ITIS E. FERMI FUSCALDO. Equazioni differenziali e applicazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ITIS E. FERMI FUSCALDO. Equazioni differenziali e applicazioni"

Transcript

1 ITIS E. FERMI FUSALDO D.S. Prof. Ing. Nicola De Nardi Equazioni differenziali e applicazioni Lavoro Prodoo nel cenro servizi mulimediale dell Iis E. Fermi oordinaore prof. Viorio Grandinei Auori alunni: Buonasperanza Paolino, ovello Davide, uomo Alessandro D Amico Salvaore, Magnone Paolo, Marello Panno, Pizzuo Sandro EQUAZIONI DIFFERENZIALI E APPLIAZIONI MATEMATIHE

2 Un viandane che si rifiui di olrepassare un pone fino a quando non abbia personalmene verificao la solidià di ogni sua pare è desinao a non andare molo lonano; qualche vola bisogna rischiare, anche in maemaica. HORAE LAMB 3 INDIE Inroduzione Le equazioni differenziali ordinarie del primo ordine 3 Equazioni differenziali del primo ordine a variabili separabili 4 Equazioni differenziali del primo ordine lineari 5 Equazioni differenziali del primo ordine omogenee 6 Il problema di auch 7 Inegrale paricolare 8 Inegrale singolare 9 Le equazioni differenziali ordinarie del secondo ordine Equazioni differenziali del secondo ordine omogenee Equazioni differenziali lineari del secondo ordine non omogenee ( ASO) Equazioni differenziali lineari del secondo ordine non omogenee ( ASO) 4

3 3 Principio di sovrapponibilià 4 Applicazioni 5 Applicazioni in geomeria 6 Applicazioni in chimica e fisica 7 Legge di crescia malhusiana ed applicazioni in economia 8 Programma in Pascal per calcolare l'ineresse di un deposio bancario 9 Risoluzione numerica di una equazione dedifferenziale Meodo di Eulero Il meodo di Eulero con il Foglio eleronico Bibliografia 5 INTRODUZIONE I maemaici cercarono di usare il calcolo infiniesimale per risolvere nuovi problemi fisici e si rovarono preso cosrei a raare una nuova classe di problemi. Essi fecero più di quano si erano prefissi di fare. I problemi più semplici conducevano a quadraure che poevano essere valuae mediane le funzioni elemenari. Una di quese è cosiuia dai problemi che rienrano nell'area oggi generalmene noa come eoria dell'elasicià. 6 3

4 Quelli un poco più difficili conducevano a quadraure che non poevano essere espresse in queso modo, come nel caso degli inegrali elliici. Enrambi quesi ipi di problemi cadevano nel raggio d'azione del calcolo infiniesimale. Tuavia, la soluzione di problemi ancora più complicai richiedeva l'uso di ecniche specialisiche; fu così che nacque la eoria delle equazioni differenziali. Numerose classi di problemi fisici fornirono le moivazioni alle ricerche sulle equazioni differenziali. Un corpo è elasico se si deforma soo l'azione di una forza e riacquisa la sua forma originale quando la forza viene rimossa. 7 I problemi più praici hanno a che fare con le forme assune dalle ravi, vericali e orizzonali, quando vi vengono applicai dei carichi. Quesi problemi, raai empiricamene dai cosruori delle grandi caedrali medievali, furono affronai dal puno di visa maemaico durane il Seiceno da uomini quali Galileo, Edme Marioe (6-84), Rober Hooke (635-73) e Wren. Il comporameno delle ravi è una delle due scienze discusse da Galileo nei Discorsi inorno a due nuove scienze. GALILEO GALILEI 8 4

5 Le ricerche di Hooke sulle molle lo condussero alla scopera della legge secondo la quale la forza eserciaa su una molla in ensione è proporzionale allo sposameno. Gli scienziai del Seeceno, armai di una maggior quanià di maemaica, iniziarono le loro ricerche sull'elasicià affronando problemi quali la forma assuna da una fune anelasica ma flessibile sospesa a due puni fissi, la forma assuna da una caena anelasica ma flessibile sospesa a un puno fisso e posa in vibrazione, la forma assuna da una corda elasica vibrane enua fissa alle sue esremià, la forma assuna da una verga fissaa alle sue esremià e soggea a un carico e la forma assuna da una verga quando è posa in vibrazione. 9 Il pendolo coninuò ad ineressare i maemaici. L'equazione differenziale esaa del pendolo circolare d θ / d + mg sinθ sfidava ogni raazione, ma anche quella approssimaa oenua sosiuendo sinθ con θ doveva ancora essere raaa analiicamene. Inolre, il periodo di un pendolo circolare non è sreamene indipendene dall'ampiezza del moo e venne perciò inrapresa la ricerca della curva lungo cui la massa pendolare deve oscillare perché il periodo sia sreamene indipendene dall'ampiezza. Hugens aveva risolo geomericamene queso problema con l'inroduzione della cicloide, ma la soluzione analiica doveva ancora essere foggiaa. 5

6 Il pendolo era sreamene collegao con alri due campi di ricerca fondamenali del Seeceno, la forma della Terra e la verifica della legge di arazione graviazionale. Il periodo approssimao di un pendolo T π l g veniva usao per misurare la forza di gravià in vari puni della superficie erresre perché il periodo dipende dall'accelerazione g deerminaa da quesa forza. Misurando lungo un meridiano le successive lunghezze corrispondeni al cambiameno di un grado di laiudine è possibile con l'aiuo di un po' di eoria e dei valori di g, deerminare la forma della Terra. In effei, servendosi della variazione del periodo osservaa in vari puni della superficie erresre, Newon n'aveva dedoo che la Terra è più gonfia all'equaore. Dopo che Newon aveva concluso mediane il suo ragionameno eorico che il raggio all'equaore era di /3 più lungo del raggio al polo (queso valore è di un 3 per ceno roppo grande), gli scienziai europei erano ansiosi di rovarne una conferma sperimenale. NEWTON 6

7 Un meodo possibile sarebbe sao quello di misurare la lunghezza di un grado di laiudine vicino all'equaore e vicino ad un polo: se la Terra fosse effeivamene appiaia, il grado di laiudine dovrebbe essere leggermene più lungo ai poli che all'equaore. Jacques assini ( ) e i membri della sua famiglia effeuarono quese misurazioni e nel 7 oennero il risulao opposo, rovando che il diamero da polo a polo era di /95 più lungo del diamero equaoriale. Per risolvere la quesione una vola per ue, negli anni 73 l'académie des Sciences francese inviò una spedizione in Lapponia, guidaa dal maemaico Pierre- Louis Moreau de Mauperuis, e un'alra in Perù. 3 Il gruppo guidao da Mauperuis comprendeva anche il suo amico maemaico Aleis-laude lairau. Le loro misure confermarono che la Terra è piaa ai poli e Volaire saluò Mauperuis con l'appellaivo di appiaiore dei poli e dei assini. In effei, il valore dao da Mauperuis era di /78, che è meno accurao di quello di Newon. Il problema della forma della Terra coninuò a rivesire grande imporanza e per lungo empo rimase apera la quesione di sapere se essa fosse quella di uno sferoide oblao, di uno sferoide prolao, di un ellissoide generale o di qualche alro solido di roazione. 4 7

8 Il problema connesso di verificare la legge di graviazione poeva essere affronao una vola che fosse noa la forma della Terra. Daa la forma, sarebbe sao possibile deerminare la forza cenripea necessaria per manenere un oggeo sulla o vicino alla, superficie della Terra. Allora, conoscendo l'accelerazione g dovua alla forza di gravià sulla superficie, si sarebbe pouo verificare se l'inera forza di gravià, che fornisce l'accelerazione cenripea e g, proprio quella daa dalla legge di graviazione. lairau, uno di coloro che ne misero in dubbio la validià, pensò in un cero momeno che essa poesse essere della forma F A/ r + B/ r 3. 5 I due problemi della legge d'arazione e della forma della Terra sono uleriormene connessi ra loro perché, quando la Terra viene raaa come un fluido roane in equilibrio, le condizioni per l'equilibrio coinvolgono l'arazione che le paricelle del fluido eserciano una sull'alra. Il campo d'ineressi fisico che dominò il secolo fu l'asronomia. Newon aveva risolo quello che viene chiamao problema dei due corpi, cioè il moo di un singolo pianea sooposo all'arazione graviazionale del Sole, dove ciascun corpo viene assuno essere un puno maeriale. Aveva anche compiuo alcuni passi in direzione della raazione del problema fondamenale dei re corpi, cioè del comporameno della Luna sooposa all'arazione della Terra e del Sole. 6 8

9 Tuavia, queso era solano l'inizio degli sforzi compiui per sudiare i moi dei pianei e dei loro saellii sooposi all'arazione graviazionale del Sole e alla muua arazione di ui gli alri corpi. Inolre, le ricerche di Newon conenui nei Principia, pur cosiuendo in effei la soluzione di cere equazioni differenziali, dovevano essere radoe in forma analiica r queso fu fao gradualmene durane il Seeceno. Queso lavoro fu iniziao, incidenalmene, da Pierre Varignon, un fine maemaico e fisico francese, che voleva liberare la dinamica dall'ingombro della geomeria. Newon aveva risolo alcune equazioni differenziali in forma analiica, ad esempio nella Mehodus fluionum del 67 e nel Tracaus del 676, dove aveva osservao che la soluzione dell'equazione 7 d n n / d f ( ) è arbiraria, nel senso che vi si può aggiungere un qualsiasi polinomio di grado n - in. Nello scolio alla proposizione della erza edizione dei Principia Newon si limia ad enunciare un risulao sulla forma dei solidi di roazione che offrono la minima resisenza al moo in un fluido, ma in una leera a David Gregor del 694 spiega come vi è giuno e nella spiegazione si serve di equazioni differenziali. Fra i problemi asronomici, quello del moo della Luna ricevee le maggiori aenzioni perché il meodo comune per deerminare la longiudine delle navi in mare, così come alri meodi usai nel Seeceno, dipendeva dalla conoscenza in ogni momeno della direzione della Luna rispeo a una posizione sandard (che, a parire dalla fine del secolo, fu quella di Greenwich in Inghilerra). 8 9

10 Era necessario conoscere quesa direzione della Luna con un'approssimazione di 5 secondi di grado per deerminare l'ora di Greenwich con l'approssimazione di un minuo; già un errore di queso genere poeva condurre ad un errore di 3 chilomeri nella deerminazione della posizione della nave. on le avole delle posizioni della Luna disponibili all'epoca di Newon quesa precisione era lungi dal poer essere oenua. Un alro moivo dell'ineresse per la eoria del moo della Luna era il fao che essa poeva essere usaa per predire le eclissi, che a loro vola cosiuivano una verifica per l'inera eoria asronomica. La eoria delle equazioni differenziali ordinarie nacque dai problemi cui abbiamo accennao. 9 A mano a mano che la maemaica si sviluppava, la eoria delle equazioni alle derivae parziali condusse a nuove ricerche sulle equazioni differenziali ordinarie (cioè sulle equazioni che conengono derivae rispeo a un'unica variabile indipendene), e lo sesso fecero le discipline che sono oggi noe come geomeria differenziale e come calcolo delle variazioni. ome abbiamo viso, il enaivo di risolvere problemi fisici che all'inizio comporavano solano delle quadraure condusse gradualmene alla consapevolezza che era sao creao un nuovo ramo della maemaica, la eoria delle equazioni differenziali ordinarie. on la meà del Seeceno lo sudio delle equazioni differenziali divenò una disciplina indipendene e la soluzione di quese equazioni venne perseguia da per se sessa.

11 Il problema della soluzione in forma chiusa non venne dimenicao, ma di cercare di risolvere in quel modo le equazioni differenziali paricolari che raggono origine dai problemi fisici i maemaici andarono alla ricerca di equazioni differenziali che ammeessero soluzioni in ermini di un numero finio di funzioni elemenari e furono rovae un gran numero di equazioni differenziali inegrabili in quesa maniera. D'alember (767) si occupò di queso problema e incluse gli inegrali elliici fra le rispose che li giudicava acceabili. Moli alri hanno percepio il bisogno di dire la propria con prove maemaiche al riguardo. Un ipico approccio a queso problema, compiuo, fra gli alri da Euler (769) consisee nel parire con un equazione differenziale di cui fosse possibile effeuare l'inegrazione in forma chiusa e di derivare da essa alre equazioni differenziali. EULER Un alro approccio fu quello di cercare delle condizioni affinché la soluzione sviluppaa in serie conenesse solano un numero finio di ermini.

12 Un ineressane, benché infruuoso, enaivo compiuo da Marie-Jean-Anoine-Nicolas de ondorce (743-94) nel Du calcul inégral (765) fu quel volo a porare ordine nei moli meodi e arifici diversi usai per risolvere le equazioni differenziali. Egli elencò ue le operazioni quali la derivazione, l'eliminazione e la sosiuzione e cercò di ridurre ui i meodi a quese operazioni canoniche. I suoi sforzi non condussero però ad alcun risulao. In linea con queso piano, Euler dimosrò che, dove è possibile la separazione delle variabili, si può anche rovare un faore moliplicane (inegrane), ma non viceversa. Provò anche che la separazione delle variabili non è possibile per le equazioni di ordine superiore. 3 Quano alle sosiuzioni, non rovò alcun principio generale per individuarle, in quano il rovare delle sosiuzioni è alreano difficile che risolvere direamene le equazioni differenziali. Tuavia, una rasformazione può ridurre l'ordine di un'equazione differenziale. Euler usò ques'idea per risolvere le equazioni lineari non omogenee di ordine n, e anche nel caso dell'equazione omogenea egli pensava che ciascun ep [ p d] desse, per il valore opporuno di p, un faore del primo ordine dell'equazione differenziale. Anche Riccai aveva come progeo quello di ridurre l'ordine. 4

13 Venne inolre elaborao un cero numero di alri meodi, fra cui il meodo dei moliplicaori indeerminai di Lagrange. All'inizio si credee che queso meodo fosse generale, ma in seguio esso non si rivelò ale. La ricerca di meodi generali per l'inegrazione delle equazioni differenziali ordinarie erminò inorno al LE EQUAZIONI DIFFERENZIALI ORDINARIE DEL PRIMO ORDINE DEFINIZIONE: sia una funzione incognia della variabile indipendene, sia ' la sua derivaa prima. Un'equazione nella quale figurino la variabile indipendene, la funzione incognia e la sua derivaa prima si dice equazione differenziale ordinaria del prim'ordine. F (,, ) 6 3

14 EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE A VARIABILI SEPARABILI. Un'equazione differenziale che presena al secondo membro il prodoo di una funzione della sola per una funzione della sola si dice a variabili separabili. f ( ) g( ) Il procedimeno che consene di deerminare la soluzione generale o inegrale generale è il seguene : 7 ' f ( ) g ( ) d d f ( ) g ( ) g d ( ) f ( ) d d f g ( ) ( ) d + c 8 4

15 EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Queso ipo di equazioni si presena nella seguene forma: ' + f ( ) g ( ) La formula che consene di deerminare la soluzione generale è la seguene : f ( ) d e e f ( ) d g( ) d + c 9 EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE OMOGENEE Un'equazione di queso ipo si presenano nella seguene forma : ' poso : f ( z) ' f Z ; Z; 3 5

16 quindi : e sosiuendo : da cui: Z + Z, ( Z) ( Z) ( Z) f Z Z che è una equazionea variabili separabili: Z + Z f dz Z f d 3 Nella raazione delle equazioni differenziali è di fondamenale imporanza il problema di auch e conseguenemene i concei di inegrale paricolare e singolare. IL PROBLEMA DI AUHY Daa un'equazione differenziale di ordine n, la richiesa di deerminare l'inegrale paricolare Φ ( ) che soddisfi n equazioni iniziali del ipo : 3 6

17 ... ( ), ' ( ), ( ) ( n ) ( n ) ( ).... dove :,, ( n ( ),,... ), sono valori assegnai, viene denominao problema di auch. 33 INTEGRALE PARTIOLARE DEFINIZIONE: Si chiama inegrale paricolare o soluzione paricolare dell'equazione differenziale F (,, ) ogni funzione f ( ) oenua dalla soluzione generale Φ ( ) aribuendo alla cosane c un paricolare valore numerico. 34 7

18 osì, ad esempio, daa l'equazione differenziale per deerminare il suo inegrale paricolare le cui curve rappresenaive passa per il puno: ' ' d d d d P 4 ; 3 ; 35 d d 3 + c c c

19 INTEGRALE SINGOLARE Si chiama inegrale singolare o di froniera dell'equazione differenziale ( ) f, ogni evenuale inegrale la cui corrispondene curva risuli ineramene giacene sulla froniera. La sua equazione non è oenibile per alcun valore numerico aribuio alla cosane c. 37 osì, ad esempio, daa l equazione differenziale : d d d d d d 38 9

20 + ( + c ) In base a queso esercizio osserviamo che è una soluzione dell'equazione differenziale, ma non può considerarsi un inegrale paricolare perché non si può dedurre per alcun valore di c dalla soluzione generale. Perano rappresena un inegrale singolare c c c EQUAZIONI DIFFERENZIALI ORDINARIE DEL SEONDO ORDINE Queso ipo di equazioni possono essere classificae in: omogenee; lineari non omogenee ( e caso); 4

21 EQUAZIONI DIFFERENZIALI OMOGENEE DEL SEONDO ORDINE Tali equazioni si presenano nella seguene forma : a + b + c Avendo a disposizione l'equazione caraerisica associaa, di conseguenza può essere calcolaa la soluzione generale. A proposio della soluzione, esisono però re differeni casi : ASO) Se l'equazione caraerisica ammee due soluzioni reali e disine λ, λ, allora la soluzione generale è daa da : λ λ e + e 4 ASO) Se l'equazione caraerisica ammee due soluzioni coincideni λ λ, la soluzione generale è daa da λ λ e + e 3 ASO) Se l'equazione caraerisica ammee due soluzioni complesse coniugae immaginarie α e α + i β i β la soluzione generale è daa da : α α e cos β + e sen β 4

22 EQUAZIONI DIFFERENZIALI LINEARI DEL SEONDO ORDINE NON OMOGENEE ( ASO ) Queso ipo di equazioni è riconducibile alla seguene formula : a + b + c d ( ) d() ermine forzane, polinomio di grado n c ( ) a) se il polinomio sarà dello sesso ordine di d(); b) se c b il polinomio ( ) sarà di grado n+ rispeo al polinomio d(). 43 3) se c b il polinomio sarà di grado n+ rispeo al polinomio d(). 44

23 EQUAZIONI DIFFERENZIALI LINEARI DEL SEONDO ORDINE NON OMOGENEE ( ASO ) possono a + b + c P γ ( ) e Per il calcolo della soluzioneparicolare ( ) presenarsi re differeni casi : a) γ non è radice dell'equazionecaraerisica, cioè non coincidecon le radici γ e ( ) ( ) λ λ, la soluzioneparicolare è dao da : A e N.B. A() è un polinomio dello sesso grado di P(). 45 b) se γ coincide con una delle due radici, la soluzione paricolare ( ) è daa dalla seguene formula: dalla seguene formula : γ ( ) A( ) e c) se γ coincide con enrambe le radici la soluzione paricolare è daa γ ( ) A ( ) e La soluzione generale si calcola come nel caso precedene. 46 3

24 a + PRINIPIO DI SOVRAPPONIBILITA' b + c P γ γ ( ) e + Q ( ) e In quesa circosanza devono essere calcolae due soluzioni paricolari : ( ) e ( ) a + b + c P γ ( ) e ( ) a + b + c Q α ( ) e ( ) Ne consegue : ( ) soluzione equazione omogenea associaa + ( ) + ( ) 47 APPLIAZIONI 48 4

25 APPLIAZIONI IN GEOMETRIA 49 PROBLEMA APPLIAZIONI IN GEOMETRIA "Deerminare le curve per le quali il coefficiene angolare delle ree angeni a ciascun puno della curva sia proporzionale all'ascissa del puno sesso." f ( ) Se è la curva cercaa, l'ascissa del puno di ang e f ( ) è il coefficiene angolare della rea angene alla curva in, indicando con c la cosane di proporzionalià si ha : c è la rappresenazione del problema in forma analiica. 5 5

26 Per deerminare le curve cercae : d d c e inegrando d c d avremo : c d c d da cui : + che rappresena la famiglia di parabole soddisfaceni al problema. Infai, derivando si ha : cioè il coefficiene angolare ' della angene alle curve nel puno di ascisse è proporzionale a sesso, come richieso dal problema. c ; 5 PROBLEMA "Trovare una curva passane per il puno (;-) e ale che il coefficiene angolare della angene in un puno qualsiasi sia uguale all'ordinaa aumenaa di 3". Il problema in maemaica si raduce come : + 3 () 3 è un'equazionedifferenziale del I ordinelineare 5 6

27 f g e ( ) ( ) 3 e d e d [ 3e + c] 3d+ c e [ 3 e d+ c] 3+ ce c () 3+ ce 3 e 53 o ancora : e ( + 3) l ( 3) + 3 l e l + n n n 54 7

28 PROBLEMA "Trovare la curva in cui il coefficiene angolare della g in un puno qualunque sia proporzionale al quadrao dell'ordinaa e passi per il puno (;)". 'è il rapporo si ha : [ k ( ) + ] ; d d d d 55 d d d d imponiamo il passaggio ()

29 e quindi la curva richiesa sarà : ( ) + cioè ( ) APPLIAZIONI IN HIMIA E FISIA 58 9

30 PROBLEMA APPLIAZIONI IN HIMIA E FISIA. " All'isane sia No il numero di aomi di una sosanza radioaiva; sia poi N() il numero di aomi rimasi non disinegrai all'isane. La velocià di disinegrazione dn () ( ) N d è in ogni isane proporzionale al numero N() di aomi inegri; cioè dn () N (), > d con che è la cosane di decadimeno. (Il segno negaivo è necessario in quano N() è una funzione decrescene nel empo, la sua derivaa deve essere negaiva)". Deerminare il numero N() di aomi non disinegrai all'isane." 59 N () dn d dn N log () ( ) () () d () () d () N () c dn N dn d + N N e + () 6 3

31 e ln N N N ( ) () () e e + c c e e c per deerminare c : per c N N () c e c () N () N () e che rappresena i numeri di aomi non disinegrai. 6 PROBLEMA " In un gas la velocià dell'aumeno di volume è direamene proporzionale al volume sesso. Trovare il volume V del gas in funzione del empo sapendo che per è VVo ". dv d dv V () () V () d 6 3

32 e e logv () V () () V() dv V log () e ce + c + c d per V () ce c V V() V e 63 PROBLEMA " In un moo la velocià v direamene proporzionale all'accelerazione a v a deerminare lo spazio percorso in funzione del empo." s () v s s () a ds d () v d s d 64 3

33 33 65 d ds d s d d s d d ds rappresena un'equazione differenziale del secondo ordine omogenea. La sua equazione caraerisica è : ( ) λ λ λ λ λ λ λ λ 66 La soluzione generale sarà : () e e e s + +

34 PROBLEMA "Deerminare il moo di un puno nel quale l'accelerazione è funzione lineare del empo". Il problema si raduce in : d a + b a + b d Poiché l'accelerazione è la derivaa seconda dello spazio rispeo al empo l'equazione divena : 67 d ( a + b) d e inegrando d ( a + b) d da cui a + b + c; d d a + b + c; d a + b + c d d a + b + c d a 6 3 b + + c + e rappresena l'equazione del moo di un puno nel quale 68 l'accelerazione è funzione lineare. 34

35 35 69 PROBLEMA " Al problema precedene si richiede lo spazio in funzione del empo sapendo che : () () () () () ) s e s s s v v ( ) () () ; : generale inegrale dell' derivaa la calcoliamo ) v v v v v v e s e s v v

36 () s v e v v e 7 PROBLEMA "Una pallina di massa m e collegaa con l'esremo libero di una molla di coefficiene di elasicià. Il piano su cui la pallina e appoggiao è liscio. Se la pallina viene sposaa dalla sua posizione di equilibrio, e poi rilasciaa, su di essa agisce una forza, che come è noo, è proporzionale allo sposameno X dalla posizione di equilibrio, con k cosane di proporzionalià. F k X Deerminare la legge oraria XX() del moo." 7 36

37 F m a m m + m equazione differenziale del secondo ordine omogenea. 73 L'equazione caraerisica associaa : λ + m λ ± i m in cui è : α ; e β m ; 74 37

38 38 75 () () (). sen cos : sen cos sen cos X m poso m m X e e X ω ω ω β β α α LEGGE DI RESITA MALTHUSIANA ED APPLIAZIONI IN EONOMIA.

39 LEGGE DI RESITA MALTHUSIANA ED APPLIAZIONI IN EONOMIA. onsideriamo il seguene problema : " Deerminare la legge di variazione della popolazione ialiana in un arco di empo, senza disinguere maschi e femmine e enendo cono di nascie, mori ed emigrazioni". ominciamo a indicare con N() il numero degli individui della popolazione ialiana al empo, assumendo l'anno come unià di misura. Ad esempio, N(97)54.5. è il numero degli ialiani nell'anno 97 e N() è il numero per ora a noi conosciuo, degli ialiani nel. 77 Il numero N() è quindi una variabile, funzione del empo, e va consideraa coninua anche se in realà il processo avviene a sali. Il nosro problema è proprio quello di deerminare, se possibile, la legge secondo la quale N varia in funzione di. A ale scopo converrà dunque volgere lo sguardo verso il passao ed osservare le saisiche riguardani lo sviluppo della popolazione ialiana. La nosra speranza è quella di scoprire che la popolazione ialiana varia sempre più o meno nello sesso modo, di scoprire, cioè, dell'uniformià di comporameno raducibili in una legge che poremo ipoizzare valida non solano per il passao ma anche 78 per il fuuro. 39

40 I volumi annuali di aggiornameno dell'enciclopedia Briannica ci forniscono una serie di sime sul numero dei ciadini ialiani. Scegliamo il periodo che va dal 97 al 98. I dai relaivi a queso periodo sono riporae nella seguene abella: 79 Rappreseniamo ora la funzione N() dal valore 97 al valore 98 (FIG. dove il numero di individui è approssimao alle migliaia). Le due curve, quella coninua e quella raeggiaa, mosrano con mola chiarezza l'andameno del fenomeno. 8 4

41 Osserviamo che, per quano riguarda la deerminazione della legge di crescia di una popolazione, si accoglie la seguene conclusione, dovua all'economisa inglese Thomas Malhus ( ) : " In assenza di vincoli eserni (limiaezza delle risorse, delle guerre, delle caresie, ) la popolazione umana va aumenando e la sua velocià isananea di crescia è proporzionale alla popolazione sessa ". THOMAS MALTHUS 8 Indicando con N() la popolazione, con N() la relaiva velocià di crescia (ossia, in ermini maemaici, la derivaa della funzione N() rispeo al empo ), possiamo quindi scrivere : N ( ) N ( ) ( ) essendo la cosane di proporzionalià. 8 4

42 d N d d N N d N ln e N ln N () () () N () () () e + c N d () d + c 83 Ebbene la () è il primo esempio di equazione differenziale: in essa compare una funzione legaa alla sua derivaa prima. L'espressione esplicia della funzione N(), che è l'incognia dell'equazione differenziale, è la seguene: c () e e () e a N() ae ( ) N N il che significa che la popolazione umana cresce in modo esponenziale. Ponendo nella (), oeniamo an(o) e quindi la () divena : N () N ( ) e ( 3) 84 4

43 dove N(o) è il numero degli individui all'isane e è il corrispondene asso di crescia. Per adeguare il grafico della funzione (3), occorre conoscere N(o) e, che sono valori empirici ricavabili dall'analisi della realà. La rappresenazione grafica di N(), per diversi valori di N(o) e, è riporaa in FIG.. 85 Vogliamo ora verificare che la legge di crescia esponenziale, espressa dalla (3), è valida per la popolazione ialiana (periodo 97-98). Ricaviamo N(o) e. ominciamo a ricavare, uilizzando i dai reali della abella (espressi in migliaia), i valori di N(o) e, assumendo come anno iniziale il 97. Abbiamo: per anno 97 N() per anno 97 N() N () N ( ) e 86 43

44 Dalla (3) oeniamo : e ossia : e k , Applicando opporunamene il logarimo in base e, ricaviamo : log,6,6,6 % on N () e,6, la formula (3) divena : N () 54.5.,6 e ( 4) 87 alcolando il numero degli individui della popolazione ialiana mediane la (4), anno per anno, si oengono i dai riporai nella abella che come si può verificare, sono in accordo con i dai saisici

45 Il modello di Malhus di crescia della popolazione, espressa dalla equazione differenziale N ( ) N ( ) è uno dei più famosi modelli maemaici. A ale modello si riconduce la risoluzione di numerosi alri problemi di naura diversa. 89 PROBLEMA Velocià di accrescimeno di un capiale. "Sia () il monane all'isane di un cero capiale () invesio al empo in un'operazione di capializzazione composa." La velocià di accrescimeno di () è daa da : () i ( ) () derivaa del monane ( ) i ineresse isananeo ( > ) 9 45

46 La soluzione dell'equazione differenziale : d d d log () i () () i d () () e () i () i e e () i c e d c () i d + c 9 per (deposio, capiale iniziale) () e ( ) () ( ) e i fornisce il capiale più l' ineresse maurao nel empo. L'aumenare realmene riconosciuo dalla banca, è neamene inferiore. La differenza è dovua al fao che il conrao di deposio bancario prevede normalmene un accredio degli ineressi maurai solo a fine anno. Perano, il capiale dopo un anno di deposio vale ( + i) dopo due anni ( ) + i e di conseguenza in monane ad ineresse composo dopo 3 anni è : 3 ( ). M + i 9 46

47 PROGRAMMA IN PASAL PER ALOLARE L'INTERESSE DI UN DEPOSITO BANARIO Program Deposii ad ineresse; Funcion Poenza (m: ineger; : real) : real; begin if m hen Poenza: else Poenza: *Poenza(m-,) end. Var o,i,:real; 93 begin wrie ('apiale deposiao '); readln (o); wrie ('Ineresse annuo, in % i '); readln (i); i: i/; wrie ('Duraa in anni '); readln(); wrieln ('apiale maurao ', c*ep(i*)); wrieln ('apiale in banca ', end. o*poenza ( runc(), (+i)); 94 47

48 RISOLUZIONE NUMERIA DI EQUAZIONI DIFFERENZIALI METODO DI EULERO Quesi meodi vengono uilizzai per la risoluzione di equazioni differenziali del primo ordine qualora non siano applicabili procedimeni dell analisi infiniesimali classica. METODO DI EULERO: Queso meodo è applicao ad equazioni differenziali che si presenano nella seguene formula: ' ( ) f (, ) E aveni come condizione iniziale: ( ) 95 Si passa ora a deerminare un approssimazione di ( ) a FASE [ ] Preso un inervallo, lo si suddivide in n pari uguali, indicando con,,.... n i puni di suddivisione inerni all inervallo e con, l esremo n 3 n ome noo, l ampiezza di ciascun inervallino, sarà daa dalla seguene relazione: n h h prenderà il nome di passo di inegrazione 96 48

49 + h; + h + h... n + n h a FASE [ ] Approssimiamo nell inervallo ; il grafico di ( ) con la rea angene a ale grafico nel suo puno e sia m il coefficiene angolare. ( ) ; m ' ; ( ) f ( ) m poiché in cui e h 97 Possiamo quindi scrivere che: m + h f ( ; ) f ( ; ) di conseguenza + h f ( ; ) i + i + h f ( ; ) Applicando n vole quesa procedura, a parire dai valori noi ( ; ) oerremo la desideraa approssimazione di ( ). Nauralmene la spezzaa oenua sarà ano più precisa, quano più piccolo sarà il passo di inegrazione h. i i 98 49

50 Daa una equazione differenziale del primo ordine,rovare un valore approssimaodi Y() uilizzando il meodo di Eulero; onfronare successivamene il valore oenuo con quello assuno dalla soluzione esaa e ' + hf ( ; i + i i i ) X condizioni iniziali Y h, e approssimao f(;) esao Errore, -,, ,99566,,98 -,39, ,956,3,948 -,56448,939385,686885,4, ,77486, ,38,5, ,836384, ,348357,6, , , ,345673,7, ,93938,666394, ,8, , ,57944,686943,9, , , ,637886, , , ,38739 Grafico 99,,8,6,4, valore approssimao di Y Valore esao di Y Errore 5

51 Daa una equazione differenziale del primo ordine,rovare un valore approssimaodi Y() uilizzando il meodo di Eulero; onfronare successivamene il valore oenuo con quello assuno dalla soluzione esaa 3e hf ( ; i + i i i ) X condizioni iniziali Y h, 3e - +- approssimao f(;) esao Errore -,,6 -,4,656959,56959,4,3 -,9,49638,99638,6,36 -,536, ,43498,8,88 -,88, ,98689,9834,696,363834,59834 Grafico,5,5, valore approssimao di Y Valore esao di Y Errore 5

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni 3 La orsione Sommario Inroduzione Alberi saiamene indeerminai Carihi orsionali su alberi irolari Momeno dovuo a ensioni inerne Deformazioni angenziali parallele all asse Progeo di alberi di rasmissione

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor:

Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor: Esercizio D2.1 Torniura cilindrica eserna Un ornio parallelo è arezzao con uensili in carburo e viene uilizzao per la sgrossaura di barre in C40 da Φ 32 a Φ 28. Con un rapporo di velocià corrispondene

Dettagli

USO DELL OSCILLOSCOPIO

USO DELL OSCILLOSCOPIO Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.

Dettagli

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G.

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G. Corso di IMPIANTI TECNICI per l EDILIZIAl aso di espansione Prof. Paolo ZAZZINI Diparimeno INGEO Universià G. D Annunio Pescara www.lf.unich.i Prof. Paolo ZAZZINI Diparimeno INGEO Universià G. D Annunio

Dettagli

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE Campo roane Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià ane che ruoa aorno ad un asse con velocià

Dettagli

Pianificazione di traiettorie nello spazio cartesiano

Pianificazione di traiettorie nello spazio cartesiano Corso di Roboica 1 Pianificazione di raieorie nello spazio caresiano Prof. Alessandro De Luca Roboica 1 1 Traieorie nello spazio caresiano le ecniche di pianificazione nello spazio dei giuni si possono

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

Adottando il metodo più corretto (in riferimento al Manuale di Meccanica, Hoepli) verificare la resistenza strutturale del dente.

Adottando il metodo più corretto (in riferimento al Manuale di Meccanica, Hoepli) verificare la resistenza strutturale del dente. 1) Risolvere i segueni due esercizi (empo assegnao 2h) a) Un riduore cosiuio da una coppia di ruoe nae a ni drii a proporzionameno normale ve rasmeere una poenza di 5kW. Inolre si hanno i segueni dai:

Dettagli

SINGOLARITA DELL ANTIMERIDIANO DI GREENWICH(di mortolacarlo)

SINGOLARITA DELL ANTIMERIDIANO DI GREENWICH(di mortolacarlo) SINGOLARITA DELL ANTIMERIDIANO DI GREENWICH(di orolacarlo) La peculiariàdella doppia daa di cui gode l anieridiano di Greenwic è noa, ance ai non addei ai lavori;per esepio a ci a leo il libro di avvenura

Dettagli

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione Universià degli Sudi di Milano-Bicocca - Facolà di Economia Maemaica Generale Modulo B - 5 Luglio 00 Eserciio. Dare la definiione di rango di una marice. Enunciare il Teorema di Rouchè-Capelli., verifi-

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

funzione: trasformare un segnale ottico in un segnale elettrico;

funzione: trasformare un segnale ottico in un segnale elettrico; Foorivelaori (a semiconduore) funzione: rasformare un segnale oico in un segnale elerico; ipi: fooconduori; foodiodi (pn, pin, a valanga...) caraerisiche: modo di funzionameno; larghezza di banda; sensibilià;

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

TEST D'INGRESSO DI FISICA

TEST D'INGRESSO DI FISICA Liceo Scien co Paritario R. Bruni Padova, 20/09/2012 TEST D'INGRESSO DI FISICA Cognome e nome Segna con una croce%a la risposta che ri eni corre%a. 1) Che cos'è l'ordine di grandezza di un numero? (a)

Dettagli

Logaritmi ed esponenziali

Logaritmi ed esponenziali Logaritmi ed esponenziali definizioni, proprietà ITIS Feltrinelli anno scolastico 2007-2008 A cosa servono i logaritmi I logaritmi rendono possibile trasformare prodotti in somme, quozienti in differenze,

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

CONOSCENZE RICHIESTE

CONOSCENZE RICHIESTE CONOSCENZE RICHIESTE MATEMATICA: algebra e calcolo differenziale elemenare. FISICA: ariabili scalari e eoriali. Spazio, elocià ed accelerazione. Moo uniforme. Moo uniformemene accelerao. r r r = ds d r

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Terminologia relativa agli aggregati

Terminologia relativa agli aggregati N. 17 I/10 Terminologia relaiva agli aggregai Schede ecniche Edilizia Genio civile 1 Presupposi Con l'inroduzione delle Norme europee (EN) riguardani gli aggregai, la erminologia finora uilizzaa è saa

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Programmazione della produzione a lungo termine e gestione delle scorte

Programmazione della produzione a lungo termine e gestione delle scorte Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

LA MACROECONOMIA DAGLI ANNI 60 AD OGGI. la relazione tra i due principali indicatori di malessere economico aggregato: inflazione e disoccupazione;

LA MACROECONOMIA DAGLI ANNI 60 AD OGGI. la relazione tra i due principali indicatori di malessere economico aggregato: inflazione e disoccupazione; La sinesi neoclassica LA MACROECONOMIA DAGLI ANNI 60 AD OGGI Il dibaio si concenra, fino ad oggi, su una serie di emi di vasa poraa, ra cui: la naura e le cause della crescia economica; le foni dell insabilià

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale REGIMI FINANZIARI USUALI: Ineressi seplici Ineressi coposi Ineressi anicipai Giulio Diale INTERESSI SEMPLICI I C L ineresse è proporzionale al capiale e alla duraa dell ipiego I = C i Denoinazioni di i:

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto Valuazione d azienda La valuazione d azienda: conciliazione ra meodo direo ed indireo di Maeo Versiglioni (*) e Filippo Riccardi (**) La meodologia maggiormene uilizzaa per la valuazione d azienda, è quella

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Salvataggi (dal questionario sui gruppi)

Salvataggi (dal questionario sui gruppi) PAOLO BECHERUCCI www.raid.i Salvaaggi (dal quesionario sui gruppi) Ricordiamoci delle norme sulla Privacy!!! Vengono eseguii dei backup dei dai? regolarmene in modo manuale 46% non regolarmene 3% regolarmene

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Il modello di Black-Scholes. Il modello di Black-Scholes/2

Il modello di Black-Scholes. Il modello di Black-Scholes/2 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoi Parhenope Facoà di Ingegneria Corso di Comunicazioni Eeriche docene: Pro. Vio Pascazio 14 a Lezione: 8/5/3 Sommario Fasori Segnai passabanda Trasmissione di segnai passabanda in sisemi

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0. Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco

Dettagli