Verifica per la classe prima COGNOME... NOME... Classe... Data...

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Verifica per la classe prima COGNOME... NOME... Classe... Data..."

Transcript

1 Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B {x x H ; x 2z 3; z H ; 5 z 3} C {numeri primi minori di 5} D {x x H ; x 2 3n; n H }.b In riferimento agli insiemi A, B, C e D dell esercizio precedente, stabilire se le seguenti affermazioni sono vere o false.. H A V F 3. 3 H B V F 2. 2 H B V F 4. 4 H A V F.c Rappresentare per proprietà caratteristica i seguenti insiemi: G { 6; 4; 2; 0; 2; 4; 6; 8} F e ; 2 ; 3 ; 4 ; 5 f 2.a Stabilire quali tra i seguenti sono sottoinsiemi, sottoinsiemi propri o sottoinsiemi impropri dell insieme dei numeri naturali: {insieme dei numeri interi} B {insieme dei quadrati dei numeri naturali} C {insieme dei numeri interi multipli di 3} 2.b Costruire l insieme delle parti (E) dell insieme E {x x H ; x è un divisore di 9} fornendo tre partizioni differenti dell insieme E stesso. 2.c Quanti sono i sottoinsiemi propri e impropri dell insieme E? 2.d I seguenti insiemi sono i complementari di E (definito nell esercizio 2.b) rispetto a F. Vero o falso?. Se F {n n H ; 2n } F (E) {5; 7} V F 2. Se F {n n H ; n 0} F (E) {2; 4; 6; 8} 3. Se F {n n H ; n 9} F (E) {0; 2; 4; 5; 6; 7; 8} 3.a In riferimento agli insiemi A, B, C e D dell esercizio.a, calcolare i seguenti insiemi: A B B B A B C D A A B C B A D B C A A B D C C V V F F

2 Gli insiemi Capitolo Insiemi 2 Insiemi Operazioni Prodotto cartesiano Problema.a Rappresentare i seguenti insiemi in forma tabulare: A {numeri naturali divisori di 8} B {x x H, x 2 80} C {x x H 0, x 6(n ), n 5} 2.a Utilizzando i diagrammi di Venn calcolare i seguenti insiemi, essendo A, B, C gli insiemi dell esercizio.a: B C B A (B C) A C A B C 2.b re che (A B) (A C) A (B C). 3.a Considerato l insieme A formato dai numeri naturali pari minori di 5, costruire il grafico del prodotto cartesiano A A e rappresentarlo sul piano cartesiano. 3.b Considerato l insieme A dell esercizio precedente e l insieme B {n n H ; n 3} stabilire se le seguenti affermazioni sono vere o false.. (0; 2) H A B V F 5. (4; 0) H B A V F 2. (2; 2) H A B V F 6. (0; 4) H B A V F 3. (3; 2) H B A V F 7. (4; 4) H A A V F 4. (4; 0) H A B V F 8. (2; 2) H B B V F 3.c Quanti elementi ha l insieme E F se l insieme E è formato da 4 elementi e l insieme F è formato da 5 elementi? a 9 b 20 c 2 (4 5) d impossibile 4.a Dei 273 alunni di una scuola, quelli che non hanno ottenuto una votazione sufficiente in matematica o latino devono seguire un corso di recupero. Si sa che: gli alunni che devono seguire il corso di matematica sono ; gli alunni che devono seguire il corso di latino sono 99; gli alunni che hanno avuto meno di due debiti sono 207. Quanti sono gli alunni che hanno avuto il debito solo in matematica? E quanti solo in latino? Quanti sono gli alunni promossi senza debiti?

3 Capitolo Le relazioni e le funzioni Relazioni Relazioni Proprietà.a Considerato l insieme B {l; 3; 6; 9}, costruire la rappresentazione cartesiana del grafico del prodotto cartesiano B B. Individuare poi il sottoinsieme ottenuto applicando la relazione di B in B b b 2 b l è un divisore di b 2.b a) Fornire la rappresentazione a frecce della relazione. b) Stabilire se la coppia (3;) appartiene al grafico della relazione. c) Quante sono in totale le coppie appartenenti al grafico della relazione? 2.a re se la relazione gode della proprietà transitiva e della proprietà riflessiva. 2.b Di due relazioni l e 2 si conoscono i diagrammi a frecce (in figura). Valutare se le relazioni godono della proprietà transitiva. 2.c Delle relazioni 3 e 4 si conoscono i diagrammi cartesiani (in figura). Valutare quali coppie devono essere aggiunte all insieme delle coppie definito dalle relazioni affinché le relazioni stesse godano della proprietà simmetrica. E quali per la proprietà riflessiva. Relazioni d equivalenza e d ordine 3.a Considerato l insieme A { 3; l; l; 3; 5}, sia data in A A la relazione x y se il prodotto di x per y è positivo Stabilire se si tratta di una relazione d ordine o di equivalenza e nel secondo caso qual è la partizione individuata su A. 3.b Considerato l insieme A {2; 4; 8; 6}, sia data in A A la relazione x y x è multiplo e maggiore di y Stabilire se si tratta di una relazione d ordine o di equivalenza e nel secondo caso qual è la partizione individuata su A.

4 Le relazioni e le funzioni Capitolo Funzioni Grafico.a I grafici in figura possono essere grafici di funzioni. Vero o falso? Definizione Studio. V F 2. V F 3. V F 4. 2.a Stabilire quale delle seguenti relazioni definite in non possono essere funzioni: a la relazione che lega a ogni frazione la sua frazione equivalente ridotta ai minimi termini b la relazione che lega a ogni numero razionale il suo quadrato c la relazione che lega a ogni numero razionale la sua rappresentazione frazionaria d la relazione che lega a ogni numero negativo la radice quadrata del suo opposto. 2.b Le seguenti relazioni definite in A A, con A {0; l; 2; ; 2}, sono funzioni. Vero o falso?. x y x y V F 4. x y x y V F 2. x y x y 0 V F 5. x y x y 0 V F 3. x y x 2 y V F 6. x y x 2 y 2 V F x 2 3.a È data la funzione f (x): B definita come f (x): x 5. a) Stabilire se la funzione è iniettiva. b) Definire B in modo tale che la funzione non sia suriettiva. c) Determinare f (0), f (2) e f (25). d) Determinare per quale x il valore della funzione è 5. V F

5 Interpretazione del grafico 4.a Il grafico in figura rappresenta i millimetri di pioggia caduti in un anno. a) Riportare in una tabella i dati del grafico in funzione dei mesi dell anno. b) Quanti millimetri di pioggia sono caduti nei primi tre mesi dell anno? c) Quanti millimetri di pioggia sono caduti in Agosto? d) Quali mesi hanno avuto le stesse precipitazioni? e) In quale mese c è stato il cambiamento meteorologico più marcato rispetto al mese precedente? f) Costruire un grafico in cui si riportino in funzione dei mesi i millimetri di pioggia caduti da inizio anno. Tabella 5.a È data la funzione f n2 : n n con n H A e 0; ; 2 ; 3 ; 2 f. Determinare il dominio f e il codominio f della funzione. Costruire la tabella che rappresenta le coppie formate dalla funzione: n f (n) Stabilire se la funzione f (n): f f rappresenta una corrispondenza biunivoca.

6 Elementi di logica Capitolo Elementi di logica Proposizioni Quantificatori Enunciati aperti.a Stabilire il valore di verità delle proposizioni seguenti: A 7 è un quadrato perfetto. B Il doppio di 2 è 4..b Riscrivere le proposizioni seguenti con il simbolismo logico e valutarne il valore di verità: C 7 è un quadrato perfetto oppure il doppio di 2 è 4. D 7 non è un quadrato perfetto e il doppio di 2 è 4. E O 7 è un quadrato perfetto o il doppio di 2 non è 4. F 7 è un quadrato perfetto se il doppio di 2 non è 4. G 7 non è un quadrato perfetto se e solo se il doppio di 2 è 4..c Date due proposizioni a e b qualsiasi, studiare la tavola di verità della proposizione composta a b2 a. 2.a Considerata la proposizione b Tutti i numeri razionali si possono esprimere sotto forma di frazione., quale delle seguenti è la negazione della proposizione b? a Tutti i numeri razionali non si possono esprimere sotto forma di frazione. b Non tutti i numeri razionali si possono esprimere sotto forma di frazione. c Nessun numero razionale non si può esprimere sotto forma di frazione. 3.a Dati i seguenti enunciati aperti p(x): x è un quadrato perfetto., con x H x 30 q(x): L ultima cifra di x è 0,, 4, 5, 6, 9., con x H x 30 stabilire il valore di verità per p(), p(5), p(6), p(2) e per q(5), q(), q(2), q(6). 3.b Determinare gli insiemi delle x per cui p(x) e q(x) sono vere e rappresentarli con un diagramma di Venn. 3.c Tradurre le proposizioni composte p(x) q(x) q(x) p(x) p(x) q(x) utilizzando le espressioni condizione necessaria e condizione sufficiente e indicando il valore di verità.

7 Insiemi Capitolo Gli insiemi e le relazioni. Elementi di logica Rappresentare un insieme (tramite il diagramma di Venn, rappresentazione cartesiana, per caratteristica, rappresentazione tabulare) Conoscere i principali simboli insiemistici: appartenenza, non appartenenza, inclusione, insieme vuoto Individuare e costruire sottoinsiemi propri e impropri di un insieme o stabilire il complementare di un insieme rispetto all insieme universo Costruire l insieme delle parti e operare una partizione di un insieme Operare con gli insiemi: unione, intersezione, differenza.a;.c.a;.b 2.a; 2.c; 2.d 2.b 3.a Soluzioni degli esercizi.a.b.c 2.a 2.b 2.c 2.d 3.a A {; 2; 3; 4; 5; 6} B { 5; 3; ; ; 3; 5; 7; 9} C {2; 3; 5; 7; ; 3} D {0; 3; 6; 9; 2; 5; 8; 2} Insiemi 2. V; 2. F; 3. V; 4. V G {x x H, x 6 2 n, n H, 6 x 8} F {x x H, x, n H 0, n 5} n B E {; 3; 9} partizioni di E: {{}, {3}, {9}}; {{, 3}, {9}}; {{}, {3, 9}} 2 3. V; 2. F; 3. V A B {; 3; 5} A B {2; 4; 6} A B B B C B {2; ; 3} A B { 5; 3; ; ; 2; 3; 4; 5; 6; 7; 9} A B C {3; 5} A D {6; 3} D D D A {6; 3} B C { 5; 3; ; ; 9} C C C Rappresentare un insieme (tramite diagramma di Venn, rappresentazione cartesiana, per caratteristica, rappresentazione tabulare) Operare con gli insiemi: unione, intersezione, differenza, prodotto cartesiano Rappresentare graficamente il prodotto cartesiano Risolvere semplici problemi.a 2.a; 2.b; 3.a; 3.b; 3.c 3.a 4.a, 2 3, 4 4 Soluzioni degli esercizi.a 2.a 3.b 3.c 4.a A {; 2; 3; 6; 9; 8} B {0; ; 2; 3; 4; 5; 6, 7; 8} C {6; 2; 8; 24} B C {6} A B {9; 8} A C {6; 8} A (B C) {; 2; 3} B B C. V; 2. V; 3. V; 4. V; 5. F; 6. V; 7. V; 8. V b solo mat 45; solo lat 33; promossi 29 Relazioni Definire una relazione (come sottoinsieme del prodotto cartesiano) Individuare le coppie appartenenti alla relazione Rappresentare una relazione tramite diagramma cartesiano, a frecce, tabulare Riconoscere le proprietà di una relazione Riconoscere relazioni d equivalenza e relazioni d ordine Definire l insieme quoziente e ripartire un insieme in classi d equivalenza.a.a; 2.c; 3.a; 3.b.a; 2.b; 2.c 2.b; 2.c; 2.a; 3.a; 3.b 3.a; 3.b 3.a; 3.b , 0 8, 9

8 Soluzioni degli esercizi.a.b 2.a 2.b 2.c 3.a 3.b b) (3;) riflessiva, no trans.; rel. d equivalenza; rel. d ordine non appartiene transitiva 2 sì trans. coppie concordi c) 9 coppie riflessiva simmetrica Funzioni Definire una funzione Riconoscere qualitativamente il grafico di una funzione Costruire il diagramma cartesiano e a frecce o tabulare di una funzione Determinare (e definire) il dominio, il codominio e il valore di una funzione Dedurre informazioni dal grafico di una funzione Riconoscere una funzione iniettiva, suriettiva e biiettiva Soluzioni degli esercizi.a 2.a 2.b 3.a 5.a. V; 2. F; 3. F; 4. V c. F; 2. F; 3. F; 4. V; 5. V; 6. F a) iniettiva b) B 4 c) f(0) 0; f(2) ; f(25) 25 5 d) f(5) 5 2.a; 2.b.a 5.a 3.a; 5.a 4.a 3.a f e, 2 ; 3 ; 2f f e 0; ; 4; 2 f 2 f è una corrispondenza biunivoca Elementi di logica Stabilire il valore di verità di una proposizione atomica o composta tramite gli operatori logici AND, OR, NOT, XOR Costruire una tavola di verità Utilizzare i quantificatori esistenziali e universali Stabilire i valori di verità di enunciati aperti Utilizzare l implicazione materiale e la doppia implicazione.a;.b.c 2.a 3.a; 3.b 3.c Soluzioni degli esercizi.a.b.c 2.a 3.a 3.b 3.c A: F; B: V C A B D V A B V E A B F F B A V G A B F a b a b a b a b a V V V F F V F V F F F V V F F F F F V F b p() V; p(5) F; p(6) V; p(2) F; q(5) V; q() V; q(2) V; q(6) V p(x) {0;;4;9;6;25} q(x) {0;;4;5;6;9;0; ;4;5;6;9;20;2; 24;25;26;29;30} CS affinché l ultima cifra x sia un quadrato perfetto; V CS affinché x sia un quadrato perfetto è che l ultima cifra...; F CNES affinché x sia un quadrato perfetto è che l ultima cifra...; F 55

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO

ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA A.S.: 0/05 Classe Sezione Indirizzo: IV B Classico Disciplina: MATEMATICA E INFORMATICA ( h) Docente: Fabiola Frezza PROGRAMMA SVOLTO MODULO/UNITÀ

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: GLI INSIEMI

Dettagli

PROGRAMMA DI MATEMATICA CONTENUTI.

PROGRAMMA DI MATEMATICA CONTENUTI. PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti

Dettagli

Le relazioni tra due insiemi

Le relazioni tra due insiemi 1 Le relazioni tra due insiemi DEFINIZIONE. Quando tra due insiemi A e B si individua una proprietà che associa agli elementi di A gli elementi di B, tra i due insiemi si stabilisce una corrispondenza;

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo

Dettagli

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 I NUMERI NATURALI La rappresentazione dei numeri naturali. Le quattro operazioni.

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

MODULI CLASSE PRIMA TEMA ARITMETICA E ALGEBRA

MODULI CLASSE PRIMA TEMA ARITMETICA E ALGEBRA MODULI CLASSE PRIMA TEMA ARITMETICA E ALGEBRA Modulo1 : Insiemi numerici N;Z;Q 18 ore COMPETENZE: Utilizzare le tecniche e le procedure nei vari insiemi numerici e saperli applicare in contesti reali.

Dettagli

Gli insiemi. Che cosa è un insieme? Come si indica un insieme?

Gli insiemi. Che cosa è un insieme? Come si indica un insieme? Gli insiemi Che cosa è un insieme? In matematica si definisce insieme un raggruppamento per cui è possibile stabilire senza ambiguità se un elemento vi appartiene o no. Sono insiemi: i giorni della settimana

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

Obiettivi Cognitivi. Obiettivi minimi

Obiettivi Cognitivi. Obiettivi minimi Docente Materia Classe Marina Barbàra Matematica e informatica 1 A Programmazione Preventiva Anno Scolastico 2012-2013 Data 14 ottobre 2012 Obiettivi Cognitivi Obiettivi minimi conoscere il concetto di

Dettagli

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto.

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. Attività In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. È possibile che si realizzi la situazione descritta? Motiviamo...

Dettagli

Un insieme si dice finito quando l operazione consistente nel contare i suoi elementi ha termine.

Un insieme si dice finito quando l operazione consistente nel contare i suoi elementi ha termine. INSIEMI Insieme Le nozioni di insieme e di elemento di un insieme sono considerati come concetti primitivi, cioè non definibili mediante concetti più semplici, né riconducibili ad altri concetti definiti

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016

Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016 Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016 NUCLEI DISCIPLINARI OBIETTIVI SPECIFICI 1. RIPASSO Saper operare con: 0.1 scomposizioni 0.2 frazioni algebriche

Dettagli

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni

Dettagli

ISTITUTO SCOLASTICO COMPRENSIVO MINEO UNITA 1 I NUMERI

ISTITUTO SCOLASTICO COMPRENSIVO MINEO UNITA 1 I NUMERI ISTITUTO SCOLASTICO COMPRENSIVO MINEO CURRICOLO DI MATEMATICA SCUOLA PRIMARIA classe PRIMA A-B-C INDICATORI OBIETTIVI U.D D'APPRENDIMENTO NUMERI 1) Acquisire il concetto di numero (almeno entro il 100)

Dettagli

I NUMERI N, Z, Q INSIEMI

I NUMERI N, Z, Q INSIEMI classe PRIMA I NUMERI N, Z, Q - i numeri naturali - saper semplificare espressioni - operazioni con i numeri naturali e loro proprietà - saper applicare le proprietà delle potenze - potenze e loro proprietà

Dettagli

PIANO DI LAVORO DI MATEMATICA Classe 1 ^C - Liceo Linguistico. Docente: Mario Donno. Obiettivi specifici della disciplina

PIANO DI LAVORO DI MATEMATICA Classe 1 ^C - Liceo Linguistico. Docente: Mario Donno. Obiettivi specifici della disciplina PIANO DI LAVORO DI MATEMATICA Classe 1 ^C - Liceo Linguistico Docente: Mario Donno Obiettivi specifici della disciplina Applicare i principi e i processi matematici nel contesto quotidiano Cogliere analogie

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

CURRICOLO VERTICALE MATEMATICA RELAZIONI/ DATI E PREVISIONI/ MISURA

CURRICOLO VERTICALE MATEMATICA RELAZIONI/ DATI E PREVISIONI/ MISURA CURRICOLO VERTICALE MATEMATICA / DATI E PREVISIONI/ MISURA SCUOLA PRIMARIA CONOSCENZE (Concetti) ABILITA Classe 1^ - Classificazione - in situazioni concrete, classificare persone, oggetti, figure, numeri

Dettagli

SCUOLA PRIMARIA MATEMATICA (Classe 1ª)

SCUOLA PRIMARIA MATEMATICA (Classe 1ª) SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

NUMERI ED OPERAZIONI indicatori descrittori valutazione

NUMERI ED OPERAZIONI indicatori descrittori valutazione NUMERI ED OPERAZIONI indicatori descrittori valutazione classe 1^ riconoscimento e e dei simboli matematici gruppi di oggetti in relazione alla quantità sa riconoscere i simboli ci sa stabilire relazioni

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

PROGRAMMAZIONE A.S Matematica - Classe Prima H Prof. Diana Giacobbi. Saper applicare i concetti acquisiti in contesti noti/nuovi;

PROGRAMMAZIONE A.S Matematica - Classe Prima H Prof. Diana Giacobbi. Saper applicare i concetti acquisiti in contesti noti/nuovi; VERIFICHE INIZIALI: 17% insufficiente; PROGRAMMAZIONE A.S. 2016-2017 Matematica - Classe Prima H Prof. Diana Giacobbi 36% sufficiente o quasi sufficiente; 48% buono o ottimo. OBIETTIVI DIDATTICI: Conoscenza

Dettagli

Precorso di Matematica. Parte I : Fondamenti di Matematica

Precorso di Matematica. Parte I : Fondamenti di Matematica Facoltà di Ingegneria Precorso di Matematica Parte I : Fondamenti di Matematica 1. Teoria degli insiemi e cenni di logica Il concetto di insieme costituisce l elemento fondante di gran parte delle esposizioni

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

PROGRAMMA A.S. 2014/2015

PROGRAMMA A.S. 2014/2015 MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA

ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA IL NUMERO ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA - opera con numeri naturali e decimali - utilizza il calcolo scritto e mentale 1 2 ordinare

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Obiettivi Cognitivi OBIETTIVI MINIMI U.D.0: INSIEME N conoscere il concetto di numero naturale;

Obiettivi Cognitivi OBIETTIVI MINIMI U.D.0: INSIEME N conoscere il concetto di numero naturale; Docente Materia Classe Mugno Eugenio Matematica 1F Obiettivi Cognitivi OBIETTIVI MINIMI conoscere il concetto di numero naturale; conoscere le operazioni in N; conoscere le proprietà delle operazioni in

Dettagli

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO SCUOLA secondaria di secondaria di primo grado classe 1^ TRAGUARDI per lo sviluppo L alunno si muove con sicurezza nel calcolo con i numeri Naturali

Dettagli

Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA

Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA CLASSE PRIMA TRAGUARDI per lo sviluppo delle competenze OBIETTIVI CONTENUTI al termine della classe 3 a Comprendere il significato logico dei numeri nell insieme N e rappresentarli sulla retta orientata.

Dettagli

Prof. Roberto Capone

Prof. Roberto Capone Prof. Roberto Capone 1 Il concetto di insieme è un CONCETTO PRIMITIVO proprio come i concetti di punto, retta e piano introdotti nella geometria 2 Il termine insieme in matematica indica una collezione

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

ALGEBRA DEGLI INSIEMI

ALGEBRA DEGLI INSIEMI ALGEBRA DEGLI INSIEMI INSIEME: concetto primitivo (indicato con una lettera maiuscola dell alfabeto latino: A, B, ) alcuni esempi: oggetti contenuti in una scatola tutti i numeri multipli di 3 [fig. 2.I.1]

Dettagli

MATEMATICA CLASSE QUARTA

MATEMATICA CLASSE QUARTA MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione

Dettagli

OBIETTIVI DI APPRENDIMENTO CONTENUTI ABILITÀ

OBIETTIVI DI APPRENDIMENTO CONTENUTI ABILITÀ LA GEOMETRIA E LA MISURA Saper descrivere e rappresentare lo spazio. Saper individuare e rappresentare figure geometriche piane. Saper effettuare misurazioni usando unità di misura arbitrarie e convenzionali

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

MATEMATICA classe PRIMA

MATEMATICA classe PRIMA MATEMATICA classe PRIMA OBIETTIVI DI APPRENDIMENTO MATEMATICA Classe PRIMA SECONDARIA A 1.1.1. Riconoscere,rappresentare e operare correttamente con gli insiemi matematici. A 1.1.2. Scrivere, leggere,

Dettagli

Insiemi: Rappresentazione

Insiemi: Rappresentazione Insiemi: Rappresentazione Elencazione Per rappresentare un insieme per elencazione si indicheranno i suoi elementi tra parentesi graffe. Caratteristica Un insieme è rappresentato per caratteristica quando

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

LICEO STATALE TERESA CICERI COMO 6 settembre 2015 PROGRAMMAZIONE DISCIPLINARE DI MATEMATICA A. S. 2015/2016

LICEO STATALE TERESA CICERI COMO 6 settembre 2015 PROGRAMMAZIONE DISCIPLINARE DI MATEMATICA A. S. 2015/2016 PROGRAMMAZIONE DISCIPLINARE DI MATEMATICA A. S. 2015/2016 NUOVI LICEI (primo biennio) LICEO LINGUISTICO LICEO MUSICALE E COREUTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE

Dettagli

IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I

IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I MATEMATICA Classe PRIMA secondaria 1 COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE IL NUMERO - Utilizzare in modo corretto le tecniche, le procedure

Dettagli

UNITA D APPRENDIMENTO. Spazio e figure OBIETTIVI DISCIPLINARI

UNITA D APPRENDIMENTO. Spazio e figure OBIETTIVI DISCIPLINARI Spazio e figure Acquisire il concetto di angolo come cambiamento di direzione e come rotazione di semirette. Confrontare angoli e saperli classificare. Classificare le figure piane secondo diversi criteri.

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1 Bari, 2 Gennaio 206 Traccia: Esercizio. Scrivere la definizione di funzione suriettiva. Dimostrare che la composizione di due funzioni suriettive è una funzione suriettiva. Esercizio 2. () Stabilire se

Dettagli

CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^

CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ Nucleo fondante 1: IL NUMERO Argomento 1: Sistemi di numerazione Sa rappresentare graficamente numeri, ordinarli e confrontarli.

Dettagli

- Conoscere il concetto di insieme. - Sapere rappresentare un insieme. - Riconoscere insiemi uguali, inclusi, vuoti.

- Conoscere il concetto di insieme. - Sapere rappresentare un insieme. - Riconoscere insiemi uguali, inclusi, vuoti. Educandato Statale E. Setti Carraro Dalla Chiesa Scuola Secondaria I Grado Via Passione 12 - Milano MATEMATICA / Classe prima Anno Scolastico 2016-2017 NUCLEI TEMATICI COMPETENZE OBIETTIVI MINIMI DI APPRENDIMENTO

Dettagli

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 SOMMARIO DEL TOMO 1 CAPITOLO 1: IL LINGUAGGIO DEGLI INSIEMI 1.1 Gli insiemi e la loro rappresentazione pag. 1 1. I sottoinsiemi pag. 6 1.3 Insieme

Dettagli

Fare matematica. 9. Le classificazioni basate su criteri oggettivi sono valide per tutti? Motiva la tua risposta.

Fare matematica. 9. Le classificazioni basate su criteri oggettivi sono valide per tutti? Motiva la tua risposta. Fare matematica Esercizi (UbiMath) - 1 Fare matematica Classificare e ordinare 1. Come organizzeresti i libri di scuola e secondo quali criteri? 2. Se tu fossi il bibliotecario, secondo quale ordine disporresti

Dettagli

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica - CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo

Dettagli

DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a

DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a COMPETENZE 1. Operare con i numeri nel calcolo scritto e mentale CONOSCENZE CONTENUTI A. I numeri da 0 a 20 B. I numeri da 20 a 100

Dettagli

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica  A.A. Matematica e-learning - Gli Insiemi Prof. Erasmo Modica http://www.galois.it erasmo@galois.it A.A. 2009/2010 1 Simboli Matematici Poiché in queste pagine verranno utilizzati differenti simboli matematici,

Dettagli

Conoscenze MATEMATICA LES CLASSE PRIMA SAPERI MINIMI. Controllo dei prerequisiti minimi. Proporzioni e percentuali

Conoscenze MATEMATICA LES CLASSE PRIMA SAPERI MINIMI. Controllo dei prerequisiti minimi. Proporzioni e percentuali MATEMATICA LES SAPERI MINIMI CLASSE PRIMA Controllo dei prerequisiti minimi gli insiemi N, Z, Q proprietà e priorità delle operazioni uso delle parentesi nelle espressioni potenze e loro proprietà multipli

Dettagli

Foglio1. I sistemi di numerazione. Leggere e scrivere i numeri interi naturali e decimali indicando il valore

Foglio1. I sistemi di numerazione. Leggere e scrivere i numeri interi naturali e decimali indicando il valore MATEMATICA COMPETENZA DI AREA COMPETENZE DISCIPLINARI classe QUARTA AREA DISCIPLINARE: MATEMATICO SCIENTIFICO - TECNOLOGICA Mettere in relazione il pensare con il fare. Affrontare situazioni problematiche

Dettagli

GLI INSIEMI. Il termine INSIEME è una parola primitiva, cioè un termine che ha bisogno di un esempio per essere spiegato e quindi compreso.

GLI INSIEMI. Il termine INSIEME è una parola primitiva, cioè un termine che ha bisogno di un esempio per essere spiegato e quindi compreso. GLI INSIEMI Il termine INSIEME è una parola primitiva, cioè un termine che ha bisogno di un esempio per essere spiegato e quindi compreso. Non ha alcun senso affermare : Io possiedo un insieme Lui fa parte

Dettagli

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA OBIETTIVI SPECIFICI DEL BIENNIO 1) utilizzare consapevolmente le tecniche e le procedure di calcolo basilari studiate; 2) riconoscere nei

Dettagli

IL CURRICOLO VERTICALE DI MATEMATICA

IL CURRICOLO VERTICALE DI MATEMATICA IL CURRICOLO VERTICALE DI MATEMATICA Sinossi delle competenze per ciascun grado scolastico Scuola primaria Scuola secondaria I grado Scuola secondaria II grado Operare con i numeri nel calcolo scritto

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

Componenti della competenza. Competenza MATEMATICA PRIME. Calcolo scritto

Componenti della competenza. Competenza MATEMATICA PRIME. Calcolo scritto Competenza Componenti della competenza Conoscenze Abilità Utilizzare con sicurezza le tecniche del calcolo aritmetico ed algebrico, scritto e mentale, anche con riferimento ai contesti reali Calcolo scritto

Dettagli

Direzione Centrale Educazione e Istruzione Settore Scuole Paritarie e Case Vacanza Civico Polo Scolastico Alessandro Manzoni

Direzione Centrale Educazione e Istruzione Settore Scuole Paritarie e Case Vacanza Civico Polo Scolastico Alessandro Manzoni COD. Progr.Prev. PAGINA: 1 PROGRAMMA PREVENTIVO A.S. 2014-2015 SCUOLA Liceo Linguistico A. Manzoni DOCENTE: Donatella Brunetti MATERIA: Matematica e Informatica Classe 1 Sezione E FINALITÀ DELLA DISCIPLINA

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: ISTITUTO TECNICO AMMINISTRAZIONE FINANZA MARKETING MATERIA: MATEMATICA APPLICATA ANNO

Dettagli

PROGRAMMAZIONI DI MATEMATICA

PROGRAMMAZIONI DI MATEMATICA Istituto Comprensivo E. Q. Visconti - Roma Scuola Secondaria di Grado Anno Scolastico 2015-2016 PROGRAMMAZIONI DI MATEMATICA CLASSI PRIME, SECONDE E TERZE Obiettivi specifici di apprendimento Rafforzare

Dettagli

A C C O G L I E N Z A

A C C O G L I E N Z A A C C O G L I E N Z A - il programma di Matematica da svolgere assieme - il metodo di lavoro e la valutazione - conoscere gli alunni - far conoscere agli alunni il metodo di lavoro dell'insegnante - esporre

Dettagli

ATTIVITÀ DEL SINGOLO DOCENTE

ATTIVITÀ DEL SINGOLO DOCENTE PIANO DI LAVORO DOCENTE Rho Maria Luisa MATERIA Matematica DESTINATARI Classe 1 Al ANNO SCOLASTICO 2013-2014 COMPETENZE CONCORDATE CON CONSIGLIO DI CLASSE COMPETENZE CONCORDATE CON GRUPPO DI MATERIA Comportamentali

Dettagli

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI PROGRAMMAZIONE DIDATTICA PER COMPETENZE Indirizzo LICEO DELLE SCIENZE UMANE Classe I D disciplina Matematica Modulo A : INSIEMI UNITÁ A1 TEORIA DEGLI INSIEMI UNITÁ A2 GLI INSIEMI NUMERICI COMPETENZE DA

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo ISTITUTO TECNICO Amministrazione Finanza e Marketing MATERIA: MATEMATICA APPLICATA ANNO

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

Docente: Ferreri Luciana

Docente: Ferreri Luciana Docente: Ferreri Luciana ISTITUTO DI ISTRUZIONE SUPERIORE G.Cigna G.Baruffi - F. Garelli - MONDOVI ANNO SCOLASTICO 2016/2017 Programmazione di Matematica Classe: 1^A LSA Testo: M. Bergamini G. Barozzi

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

CURRICOLO DI ISTITUTO

CURRICOLO DI ISTITUTO ISTITUTO COMPRENSIVO G.PERLSC Ferrara CURRICOLO DI ISTITUTO NUCLEO TEMTICO Il numero CONOSCENZE BILIT S C U O L P R I M R I classe 1^ L alunno conosce: i numeri naturali, nei loro aspetti cardinali e ordinali,

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

Relazione e funzione inversa

Relazione e funzione inversa Relazione e funzione inversa Invertiamo una relazione Una relazione tra due insiemi e, come abbiamo detto, è direzionata, opera una specie di passaggio da a : agisce associando a ogni elemento dell insieme

Dettagli

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica IV Liceo Artistico Statale A.Caravillani Anno Scolastico 2016/2017 Programmazione Didattica Matematica Classe V sez. D Modulo 1 Modulo 2 Modulo 3 Modulo 4 Titolo Funzioni Limiti Derivate Lo studio delle

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Piano Matematica classi terze I.C. Levico

Piano Matematica classi terze I.C. Levico Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico ed algebrico, scritto e mentale, anche con riferimento a concetti reali Piano Matematica classi terze I.C. Levico 2016-2017 Competenza

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

CURRICOLO VERTICALE MATEMATICA IL NUMERO SCUOLA SECONDARIA DI PRIMO GRADO. Classe 1^

CURRICOLO VERTICALE MATEMATICA IL NUMERO SCUOLA SECONDARIA DI PRIMO GRADO. Classe 1^ ISTITUTO COMPRENSIVO STATALE - SPRESIANO Via U. Foscolo, 4-31027 Spresiano (TV) tel.: 0422/725223 fax: 0422/725684 cod.fisc. 80027900267 - e-mail: segreteria@icspresiano.it- C.M. TVIC838006 CURRICOLO VERTICALE

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli