l soluzioni dll quazion sono dat dalla (2.) x 1,2 = b ± con x 1,2 intndiamo l 2 soluzioni dll quazion. Pr ottnrl spariamo l soluzioni dividndo il ± nl + nl (2.) x 1 = b + (2.5) x 2 = b (.1). ESEMPIO SVOLTO EQUAZIONE DI 2 o GRADO COMPLETA ax 2 + bx + c = 0 Risolvr la sgunt quazion di 2 o grado 2 x2 + x 5 = 0 iniziamo con il calcolar il m.c.m al fin di liminar l frazioni (.2) 2x 2 + 9x 15 = 0

4 da cui (.) 2x 2 + 9x 15 = 0 a qusto punto abbiamo ridotto l quazion (.1) nlla forma quindi possiamo applicar la (2.2) ax 2 + bx + c = 0 (.) = b 2 ac = (9) 2 (2)( 15) = = 201 (.5) = 201 adsso la (2.) (.6) x 1,2 = b ± = 9 ± 201 in qusto caso continuiamo i calcoli in via dcimal considrando l prim du cifr dopo la virgola (.7) x 1,2 = 9 ± 1, 9 da cui (.8) x 1 = 9 + 1, 9 = 5, 9 = 1, 7 (.9) x 1 = 1, 7 (.10) x 2 = 9 1, 9 = 2, 9 = 5, 9 (.11) x 2 = 5, 9

5 partndo dalla (.6) possiamo procdr in altro modo, snza utilizzar l approssimazion dcimal. Il numro 210 é scomponibil soltanto nl prodotto 210 = 67 ch sono ntrambi numri primi, quindi non ṕossibil portar quantitá fuori dal sgno di radic, pr cui l soluzioni saranno (.12) x 1 = (.1) x 2 = RISOLUZIONE EQUAZIONE DI SECONDO GRADO PURA ax 2 + bx = 0 In qust quazioni si mtt la x in vidnza (.1) x(ax + b) = 0 si ossrva ch affinché un prodotto possa valr 0 almno uno di du fattori x o (ax + b) dv valr 0. La prima soluzion quindi é immdiata (.2) x 1 = 0 la sconda la si calcola partndo da (.) ax + b = 0 qusta é una quazion di 1 o grado di smplicissima risoluzion (.) ax = b 5 (.5) x 2 = b a In dfinitiva l du soluzioni sono (.6) x 1 = 0 x 2 = b a

6 6 (5.1) 5. ESEMPIO SVOLTO EQUAZIONE DI SECONDO GRADO PURA Risolvr l quazion calcoliamo il m.c.m. (5.2) ax 2 + bx = 0 2 x x = 0 x 2 + x 6 = 0 6 ssndo uguali i dnominatori di ntrambi i mmbri (5.) x 2 + x = 0 mttiamo la x in vidnza (5.) x(x + ) = 0 la prima soluzion é (5.5) x 1 = 0 la sconda driva dallo studio di (5.6) x + = 0 (5.7) x = (5.8) x 2 = 6. RISOLUZIONE EQUAZIONE DI SECONDO GRADO SPURIA ax 2 + c = 0 (6.1) ax 2 + c = 0 (6.2) ax 2 = c (6.) x 2 = c a

7 (6.) x 1,2 = ± c a 7 quindi l du soluzioni sono: (6.5) x 1 = c a (6.6) x 2 = c a 7. ESEMPIO SVOLTO EQUAZIONE DI SECONDO GRADO SPURIA ax 2 + c = 0 Studiamo la sgunt quazion di scondo grado spuria (7.1) calcolando il m.c.m. (7.2) x2 1 5 = 0 20x 2 15 = 0 15 (7.) 20x 2 = 0 (7.) 20x 2 = (7.5) x 2 = 20 (7.6) x 1,2 = ± 20 da cui l soluzioni (7.7) x 1 = 20 (7.8) x 2 = 20

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà.

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà. Corpo di Polizia Provincial 3 Corso di Formazion pr Opratori Volontari pr Cntri di Primo Soccorso Cntri di Rcupro Animali Slvatici Friti o in difficoltà. (Opratori da impigar prsso il Cntro di Rcupro Animali

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia ORGANO GOLD PIANO COMPENSI E Facil, E smplic. E caffè. Italia INDICE Indic INTRODUZIONE...2 PIANO COMPENSI...3 DEFINIZIONI ED ACRONIMI.4 COME DIVENTARE UN INCARICATO ALLE VENDITE OG...5 I SETTE MODI PER

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

Ritmo danze Ritmo movimento. Bo Ritmando

Ritmo danze Ritmo movimento. Bo Ritmando Pr sion Mo cussion vimnto Dan Pr Pr Dan Dan Mo Pr Dan vimnto Dan Mo Mo Mo Dan Dan vimnto Mo Mo Mo Dan Dan vimnto Ed d Int grazion Ed d Ed Ed Ed Int Ed Ed Ed grazion Int Dan Ed Int Ed Int Ed Ed Ed Ed Di

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

AGE.AGEDREMR.REGISTRO UFFICIALE.0056784.20-12-2013-I

AGE.AGEDREMR.REGISTRO UFFICIALE.0056784.20-12-2013-I AGE.AGEDREMR.REGISTRO UFFICIALE.0056784.20-12-2013-I Comun di Forlì COMUNE DI RAVENNA Convnzion pr la promozion dlla lgalità fiscal abitativa dgli studnti dll Univrsità di Bologna Poli Romagna pr il rilascio

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml Class di abilitazion (o class di concorso) La class di concorso è una sigla alfa numrica con la qual si indica l insim di matri ch possono ssr insgnat da un docnt. Indica una particolar cattdra di insgnamnto,

Dettagli

UTILIZZO TASTI E FUNZIONI

UTILIZZO TASTI E FUNZIONI wb Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil wb è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado di

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI STUDI DI VERONA, L UNIVERSITA IUAV DI VENEZIA, L UNIVERSITA CA FOSCARI E L AZIENDA REGIONALE PER

Dettagli

Deliberazione n. 246 del 10 aprile 2014

Deliberazione n. 246 del 10 aprile 2014 Dlibrazion n. 246 dl 10 april Dirttor Gnral Dr. Robrto Bollina Coadiuvato da: Giancarlo Bortolotti Dirttor Amministrativo Carlo Albrto Trsalvi Dirttor Sanitario Giuspp Giorgio Inì Dirttor Social Il prsnt

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

ORDINE DEGLI ARCHITETTI PIANIFICATORI PAESAGGISTI E CONSERVATORI DELLA PROVINCIA DI LODI

ORDINE DEGLI ARCHITETTI PIANIFICATORI PAESAGGISTI E CONSERVATORI DELLA PROVINCIA DI LODI PROGRAMMA CORSO BASE 10 ORE ORDINE ARCHITETTI PPC Moduli h OBIETTIVI DIRETTIVE LEGISLAZIONE E REGOLE TECNICHE DI PREVENZIONE INCENDI A 6 FISICA E CHIMICA DELL'INCENDIO B 10 TECNOLOGIA DEI MATERIALI E DELLE

Dettagli

Decoder per locomotive MX61 model 2000 e MX62

Decoder per locomotive MX61 model 2000 e MX62 ZIMO Manual istruzioni dl Dcodr pr locomotiv MX61 modl 2000 MX62 pr il formato di dati NMRA-DCC nll vrsioni MX61R (con connttor mdio) MX61F (connttor piccolo) MX62W (con 7 cavtti snza connttor) MX62R (

Dettagli

ACCORDO DI COLLABORAZIONE

ACCORDO DI COLLABORAZIONE ACCORDO DI COLLABORAZIONE TRA EXPO 2015 S.p.A. Rgion Lombardia il Ministro dll Istruzion, dll Univrsità dlla Ricrca Ufficio Scolastico Rgional pr la Lombardia in accordo con ANCI Lombardia Rgion Ecclsiastica

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

Matrice storica delle emissioni del documento

Matrice storica delle emissioni del documento (Rdatto dal Consiglio Dirttivo ai snsi pr gli fftti dll articolo 23. punto 6) dllo STATUTO dll Associazion ONLUS IL BRUCO, approvato dall Assmbla di Soci firmato dal Prsidnt dlla stssa. Ragion Social Sd

Dettagli

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani;

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani; CONVENZIONE FRA IL COMUNE DI CASTEL MAGGIORE, L UNIONE RENO GALLIERA E I COMUNI DI ARGELATO, BENTIVOGLIO, SAN GIORGIO DI PIANO, SAN PIETRO IN CASALE, CASTELLO D ARGILE, PIEVE DI CENTO, GALLIERA, PER LA

Dettagli

CORSO BASE DI SPECIALIZZAZIONE IN PREVENZIONE INCENDI FINALIZZATO ALL ISCRIZIONE DEI PROFESSIONISTI NEGLI ELENCHI DEL MINISTERO DELL INTERNO

CORSO BASE DI SPECIALIZZAZIONE IN PREVENZIONE INCENDI FINALIZZATO ALL ISCRIZIONE DEI PROFESSIONISTI NEGLI ELENCHI DEL MINISTERO DELL INTERNO PROGRAMMA CORSO BASE DI SPECIALIZZAZIONE IN PREVENZIONE INCENDI FINALIZZATO ALL ISCRIZIONE DEI PROFESSIONISTI NEGLI ELENCHI DEL MINISTERO DELL INTERNO (in bas al D.M. Agosto 011, art. succssiv modifich)

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

( iii \ IDf\4jE1 \ Patrirnont, dcii

( iii \ IDf\4jE1 \ Patrirnont, dcii SETTORE ( iii \ IDf\4jE1 \ Patrirnont, dcii I )I I \\l( rtanit (tttà d art I Affari Gnrali Finanziari DETERMINAZIONE DEL DIRIGENTE Sttor I Affari Gnrali Finanziari Proposta di dtrminazion dl Dirignt prot.

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario Moduli -larning ABB Istruzioni pr la frqunza ai corsi Il prsnt documnto ha lo scopo di dscrivr l principali carattristich di corsi -larning: com rgistrarsi d accdr al sistma, iscrivrsi ad un corso, frquntarlo

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

Associazione Italiana Società Scientifiche Agrarie - AISSA e Università degli Studi di Torino. 26-27 novembre 2015

Associazione Italiana Società Scientifiche Agrarie - AISSA e Università degli Studi di Torino. 26-27 novembre 2015 Associazion Italiana Socità Scintifich Agrari - AISSA Univrsità dgli Studi di Torino XIII Convgno AISSA Nutrir il pianta con l'agricoltura: il punto di vista di ricrcatori 26-27 novmbr 2015 Aula Magna

Dettagli

Marketing e Finanza. Strategie, marketing e innovazione finanziaria

Marketing e Finanza. Strategie, marketing e innovazione finanziaria Markting Multicanalità Stratgi, markting innovazion finanziaria Innovar attravrso la multicanalità: una sfida pr comptr nl mondo dl Privat Banking 4 Andra Ragaini, Banca Csar Ponti Giancarlo Cairoli, Banca

Dettagli

isrrrutc COS/JPRENSÌVG DJ SCUOLA

isrrrutc COS/JPRENSÌVG DJ SCUOLA prot2581_14.pdf http://www.istruzion.it/allgatì/2014/prot2581 M1URAOODGOS prot. 2581 Roma, 09/04/2014 isrrrutc COS/JPRENSÌVG DJ SCUOLA MATERNA ELftfctfTArtE H MEDIA «WALETTO (CTl Ai Dirttori Gnrali dgli

Dettagli

Studio l italiano! 1. In questa lezione impari a: 1 Per iniziare. * salutare. * presentare te stesso e altre persone. * chiedere la provenienza

Studio l italiano! 1. In questa lezione impari a: 1 Per iniziare. * salutare. * presentare te stesso e altre persone. * chiedere la provenienza Studio l italiano! In qusta lzion impari a: * salutar * prsntar t stsso altr prson * chidr la provninza Pr iniziar Pr m l Italia è... Quando pnsi all Italia, ch cosa ti vin in mnt? * far domand in class

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

COMUNE DI PALERMO. c.a.p. 90133 c.f. 80016350821. la quale - seppure la scrivente continui a ritenere strategico il potenziamento

COMUNE DI PALERMO. c.a.p. 90133 c.f. 80016350821. la quale - seppure la scrivente continui a ritenere strategico il potenziamento COMUNE DI PALERMO Ara dll Politich di Sviluppo Fondi Strutturali Palazzo Calltti - Piazza Marìna, n.46-90133 PALERMO Tl.0917406363 Sito inlrnt h h h.comun.!alrmo it c.a.p. 90133 c.f. 80016350821 Al Sig.

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO REGIONE LAZIO Dirzion Rgional: Ara: SVILUPPO ECONOMICO E ATTIVITA PRODUTTIVE INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE N. G09834 dl 08/07/2014 Proposta n. 11437 dl 01/07/2014 Oggtto: Attuazion

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA DI MEDICINA E CHIRURGIA BANDO DI SELEZIONE PER L AFFIDAMENTO DI INCARICHI DIDATTICI NEI CORSI DI LAUREA DELLE PROFESSIONI SANITARIE PER L ANNO ACCADEMICO

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA DI MEDICINA E CHIRURGIA BANDO DI SELEZIONE PER L AFFIDAMENTO DI INRICHI DIDATTICI NEI CORSI DI LAUREA DELLE PROFESSIONI SANITARIE PER L ANNO ACDEMICO

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

L acqua del rubinetto è buona, ma non ci fidiamo

L acqua del rubinetto è buona, ma non ci fidiamo Argomnti L acqua dl rubintto è buona, ma non ci fidiamo Massimo Labra Maurizio Casiraghi Ch rapporto hanno gli italiani con l acqua? Molti prfriscono qulla in bottiglia. Cosa li guida nlla sclta? Il gusto

Dettagli

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte Cod. 01 Laboratorio di Didattica Musal a cura dl dll Associazion Cultural RArt La musica di Orfo ATTIVITÀ: Visita guidata laboratorio didattico. FASCIA DI ETÀ: 5/10 anni N. BAMBINI: Da dfinir in bas alla

Dettagli

Q U E S T U R A di C A T A N I A Gabinetto del Questore

Q U E S T U R A di C A T A N I A Gabinetto del Questore Q U E S T U R A di C A T A N I A Gabintto dl Qustor 156 ANNIVERSARIO DELLA FONDAZIONE DELLA POLIZIA DI STATO Sabato 17 Maggio 2007 ELENCO PREMIATI Sostituto Commissario dlla Polizia di Stato Mario MARTELLO

Dettagli

U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A. AREA PERSONALE Ufficio Personale tecnico amministrativo

U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A. AREA PERSONALE Ufficio Personale tecnico amministrativo U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A AREA PERSONALE Ufficio Prsonal tcnico amministrativo Macrata, li 30.10.2008 Prot. N. 11694 IPP/29 d Ai Magnifici Rttori dll Univrsità Ai Dirttori

Dettagli

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio Lttra 32 Sistma Ufficio INDUSTRIE VALENTINI SPA via Rigoltto 27-47900 Rimini Tl. +39 0541 368888 - Fax +39 0541 774233 www.valntini.com Lttra 32 Sistma Ufficio L 2 3 a r t t inif, l nzia nano s s bi gn

Dettagli

Monitoraggio permanente delle reti

Monitoraggio permanente delle reti n di mpon o c a r po: di misu s di cam u n b a m Stru nnt r r uura p oraggio prma ork infrastr it tw i mon shoong, N s o n g ia l ion d, troub war, Cond r ll d So mnt Manag g. rin Monito Monitoraggio prmannt

Dettagli

730, Unico 2014 e Studi di settore

730, Unico 2014 e Studi di settore 730, Unico 2014 Stu sttor Pillol aggiornamnto N. 39 27.06.2014 Il prosptto Dati bilancio in Unico2014 ENC. La riconciliazion dati dllo Stato Patrimonial nl prosptto Dati bilancio. Catgoria: Dichiarazion

Dettagli

Le Reti di Impresa: aspetti operativi e commerciali

Le Reti di Impresa: aspetti operativi e commerciali L Rti Imprsa: asptti oprativi commrciali Stfano COCCHIERI Had of Soft Loans Contributions & Subsis Prugia, 21 Novmbr 2012 IL CONTRATTO DI RETE ll Contratto rapprsnta una forma aggrgativa ibrida aggiuntiva

Dettagli

Clicca su uno dei seguenti link per visualizzare il listino prezzi inerente:

Clicca su uno dei seguenti link per visualizzare il listino prezzi inerente: Vivi con noi l'sprinza unica dl campggio. Vita all'aria aprta, ampi spazi vrdi tanta natura! Il Camping dl Lvant offr ai suoi ospiti la possibilità di immrgrsi compltamnt nlla natura in un contsto armonioso

Dettagli

2.2 L analisi dei dati: valutazioni generali

2.2 L analisi dei dati: valutazioni generali 2.2 L analisi di dati: valutazioni gnrali Di sguito (figur 7-) vngono riportat l informazioni più intrssanti rilvat analizzando globalmnt la banca dati dll tichtt raccolt. Considrando ch l tichtta nutrizional

Dettagli

Conciliazione delle controversie: il ruolo delle associazioni di consumatori 1

Conciliazione delle controversie: il ruolo delle associazioni di consumatori 1 Argomnti Conciliazion dll controvrsi: il ruolo dll associazioni di consumatori 1 Pitro Pradri Il CNCU (Consiglio Nazional di Consumatori Utnti) ha approvato il documnto con il qual si chid al Ministro

Dettagli

\# t.u3gra '''- PrgFf,.2il.-a.//9"-* "/4

\# t.u3gra '''- PrgFf,.2il.-a.//9-* /4 UNIONE EUROPEA lnlzìitlrva n J:ì\,)ra dr 1 ()al::tii,..ìtìrì,rf iì,{ìy,ì,r,lrì! 0rltJ(ì Sr)(jrilÌr ì)jlrír..) # A.N.AC. Autó.it! N.rrronalr tutlcorrurron. Ona-*,*,1*". **-,a; ",1,/9",*,*o-'6*,Jàr*Z w,r#h.'úr*h,*,

Dettagli

p(e 3 ) = 31 [R. c) e d)]

p(e 3 ) = 31 [R. c) e d)] CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ - ESERCIZI I.) Anna, Batric Carla fanno una gara di corsa. Stimo ch Anna Carla siano ugualmnt vloci ch Batric abbia probabilità doppia dll altr du di vincr la

Dettagli

XXX SPA Stabilimento di xxx (xx) REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO.

XXX SPA Stabilimento di xxx (xx) REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO. Pag. 1/10 REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO. Pr form azion/ addst ram nt o cont inui si intnd la attività di addstramnto, vrbal / o pratico,

Dettagli

L Osservatorio ABI Costing Benchmark : i risultati del Rapporto ABI 2004 e le analisi di posizionamento

L Osservatorio ABI Costing Benchmark : i risultati del Rapporto ABI 2004 e le analisi di posizionamento L Ossrvatorio ABI Costg Bnchmark : i risultati dl Rapporto ABI 2004 l anisi posizionamnto Albrto Bstrri Roma, 11 novmbr 2004 Aumnta l fficacia l dll politich contnimnto di Vi Vi sono sono 9 9 classi classi

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n.

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n. Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi ALBERO BINARIO LIBERO Novmbr 1996 n. 153 1 2 Francsca Fiornzi ALBERO BINARIO LIBERO SOMMARIO Un albro binario libro è

Dettagli

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse . Condizioni di arbitraggio intrnazional dll rci di titoli L tori d la Parità di otri d acuisto la Parità di tassi d intrss 5_Andic_G.GAROFALO L arbitraggio è un'orazion ch consist nll'acuistar un bn o

Dettagli

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione Committnt /o Rsponsabil di lavori Imprsa affidataria, Imprs scutrici Lavoratori autonomi 1 Committnt CHI E : soggtto pr conto dl qual l intra opra vin ralizzata, indipndntmnt da vntuali frazionamnti dlla

Dettagli

Climatizzazione. Dati tecnici. Selettore di diramazione EEDIT15-200_1 BPMKS967A

Climatizzazione. Dati tecnici. Selettore di diramazione EEDIT15-200_1 BPMKS967A Climatizzazion Dati tcnici Slttor di diramazion EEDIT15-200_1 BPMKS967A INDICE BPMKS967A 1 Carattristich...................................................... 2 2 Spcifich...........................................................

Dettagli

Multiproprietà: recepite le nuove regole

Multiproprietà: recepite le nuove regole Argomnti Multiproprità: rcpit l nuov rgol Valntina Apruzzi L introduzion di principi comunitari nl nostro ordinamnto mdiant il D.Lgs. n. 79/2011 mira a colmar l lacun dlla prcdnt normativa in matria di

Dettagli

EUCENTRE. European Centre for Training and Research in Earthquake Engineering

EUCENTRE. European Centre for Training and Research in Earthquake Engineering Europan Cntr for Rsarch in Earthquak Enginring Parr sulla vntual obbligatorità di un intrvnto di adguamnto sismico nll ambito dll intrvnto di ristrutturazion, adguamnto ampliamnto dlla Casa Albrgo pr Anziani

Dettagli

Corso di laurea in Lingue e letterature moderne. Filologia, linguistica, traduzione

Corso di laurea in Lingue e letterature moderne. Filologia, linguistica, traduzione Corso di laura in Lingu lttratur modrn. Filologia,, traduzion Prsidnt Prof.Francsco Altimari francsco.altimari@unical.it Sgrtria dl corso di laura dott.ssa Rosalba Crnzia (Funzionario amministrativo) cubo

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB In rlazion a quanto prvisto dall art.2120 C.C., dall norm di lgg dagli accordi collttivi vignti, convngono ch, in aggiunta alla casistica sprssamnt prvista, il dipndnt possa chidr la anticipazion dl proprio

Dettagli

L impatto delle liberalizzazioni sull economia delle famiglie

L impatto delle liberalizzazioni sull economia delle famiglie Consumatori in cifr L impatto dll libralizzazioni sull conomia dll famigli Michl Cavuoti Marco Pirani Uno dgli asptti pr i quali si è fino a ora cotraddistinto il scondo Govrno Prodi è qullo dl rilancio

Dettagli

Regolamento per il controllo della pubblicità

Regolamento per il controllo della pubblicità Rgolamnto pr il controllo dlla Rgolamnto pr il controllo dlla pu bbliciià. Introduzion: Qusto Rgolamnto vin applicato pr il controllo dlla pubbliciti su: Indumnti d quipaggiamnto di ginnasti, giudici diuignti;

Dettagli

Big Switch: un nuovo gruppo d acquisto nel mercato elettrico britannico

Big Switch: un nuovo gruppo d acquisto nel mercato elettrico britannico Argomnti Big Switch: un nuovo gruppo d acquisto nl mrcato lttrico britannico Pt Moory Il Big Switch ralizzato da Which? - organizzazion di consumatori ingls - è la dimostrazion ch un gruppo d acquisto

Dettagli