LIMITI - ESERCIZI SVOLTI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LIMITI - ESERCIZI SVOLTI"

Transcript

1 LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ± + e) π ± cos f) 5 + ). + 3) Calcolare i seguenti iti di forme indeterminate a) 3 ) b) 5+6 ± 4+4 c) 3 0 ± 5 + d) + 5/ + 5/ e) f) ) Calcolare i seguenti iti mediante razionalizzazione a) + ) + b) ) + c) + 0 d) ).

2 LIMITI - ESERCIZI SVOLTI 5) Calcolare mediante cambiamenti di variabili e 3 + a) ± e + 3 b) 4 + log c) log 6) Studiando il segno della funzione calcolare [t] = parte intera di t). ] ±[3 7) Limiti di successioni ) a) n + sinnπ) b) sinn!π) n + c) n + n n 3 n + )! n! ) d) n + n + )!n + ) 8) Calcolare i seguenti iti utilizzando i teoremi del confronto a) + + cos ) b) cos + c) cos + d) sin + 3+cos e) [] + f) log3+sin ) + 3 g) e esin ) h) e sin ) i) 0 sin sin l) 8 + sin ). 9) Calcolare usando iti notevoli a) c) cos 0 sin tan 0 b) d) log+4) 0 ) 0 tan sin e) 0 f) 3/ ) g) log ) h) i) ) + l) 0 3.

3 LIMITI - ESERCIZI SVOLTI 3 0) Calcolare usando iti notevoli a) c) sin ) + π π + tan b) d) ) π cos sinπ e) tan 0 tansin ) f) e + e 0 g) log cos ) 0 sin h) log+cos ) 0 i) log + ) log + )) + l) cos + π cos3)+. ) Calcolare i iti delle seguenti forme indeterminate di tipo esponenziale a) c) e) g) + + ) ) + ) sin log ) sin b) d) f) h) ) ) sin 0 +log e/3) ) sin. ) Calcolare usando iti notevoli a) c) e) ) sin log 0 + log b) d) f) 0 log + log + loglog + 3) 3 ) ).

4 4 LIMITI - ESERCIZI SVOLTI SOLUZIONI ) In questo esercizio utilizzeremo la definizione di ite. a) Per verificare che fissiamo ε > 0 e consideriamo la differenza 3 5) = f) l = 3 5) = 3 6 = 3. Affinché si abbia f) l < ε è sufficiente scegliere tale che 3 < ε ovvero < δ = ε 3. b) Per verificare che fissiamo R > 0 e consideriamo la condizione f) = ) = + ) > R. Essa equivale a ovvero ) < R < δ = R. c) Per verificare che n + fissato R > 0 consideriamo la disuguaglianza 3n n + = + 3n n + > R. Per n si ha sempre n + n + n = n e quindi 3n n + 3n n = 3 n. Se 3 n > R ovvero n > K = 3R segue a maggior ragione che 3n n + > R.

5 LIMITI - ESERCIZI SVOLTI 5 d) Per verificare che fissiamo ε > 0 e consideriamo f) l = 3 + = = 3. Affinché si abbia f) l < ε è sufficiente scegliere tale che 7 3 < ε ovvero > 7 3 con < 0 cioè < 7 3ε = R. ε ) In questo esercizio utilizzeremo i Teoremi sul ite di somma prodotto quoziente. a) Poiché 3 e tendono a per per il Teorema sul ite di una somma nel caso di iti infiniti e con lo stesso segno si ha 3 + ) =. b) Tenendo conto che tende a + per + applicando il Teorema sul ite del prodotto e tenendo conto del segno dei fattori segue che + = +. c) Per il Teorema sul ite del quoziente di funzioni a ite finito e denominatore non infinitesimo si ha 0 + =. d) Utilizzando lo stesso Teorema ma nel caso di denominatore a ite infinito si ha e) Per calcolare ± + = 0. π ± cos ricordiamo che il ite del reciproco di una funzione infinitesima non necessariamente esiste. In questo caso poiché cos > 0 in un intorno sinistro di π π cos = +. Al contrario poiché cos < 0 in un intorno destro di π π + cos =. si ha si ha

6 6 LIMITI - ESERCIZI SVOLTI f) Per calcolare basta osservare che ) 5 = + + = 0 ed applicare il Teorema sul ite della somma: il ite assegnato vale +. 3) I iti di questo esercizio sono forme indeterminate del tipo a) Il ite 3 ) è una forma indeterminata del tipo 0 0. Semplificando i fattori comuni a numeratore e denominatore si ha 3b) Analogamente 3 ) = ) + ) ) + + ) = = + ) + + ) = 3. b) ± = ± ) 3) ) = = ± 3) ) = dove si è tenuto conto del segno della funzione nell intorno sinistro e destro di 0 =. 3c) Con lo stesso metodo 0 ± Il primo fattore non ha ite ma Il secondo fattore ha ite finito = 0 ± 3 ) 3 + ) = = 0 ± 3 0 ± ± = ±. 3 0 ± 3 + =. Pertanto applicando il Teorema sul ite del prodotto si ha 0 ± =.

7 LIMITI - ESERCIZI SVOLTI 7 3d) Per calcolare 5/ + + 5/ conviene raccogliere a fattore comune la potenza di con esponente più alto che appare in numeratore e denominatore ovvero 5. Quindi si ha 5/ + 5/ + 5 ) + 5/ = = + 5/ 5 ) + 5 ) = = + 5 ) 3e) 3f) ) + = = ) = = ) + 3 ) = ) ) = = + 6 = ) Calcoliamo i seguenti iti mediante razionalizzazione. 4a) Applicando il prodotto notevole a b = a b)a b) abbiamo + + ) + + ) ) = = ) = ) = ) = 0 4b) Applicando il prodotto notevole a 3 b 3 = a b)a + ab + b ) abbiamo ) = ) ) + 3 ) = 0 4c) Operando come in 4a) abbiamo + 0 = ) = = ) =

8 8 LIMITI - ESERCIZI SVOLTI 4d) ) = + ) 4 + ) = 4 + ) = = = 0. 5) Calcoliamo i seguenti iti mediante cambiamenti di variabili. 5a) e 3 + ± e + Posto y = f) = e si ha che y = e + per + : il Teorema di cambiamento di variabili è quindi applicabile. Si ha quindi e e + = y 3 + y + y + = +. Se invece allora y = e 0: il Teorema di cambiamento di variabili è ancora applicabile perchè la funzione è continua per y = 0. Si ha pertanto gy) = y3 + y + e 3 + e + = y 3 + y 0 y + =. 5b) Posto y = si ha che y = + per e quindi = y + = y + 3y 4 + y = 9y 4 + y = 3 5c) 0 + log + log Posto y = f) = log si ha che y = log per 0 + ; pertanto 0 + log + log = y y + y =

9 LIMITI - ESERCIZI SVOLTI 9 = y dove si è tenuto conto che per y < 0 vale y = y. y + y = 6) Per calcolare ] ±[3 dove [t] = indica la parte intera di t conviene studiare il segno della funzione f) = 3 = ) + ) nell intorno di =. Si ha f) < 0 per in un intorno sinistro di = e f) > 0 in un intorno destro di =. Inoltre f è continua in =. Segue che { se δ < < [f)] = 0 se < < + δ per δ > 0 sufficientemente piccolo. Quindi ] = [3 ] = 0 +[3 7) Limiti di successioni 7a) Tenendo conto che sinnπ) = 0 per ogni n N si ha sinnπ) = 0 = 0. n + n + 7b) Analogamente al caso precedente poichè sinn!π) = 0 per ogni n N si ha sinn!π) = 0 = 0. n + n + 7c) Ricordando che si ha n + n n 3 n k ) ) = n! k!n k)! nk N ) = 3!n 3)! n +!n )! = 3 n + n = 0. 7d) n + n + )! n! n + )!n + ) = n + )n + )n! n! = n + n + )!n + ) n![n + )n + ) ] n + 3n + = = n + n!n + )n + ) n + n + 3n + =.

10 0 LIMITI - ESERCIZI SVOLTI 8) Per calcolare i seguenti iti utilizzeremo i teoremi del confronto. 8a) Per calcolare + cos ) + osserviamo che cos per ogni R. Poichè + ) = + applicando il Teorema del confronto otteniamo + cos ) = b) Per calcolare cos + osserviamo che cos per ogni R da cui segue cos 0. Poichè si ha che anche + = 0 cos = c) Il ite cos + non esiste. Infatti posto f) = cos n = π + nπ e n = nπ si ha f n ) = 0 0 f n ) = nπ +. 8d) Vogliamo calcolare sin cos. Sapendo che sin cos deduciamo che per ogni > /3. Poichè sin cos = 3 = dal Teorema del confronto deduciamo che anche sin cos = 3.

11 LIMITI - ESERCIZI SVOLTI 8e) Per calcolare [] + ricordiamo che < [] per ogni R. Pertanto < [] 0. Applicando il Teorema del confronto segue subito che [] + =. 8f) Per calcolare ln3 + sin) + 3 osserviamo che essendo sin per ogni R vale 3 + sin) 4 R. Essendo ft) = log t una funzione monotona crescente si ha inoltre log log3 + sin ) log 4 R. Pertanto log ln3 + sin ) 3 3 log 4 3 > 0 da cui per il Teorema del confronto segue che ln3 + sin ) + 3 = 0. 8g) Il ite non esiste. Infatti posto e esin ) f) = 5 + e esin ) e scelte le successioni n = π + nπ n = nπ si ha f n ) 0 mentre n + f n ) = = y 5y e ) = +. y + y +

12 LIMITI - ESERCIZI SVOLTI 8h) Per calcolare osserviamo che e sin ) e sin e R da cui Poichè 5 + e sin ) 5 e ) > applicando il Teorema del confronto si ha 5 e ) = e sin ) = +. 8i) Per calcolare si può osservare che da cui Poichè anche 8l) Per calcolare osserviamo che da cui 0 sinsin sin 0 sin sin sin 0. sin = sinsin = sin ) sin sin ) 8 < 0. Applicando il Teorema del confronto si ha quindi che 8 + sin ) =.

13 LIMITI - ESERCIZI SVOLTI 3 9) Calcoliamo i iti seguenti utilizzando i iti notevoli. 9a) 9b) 9c) 9d) 9e) cos cos = 0 0 / = 0 = 0. ln + 4) ln + 4) = 4 = ln + y) = 4 = 4 y 0 y dove abbiamo operato il cambiamento di variabile 4 = y. sin tan sin 0 = 0 ) = cos sin = 0 cos cos = 0. 0 tan ) sin tan = sin 0 sintan = sin tan = 0 sin cos = 0 dove si è tenuto conto del risultato del ite 9c). e log = log = 0 0 log e y = log = log y 0 y dove si è operato il cambiamento di variabile log = y. 9f) dove si è posto / = y. 3y 3/ ) = = log 3 y 0 y 9g) Per calcolare si può porre = y ed ottenere log ) y = y 0 log y+ ) = y/ y 0 log + y ) =.

14 4 LIMITI - ESERCIZI SVOLTI 9h) Per calcolare 9i) poniamo = y. Abbiamo pertanto Ponendo / = y si ha = y 0 y + y = y y + ) / ) = = y 0 y = ) = ) = = y y y y y = y 0 y 4/5 y y y = 0. 9l) 3 0 = ) 3 = )) = 0 = log 3. 0) Calcoliamo i seguenti iti usando i iti notevoli. 0a) Per calcolare poniamo / = y ed abbiamo 0b) Per calcolare poniamo = y ed abbiamo ) cos π sin sin = sin y =. y 0 y = y 0 sin = y 0 ) cos π ) cos π y + ) y + ) π y y = y 0 y y + = π = π. ) sin π y = y +

15 LIMITI - ESERCIZI SVOLTI 5 0c) Per calcolare poniamo + π/ = y e abbiamo 0d) Per calcolare + π ) tan π + + π ) tan = π + y tan y + π ) = y 0+ y y 0+ tan y = +. poniamo = y e abbiamo sin π sin π = sinπy + π) sin πy = y 0 y y 0 y = π. 0e) 0f) 0 tan tansin ) = tan 0 sin Ma ponendo sin = y per il secondo ite si ha Complessivamente si ottiene che 0 sin tansin ) = 0 sin tansin ) = y 0 0 tan tansin ) = 0. y tan y =. sin cos 0 e + e ee + ) e + ) = = e sin tansin ). +. Per calcolare il ite del primo fattore possiamo porre + = y e abbiamo e + ) e y = =. 0 + y 0 y Per calcolare il ite del secondo razionalizzando otteniamo + = = Complessivamente applicando il Teorema sul ite del prodotto abbiamo quindi che Pertanto e + + e 0 + e + e = e 0. = e.

16 6 LIMITI - ESERCIZI SVOLTI 0g) ln cos ) ln + cos )) 0 sin = 0 cos ) cos ) sin. Osserviamo che il primo fattore ha ite in quanto con la sostituzione y = cos ci si riconduce ad un ite notevole: Calcoliamo il ite del secondo fattore ln + cos )) ln + y) = =. 0 cos ) y 0 y Pertanto cos ) cos ) 0 sin = 0 sin =. ln cos ) 0 sin =. 0h) ln + cos ) ln = 0 0 cos cos + ) ) = 0 ) log cos + log + ) cos. Possiamo calcolare separatamente il ite di ciascun addendo. Per il primo si ha log cos log + cos ) = 0 0 cos cos. Il primo fattore ha ite perché ponendo y = cos si riconduce il calcolo ad un ite notevole: Per il secondo fattore si ha Pertanto Calcoliamo ora log + cos ) log + y) = =. 0 cos y 0 y cos = 0. 0 log cos = 0. 0 ) log + cos = 0 log 0 + cos /cos ) cos. Il primo fattore ha ite potendosi ricondurre ancora al ite notevole log + y) = y 0 y ponendo y = /cos. Il secondo fattore tende a. Pertanto ) log + cos =. 0

17 LIMITI - ESERCIZI SVOLTI 7 Complessivamente concludiamo che ln + cos ) =. 0 0i) ln + ) ln + )) = ln + )) ln + ))) + + Tenendo conto che logab) = log a + log b se ab > 0 si ha = ln + log + ) ln + )) = + log + ) log + )). + Operando la sostituzione / = y si ha log + ) log + )) log + y) = + y 0 y log + y) ) = =. y 0l) Per calcolare poniamo π = y ed abbiamo π cos + cos3) + y 0 cosy + π) + cos3y + 3π) + = y 0 cos y cos3y) = cos y y 0 y y cos3y) Il primo fattore ha ite. Per calcolare il ite del secondo fattore possiamo porre 3y = z ed abbiamo y 0 y cos3y) = z 0 Complessivamente si ha dunque π z /9 cos z = 9 z 0 cos + cos3) + = 9. z cos z = 9. ) Forme indeterminate esponenziali a) + [ = + + ) ] = y + ) = e y e. dove si è posto y = + )

18 8 LIMITI - ESERCIZI SVOLTI b) Calcoliamo Poichè + ) [ = + ) ] = e + ) segue che esiste R > 0 tale che per > R. Pertanto si ha anche + ) > [ + ) ] > per > R. Applicando ora il Teorema del confronto si ottiene che + ) = +. + c) Calcoliamo Poichè + ) [ = + ) ] + = e ) segue che per ogni ε > 0 in particolare per 0 < ε < e) esiste R > 0 tale che e ε < + ) < e + ε per ogni < R. Pertanto si ha anche e ε) < [ + ) ] < e + ε) per < R. Applicando ora il Teorema del confronto si ottiene che + ) = 0. d) 0 = + 0 e log = + perché log =

19 LIMITI - ESERCIZI SVOLTI 9 e) perché ) sin = esin log ) = + 0 e sinlog = + sin sin log = log = 0 = f) Calcoliamo il ite dell esponente ) sin = 0 +ln 0 esin loglog ). + sin sin 0 loglog ) = loglog ) log log = 0 + sin loglog ) 0 + log 0 + log. Il primo ite vale ed il terzo vale 0 iti notevoli). Per il calcolo del secondo ponendo y = log si ha Pertanto e quindi loglog ) log y 0 + log = y + y sin 0 loglog ) = 0 + = 0. ) sin = 0 +ln 0 esin loglog ) =. + g) Con un procedimento analogo a quello dell esercizio precedente si trova ln ) sin = 0 esin log+log ) = + h) Riscriviamo e 3 ) sin = 3 log+e/ ) esin. 0 + log + e /3 ) = loge /3 + e /3 )) = 3 log e + log + e /3 ) Calcoliamo ora il ite dell esponente I iti dei due addendi sono sin ) sin log e/3 ) = sin log + e /3 ). sin sin = 0 + = + sin log e /3 ) = 0.

20 0 LIMITI - ESERCIZI SVOLTI Pertanto e sin log e/3 ) = e 3 ) sin = +. ) Calcoliamo i seguenti iti. a) b) c) ) sin ln 0 + sin = sinlog = log = 0 = ln = log ) = 0. ln 3 log ) 3 + = = 0. + /3 d) dove si è posto log = y. + log log log = y + y log y = + e) f) + = + e log e log = + elog log) = ) 3 ) ) = ) ) = +.

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti.

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Capitolo 7 Limiti di funzioni Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Ricordiamo che un asintoto verticale = a si presenta

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

8. Il teorema dei due carabinieri

8. Il teorema dei due carabinieri 8. Il teorema dei due carabinieri Teorema del confronto (o dei due carabinieri) Consideriamo due funzioni f( ), g( ) per le quali risulti, in un punto di accumulazione per i loro domini : f ( ) g( ) Se

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

~ 1 ~ CALCOLO DEI LIMITI

~ 1 ~ CALCOLO DEI LIMITI ~ ~ CALCOLO DEI LIMITI ) Limiti che si presentano nella forma l. Pur non essendo forme indeterminate (il risultato è indicato convenzionalmente con i, nel senso che la funzione tende, in valore assoluto,

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 LIMITI DI FUNZIONI c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 Intorni Def. Siano 0 R e r R +. Chiamiamo intorno di centro 0 e raggio r l intervallo aperto e limitato

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercizi di Analisi Reale

Esercizi di Analisi Reale sercizi di Analisi Reale Corso di Laurea in Matematica Terminologia. Sia R n un insieme misurabile. Una funzione positiva misurabile f su, cioè una funzione f : [, ] misurabile, ammette sempre integrale

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni

INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni L'analisi matematica classica prende le mosse dalla nozione di ite. Inizialmente la presentazione sarà del tutto informale e qualitativa, poi

Dettagli

INFINITI ED INFINITESIMI. 1. Definizione di infinitesimo Per prima cosa, occorrono alcune definizioni dei concetti di infinito e di infinitesimo.

INFINITI ED INFINITESIMI. 1. Definizione di infinitesimo Per prima cosa, occorrono alcune definizioni dei concetti di infinito e di infinitesimo. INFINITI ED INFINITESIMI DAVIDE TAMBUCHI. Definizione di infinitesimo Per prima cosa, occorrono alcune definizioni dei concetti di infinito e di infinitesimo. Definizione.. Sia y = una funzione definita

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

ESERCIZI DEL CORSO DI MATEMATICA PER LA LAUREA IN STATISTICA, ECONOMIA, FINANZA E ASSICURAZIONI.

ESERCIZI DEL CORSO DI MATEMATICA PER LA LAUREA IN STATISTICA, ECONOMIA, FINANZA E ASSICURAZIONI. ESERCIZI DEL CORSO DI MATEMATICA PER LA LAUREA IN STATISTICA, ECONOMIA, FINANZA E ASSICURAZIONI... Esercizi svolti in classe.. VENERDÌ 28 FEBBRAIO ) a) Quante sono le possibili targhe formate da 7 simboli,

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Argomento 4. Calcolo dei limiti II: forme indeterminate

Argomento 4. Calcolo dei limiti II: forme indeterminate Argomento 4 Calcolo dei iti II: forme indeterminate Confronto tra infiniti (forme indeterminate e ) Definizione 4 Una funzione f si dice un infinito per x P se =+ o Date le funzioni f e g, infiniti per

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Francesco Zumbo

Francesco Zumbo La retta - Teorema di Talete - Equazione della retta: passante per due punti, implicita, esplicita - Parallele e Perpendicolari - Fascio Propio e improprio - Intersezione tra rette Francesco Zumbo www.francescozumbo.it

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Equazioni e disequazioni polinomiali

Equazioni e disequazioni polinomiali Equazioni e disequazioni polinomiali Esercizio. Risolvere la seguente equazione: 3 5 + =. Svolgimento. Poiché il discriminante è positivo esistono due soluzioni distinte. Applicando la formula per le equazioni

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Liceo Scientifico Statale. Leonardo Da Vinci

Liceo Scientifico Statale. Leonardo Da Vinci Liceo Scientifico Statale Leonardo Da Vinci Via Possidonea, 8-89100 Reggio Calabria - Tel: 0965-29911 / 312063 www.liceovinci.rc.it Anno Scolastico 2005-2006 Disequazioni Esponenziali e Logaritmiche Prof.

Dettagli

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di Analisi Matematica I a.a. -4. Prove scritte e risoluzioni. Pro. Paola Loreti e Daniela Sforza - Determinare il dominio di denizione e calcolare la derivata della funzione f() = e ; + log(log ) Per determinare

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 06/7 Dipartimento di Scienze Matematica Informatiche e Fisiche Corsi di Laurea in Informatica e in TWM Esercizi di Analisi Matematica Esercizi del 3 ottobre

Dettagli

ESERCIZI RISOLUBILI IN BASE ALLA DEFINIZIONE DI LOGARITMO

ESERCIZI RISOLUBILI IN BASE ALLA DEFINIZIONE DI LOGARITMO ESERCIZI RISOLUBILI IN BASE ALLA DEFINIZIONE DI LOGARITMO Ripassiamo la definizione di logaritmo Definizione di logaritmo di in ase a Dati due numeri positivi a e, il logaritmo di un numero, detto argomento,

Dettagli

Analisi Matematica I

Analisi Matematica I Esercizi di Analisi Matematica I Università degli Studi di Tor Vergata - Roma Facoltà di Ingegneria Corsi di Laurea: Ingegneria Civile, Medica, dei Modelli e dei Sistemi a cura di Ciolli Fabio I testi

Dettagli

Lezione 3 (2/10/2014)

Lezione 3 (2/10/2014) Lezione 3 (2/10/2014) Esercizi svolti a lezione Esercizio 1. Tracciando un grafico approssimativo, discutere qualitativamente l esistenza di radici reali dei seguenti polinomi, al variare del parametro

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore:

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore: INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a b c d e / +5 d ; arctan + d ; 8+ 4 5/ +e + d ; 9 +8 + + d. d ;. Verificare la convergenza del seguente

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

Allenamenti di matematica: Algebra e Teoria dei Numeri

Allenamenti di matematica: Algebra e Teoria dei Numeri Brescia, 18 novembre 2011 Allenamenti di matematica: Algebra e Teoria dei Numeri 1. (a) Risolvi l equazione x 3 12x 2 + 29x 18 = 0. (b) Risolvi l equazione precedente utilizzando il seguente metodo. Effettua

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4 ESERCIZI PROPOSTI Capitolo 5 511 Determinare il periodo dell elemento x 320 del gruppo ciclico C 15 = x x 15 =1 Indicare tutti i generatori del sottogruppo x 320 Soluzione Dividiamo 320 per 15 Si ha 320

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

DERIVATE. 1.Definizione di derivata.

DERIVATE. 1.Definizione di derivata. DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

Argomento 3 Limiti e calcolo dei limiti I

Argomento 3 Limiti e calcolo dei limiti I Argomento 3 Limiti e calcolo dei iti I Distanza e intorni In tutta la trattazione che segue si parlerà indistintamente di un numero reale o del corrispondente punto sulla retta euclidea (vedi Arg.). Definizione

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli