2. Quesiti dell area scientifica e scientifico-tecnologica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Quesiti dell area scientifica e scientifico-tecnologica"

Transcript

1 2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre km nel corso di un lungo viaggio. Per ridurre i consumi le cinque ruote vengono intercambiate con regolarità. Quanti chilometri avrà percorso ogni gomma alla fine del viaggio? a b c d 5000 e 4000 TEST DI VERIFICA S O L U Z I O N I A P A G I N A Sapendo che la seguente frase Tutti i giovedì lavoro al computer e vado in palestra è falsa, se ne deduce necessariamente che: a qualche giovedì non lavoro al computer e non vado in palestra b tutti i giovedì non lavoro al computer e non vado in palestra c qualche giovedì non lavoro al computer o non vado in palestra 2 109

2 T E S T N. 2 d tutti i giovedì non lavoro al computer o non vado in palestra e tutti i giorni lavoro al computer e vado in palestra 04 Ci sono due persone di sesso diverso, una bionda e una mora. La persona bionda dice Io sono un uomo mentre la mora dice Io sono una donna. Se almeno uno dei due mente quale delle seguenti affermazioni risulta necessariamente vera? a La donna è mora e l uomo è biondo b Solo la donna mente c Solo l uomo mente d La donna è bionda e l uomo è moro e La donna è mora 05 Non è vero che a Torino nel mese di aprile quando piove tutte le persone che escono hanno l ombrello. Ciò equivale a dire che: a a Torino nel mese di aprile quando piove chi esce non ha l ombrello b almeno una persona in una città diversa da Torino in un mese diverso da aprile quando piove esce senza ombrello c almeno una persona a Torino nel mese di aprile quando piove non porta l ombrello d in una città diversa da Torino, in un mese diverso da aprile, quando piove chi esce ha l ombrello e in una città diversa da Torino, in un mese diverso da aprile, quando piove tutti escono senza ombrello 06 Dei tre amici Luigi, Marco e Nicola almeno due sono vegetariani. Sapendo che se Luigi è vegetariano anche Marco lo è, che se Nicola è vegetariano lo è anche Luigi, e che tra Marco e Nicola almeno uno è non vegetariano, si può dedurre che: a Luigi, Nicola e Marco sono vegetariani b Luigi non è vegetariano e Marco è vegetariano c Luigi e Nicola sono vegetariani d Nicola è vegetariano e Marco non è vegetariano e Nicola non è vegetariano e Marco è vegetariano 07 Il grande matematico Deeffe Sudeix di ritorno da un congresso in India, commenta con alcuni colleghi: Non è vero che tutti gli abitanti di Tiruciripalli sono biondi e con gli occhi azzurri. Dunque Deeffe Sudeix sta affermando che: a nessun abitante di Tiruciripalli è biondo con occhi azzurri b gli abitanti di Tiruciripalli se sono biondi non hanno gli occhi azzurri c c è qualche abitante di Tiruciripalli che non è biondo oppure che non ha gli occhi azzurri d esistono abitanti di Tiruciripalli biondi ma senza occhi azzurri e gli abitanti di Tiruciripalli sono bruni e con occhi scuri 110

3 Quesiti dell area scientifica e scientifico-tecnologica 2 08 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 09 Cinque amici non sono d accordo sulla data: Carlo afferma che oggi è lunedì 16 agosto Franco sostiene che oggi è martedì 16 agosto Marco è convinto che oggi sia martedì 17 settembre Roberto dice che oggi è lunedì 17 agosto Tullio afferma che oggi è lunedì 17 settembre Uno solo ha ragione ma nessuno ha completamente torto nel senso che ha individuato almeno una caratteristica della data. Allora: a Franco ha ragione b Carlo ha ragione c Marco ha ragione d Roberto ha ragione e Tullio ha ragione 10 I tre testimoni T 1, T 2, T 3 di un furto hanno dato le seguenti informazioni sul ladro: T 1 : Era un individuo alto e grasso, oppure un tipo calvo, o tutte e due le cose insieme. T 2 : Si trattava di un tipo alto e/o grasso, ma senza dubbio era calvo. T 3 : Era calvo e alto. Ma nel caso mi sbagliassi su questo, son sicura che fosse un tizio grasso che ho visto passare. L ispettore scopre che T 1 e T 3 hanno detto il vero, mentre T 2 il falso. Si dica quale delle seguenti affermazioni si può correttamente dedurre: a il ladro era alto e calvo b il ladro era alto e grasso c il ladro era grasso e calvo d il ladro era alto e magro e il ladro era basso, grasso e calvo 111

4 2 Soluzioni Commenti ai quesiti di logica (pagina 109) 01 c Il disegno al centro della prima figura si ritrova anche nella seconda. La terza figura ha al centro un cerchietto per cui le alternative possibili sono b, c, e. Nella prima e nella seconda figura le frecce sono rivolte verso l esterno; la terza figura presenta frecce rivolte verso l interno per cui le possibili alternative risultano c ed e. Nella seconda figura compaiono dei quadrati: essi hanno 4 lati, in particolare un lato in più rispetto ai poligoni della prima figura (triangoli). Per analogia, la quarta figura dovrà contenere degli esagoni, dato che nella terza figura sono presenti dei pentagoni: la figura e, contenendo degli ottagoni è da scartare per cui l unica alternativa possibile è c. 02 c È necessario, per ridurre i consumi, effettuare quattro cambi delle ruote ogni 4000 km. In questo modo, al termine del viaggio ogni ruota avrà percorso km. 03 c Il connettivo e stabilisce la congiunzione logica di due proposizioni. La congiunzione di due proposizioni è vera solo quando le due frasi componenti sono entrambe vere. La negazione della frase che compare nel testo trasforma il pronome tutti in non tutti, cioè qualche. È sufficiente negare una delle due proposizioni componenti affinché la frase risulti negata. 04 d Si considerino i due casi seguenti. 1) La persona bionda mente; si deduce che la bionda è una donna. Poiché le due persone hanno sesso opposto, l altra persona sarà un uomo moro. 2) La persona mora mente; si deduce che si tratta di un uomo moro. L altra persona, di sesso opposto, sarà necessariamente una donna. In entrambi i casi si giunge alla conclusione d. Ovviamente non è possibile che menta una sola persona, dato che si tratta di individui di sesso diverso. 05 c Negando la proposizione a Torino nel mese di aprile quando piove tutte le persone che escono hanno l ombrello si ottiene la frase a Torino nel mese di aprile quando piove non tutte le persone che escono hanno l ombrello. Poiché non tutti escono con l ombrello, ci sarà almeno una persona che uscirà senza ombrello. 06 e I tre amici non possono essere tutti vegetariani in quanto la quarta proposizione del testo stabilisce che o Marco o Nicola non è vegetariano: la risposta a è dunque da scartare. In base alla seconda affermazione si comprende che Marco è vegetariano se lo è Luigi: la risposta b non è pertanto accettabile. La risposta d è errata perché se Nicola è vegetariano lo è anche Luigi e di conseguenza lo deve essere anche Marco (si legga la seconda proposizione del testo); questa conclusione contrasta con la quarta frase che afferma: tra Marco e Nicola almeno uno non è vegetariano. La risposta c è errata poiché se Luigi è vegetariano lo deve essere anche Marco ma Marco e Nicola non possono essere entrambi vegetariani. 07 c Vi possono essere abitanti biondi con gli occhi di un colore diverso dall azzurro così come vi possono essere abitanti con gli occhi azzurri ma con i capelli scuri o rossi. La risposta d non è corretta poiché non considera gli abitanti con i capelli scuri. 08 b I simboli che compaiono nella seconda figura sono gli stessi che si 133

5 T E S T N. 2 ritrovano nella prima. Si deduce che il disegno incognito dovrà avere gli stessi simboli del terzo disegno: le possibili alternative risultano b ed e. In ogni figura vi sono tre righe orizzontali e tre verticali: nella seconda figura la prima riga orizzontale e la terza verticale sono identiche a quelle della prima figura. La terza figura e quella rappresentata nel disegno b hanno uguali le righe orizzontale e verticale centrali. 09 d Esaminando attentamente le cinque proposizioni e sapendo che ognuno ha individuato almeno una caratteristica della data, si individua facilmente la risposta esatta. Carlo ha individuato il giorno della settimana e il mese. Franco ha individuato il mese. Marco ha individuato la data (17). Tullio ha individuato il giorno della settimana e la data. Roberto ha individuato tutte e tre le caratteristiche. Assumendo per ipotesi che Carlo, o Franco, o Marco o Tullio abbia ragione ed esaminando ogni volta le altre affermazioni ci sarà comunque qualcuno che non avrà individuato nessuna delle tre caratteristiche della data e ciò è in evidente contrasto con quanto affermato nel testo. 10 b Schematizzando le tre testimonianze si può scrivere: T 1 : A e G oppure C oppure A e G e C. T 2 : A e G e C oppure A e C oppure G e C T 3 : C e A oppure G Poiché T 2 mente, sicuramente il ladro non è calvo. È vera quindi la seconda affermazione di T 3 e cioè che il ladro è grasso. Non sono da considerarsi valide la seconda e la terza affermazione di T 1 in quanto contengono entrambe l aggettivo calvo. Il ladro può essere soltanto alto e grasso. 11 d Nella prima figura vi sono in tutto 16 quadretti contrassegnati ognuno dal numero 9; risultato della moltiplicazione (16 9) e 144. Nella seconda figura vi sono 9 quadretti e ognuno ha il suo interno il numero 16; risulta (16 9) 144. Nella terza figura compaiono 4 quadretti contenenti il numero 36; (4 36) 144. La figura d presenta un solo quadretto con il numero 144 al suo interno: il risultato della moltiplicazione è ancora una volta 144; si ha infatti (1 144) d La proposizione d è identica concettualmente alla frase riportata nel testo. La risposta c è errata poiché non è detto che i problemi semplici non abbiano soluzioni semplici, facili da comprendere e sbagliate. La risposta a nega quanto affermato dall autore. Le risposte b ed e si riferiscono ai problemi semplici che A. Bloch, in questo contesto, non considera. 13 c La seconda figura della serie è nera per un altezza inferiore alla metà dell altezza del rettangolo: la parte colorata in nero rappresenta l altezza di due rettangolini neri della prima figura. Nella terza figura si osservano due rettangoli neri e due bianchi: i due neri costituiscono meno della metà dell area del cerchio; i rettangoli bianchi sono rappresentati dai due settori circolari bianchi, in funzione delle loro dimensioni relative. 14 a Il numero 1 non può essere cavallone: se così fosse, non sarebbero cavalloni tutti i numeri maggiori di 1, essendo tutti suoi multipli: la risposta d è da scartare dato che siamo sicuri del fatto che esiste almeno un cavallone maggiore di 1 (seconda affermazione del testo). Se 2 è cavallone, non saranno cavalloni tutti i suoi multipli. Il numero 9 però è cavallone e non è primo. Quest ultima affermazione fa comprendere che il numero 3 non è cavallone. 15 a Il triangolo ha 5 numeri esterni e un numero interno: si tratta di multipli del numero 3. Il quadrato ha 6 numeri esterni e 2 numeri interni: sono tutti multipli di 4. Il pentagono ha 7 numeri esterni e 3 numeri inter- 134

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

20 settembre 2010 Test di autovalutazione per il Corso di Studio in Chimica

20 settembre 2010 Test di autovalutazione per il Corso di Studio in Chimica 20 settembre 2010 Test di autovalutazione per il Corso di Studio in Chimica 1. Sapendo che log 10 2 = 0.301 calcolate log 10 400 senza usare la calcolatrice. log 10 400 = log 10 2 2 ) 10 2) = log 10 2

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9. 2 Quanti triangoli sono rappresentati nella figura?

Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9. 2 Quanti triangoli sono rappresentati nella figura? Logica figurale 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9 2 Quanti triangoli sono rappresentati nella figura? A. 6 B. 8 C. 9 D. 10 E. 12 3 Quanti sono i quadrati presenti nella seguente

Dettagli

Introduzione alla logica matematica

Introduzione alla logica matematica Introduzione alla logica matematica 1 PROPOSIZIONE LOGICA Ogni discorso è fatto mediante espressioni di vario tipo che sono dette: proposizioni. Nel linguaggio ordinario, si chiama proposizione qualunque

Dettagli

Prof. Roberto Capone. Negazioni e deduzioni

Prof. Roberto Capone. Negazioni e deduzioni Prof. Roberto Capone Negazioni e deduzioni Negazioni Tutti fanno qualcosa; Tutti sono qualcosa Qualcuno non fa qualcosa; Almeno uno non è qualcosa Tutti gli italiani sono intelligenti Almeno un Italiano

Dettagli

Tutti i giovedì lavoro al computer e vado in palestra. 1. Qualche giovedì non lavoro al computer e non vado in palestra.

Tutti i giovedì lavoro al computer e vado in palestra. 1. Qualche giovedì non lavoro al computer e non vado in palestra. Test Logica Domanda 1 Sapendo che la seguente frase Tutti i giovedì lavoro al computer e vado in palestra è falsa, se ne deduce necessariamente che: 1. Qualche giovedì non lavoro al computer e non vado

Dettagli

L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA

L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria.

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 1 Un test problematico Sapendo che in questo test una sola risposta

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1C 22.11.2012 prof. Mimmo Corrado 1. Dato l insieme universo U= x N x

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.

Dettagli

SI TIRANO DUE DADI ALLA VOLTA.

SI TIRANO DUE DADI ALLA VOLTA. L Ocalogik REGOLE DEL GIOCO SI TIRANO DUE DADI ALLA VOLTA. DAL SECONDO LANCIO IN POI, AD OGNI PUNTEGGIO MATURATO VIENE APPLICATA UNA PENALITA DI TRE PUNTI QUALORA IL CONCORRENTE RISPONDA IN MODO ERRATO

Dettagli

soluzione in 6 step Es n 65

soluzione in 6 step Es n 65 soluzione in 6 colorata? (Progetto Olimpiadi di Matematica, 008, Gara di secondo livello) p p p 6 p soluzione in 6 colorata? (Progetto Olimpiadi di Matematica, 008, Gara di secondo livello) p p p 6 p soluzione

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:...

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:... Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Versione A Libretto Test

Versione A Libretto Test LINGUAGGIO MATEMATICO DI BASE 2 Linguaggio Matematico di Base LINGUAGGIO MATEMATICO DI BASE 1. La media aritmetica di due numeri s e t è 2 3. Allora t è uguale a A. B. C. D. E. 4 2s 3 3 2s 2 4 3s 2 4 3s

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova I.T.I, Marzotto, Valdagno 24 febbraio 2014 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità di ragionamento

Dettagli

6. La disequazione A. per nessun x R;

6. La disequazione A. per nessun x R; Università degli Studi di Perugia - Facoltà di Ingegneria Terzo test d ingresso A.A. 0/0-6 Dicembre 0. Quale delle seguenti affermazioni è corretta? A. la funzione y = x è monotona crescente; B. le funzioni

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Prima. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Prima. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004

Dettagli

A un tavolo, vi sono quattro persone: Luca, Maria, Nicola e Paola. Ognuno dei quattro mente sempre, oppure non mente mai. Inoltre non amano parlare

A un tavolo, vi sono quattro persone: Luca, Maria, Nicola e Paola. Ognuno dei quattro mente sempre, oppure non mente mai. Inoltre non amano parlare A un tavolo, vi sono quattro persone: Luca, Maria, Nicola e Paola. Ognuno dei quattro mente sempre, oppure non mente mai. Inoltre non amano parlare di loro stessi, ma piuttosto dei loro amici; tant è che

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

Corso di preparazione ai Giochi di Archimede Geometria e Logica

Corso di preparazione ai Giochi di Archimede Geometria e Logica Corso di preparazione ai Giochi di Archimede Geometria e Logica 1) Claudia ha disegnato sul quaderno l iniziale del suo nome, una C. Il disegno è stato fatto tagliando esattamente a metà una corona circolare

Dettagli

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate.

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate. LINEE SEMPLICI INTRECCIATE Colora di giallo le linee semplici, di verde quelle intrecciate. Disegna di rosa le linee semplici, di azzurro quelle intrecciate. LINEE APERTE CHIUSE Colora di giallo le linee

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera Esercitazione in preparazione alla PROVA d ESAME Alunno/a Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera 1. Quale percentuale della figura è colorata? A. 80 % B. 50 % A. 45 % D. 40 % Osservando bene

Dettagli

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari (1) Quante soluzioni reali ha l equazione 5 2x = 4(5 x 1)? (a) una (b) due (c) infinite (d) nessuna (e) non si può dire (2) Da un urna contenente 90 palline numerate se ne estraggono due, ed escono i numeri

Dettagli

PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico

PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico Ministero dell Istruzione dell Università e della Ricerca Rilevazione degli apprendimenti Anno Scolastico 2008 2009 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti ciascuno.

Dettagli

184 Capitolo 6. Logica di base

184 Capitolo 6. Logica di base 184 Capitolo 6. Logica di base 6.5 Esercizi 6.5.1 Esercizi dei singoli paragrafi 6.1 - Le proposizioni 6.1. Quali delle seguenti frasi sono proposizioni logiche? a ) I matematici sono intelligenti; b )

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.

Dettagli

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.. Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica

Dettagli

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? 1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:...

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:... Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

TEST DI INGRESSO. Al seguente indirizzo puoi trovare il test di matematica di base per scienze biotecnologiche http://www.testingressoscienze.

TEST DI INGRESSO. Al seguente indirizzo puoi trovare il test di matematica di base per scienze biotecnologiche http://www.testingressoscienze. TEST DI INGRESSO http://www.smfn.unipi.it/prova_ingresso/verifica2009.aspx Al precedente sito internet puoi trovare un esempio pubblico di test di matematica di base e un test di matematica di base del

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

Corso di Laurea in Matematica a.a. 2009/2010

Corso di Laurea in Matematica a.a. 2009/2010 Corso di Laurea in Matematica a.a. 009/010 (1) Il numero ( 5) 4 è uguale a: (a) 5 (b) 8 5 (c) 5 (d) 4 5 () Il numero log 4 16 è uguale a: (a) 4 (b) 8 (c) (d) 1/ (3) È vero che: (a) 5 > 3 4 (b) 5 > 8 5

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. 6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono

Dettagli

Logica e fondamenti di matematica

Logica e fondamenti di matematica Logica e fondamenti di matematica Docente: Prof. Roberto Giuntini (giuntini@unica.it) Logica proposizionale Logica e teoria dell argomantazione. Cap. 1: Enunciati. Enunciato: Non ogni discorso è dichiarativo

Dettagli

Quite simple, my dear Watson Sir Arthur Conan Doyle

Quite simple, my dear Watson Sir Arthur Conan Doyle PROVA DI INGRESSO ALLE FACOLTÀ DI INGEGNERIA Quite simple, my dear Watson Sir Arthur Conan Doyle a cura del Prof. Ing. Luigi Verolino Referente per l Orientamento della Facoltà di Ingegneria Università

Dettagli

Coloriamo i numeri. Osservate il disegno che avete ottenuto e rispondete a queste domande, che riguardano tre pallini messi in questo modo:

Coloriamo i numeri. Osservate il disegno che avete ottenuto e rispondete a queste domande, che riguardano tre pallini messi in questo modo: Coloriamo i numeri Vi ricordate il triangolo di Tartaglia che avete incontrato nella mostra MaTeinItaly? Se l avete dimenticato, ne riproduciamo qui sotto una parte: Continuarlo è facile: ogni riga inizia

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Kangourou della Matematica 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado

Kangourou della Matematica 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado Kangourou della Matematica 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado 1. Risposta D). Fra i fattori del prodotto vi è 0. 2. Risposta C). Si tratta di

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio 2012 Quesiti 1. Paola ed Enrico Considerate tutti i numeri interi positivi fino a 2012 incluso: Paola calcola la

Dettagli

tutto 42 biglie". biglie ci sono in tutto?". 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT RMT PROVA II

tutto 42 biglie. biglie ci sono in tutto?. 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT RMT PROVA II 4 e RMT PROVA II marzo-aprile 06 ARMT06 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT 06 4 RMT PROVA II Arturo ha l abitudine di riporre le sue biglie in scatole di due tipi diversi: Mette sempre lo stesso

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Elementare. Classe Quarta. Codici Scuola:...

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Elementare. Classe Quarta. Codici Scuola:... Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Connettivi del linguaggio e della logica

Connettivi del linguaggio e della logica Connettivi del linguaggio e della logica Fino a che punto il significato di,, e corrisponde al significato delle espressioni del linguaggio naturale e o, se... allora... e non? e e Congiunzioni e connettivi

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande

Dettagli

Categoria Student 2009 Per studenti del quarto e quinto anno della scuola media superiore

Categoria Student 2009 Per studenti del quarto e quinto anno della scuola media superiore Categoria Student 009 Per studenti del quarto e quinto anno della scuola media superiore. Risposta E) I pesci blu sono (l % di 00 pesci); perché siano il % del totale, devono rimanere 00 pesci; devo quindi

Dettagli

Come risolvere i quesiti dell INVALSI - secondo

Come risolvere i quesiti dell INVALSI - secondo Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

Ragionamento numerico, critico-numerico e numerico-deduttivo

Ragionamento numerico, critico-numerico e numerico-deduttivo Capitolo 2 Ragionamento numerico, critico-numerico e numerico-deduttivo 1. I test di ragionamento critico-numerico Per rendere più agevole la lettura di una distribuzione di dati, raggrupparne sezioni

Dettagli

PuzzleFountain. Amico Logico

PuzzleFountain. Amico Logico PuzzleFountain Amico Logico Autori: ALBERTO FABRIS, ADOLFO ZANELLATI Date: 0 novembre 0, 6.00 8.00 (orario server Italia) Durata: 0 minuti Sito web: www.puzzlefountain.com Akari Trilogia Circuito chiuso

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO

LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO LINGUGGIO MTEMTIO I SE, MOELLIZZZIONE E RGIONMENTO. Per tutti i valori di p e q diversi da zero, l espressione è equivalente a p q (q + 2p) p + 2 q p + 2 q p + 2p q q p + 2 q 2. L indice di massa corporea

Dettagli

Calcolo proposizionale

Calcolo proposizionale 1 Il calcolo delle proposizioni Una proposizione logica si dice semplice o atomica se contiene soltanto un predicato. Due o più proposizioni semplici collegate mediante l'uso di connettivi formano proposizioni

Dettagli

LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO

LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO LINGUAGGIO MATEMATIO I ASE, MOELLIZZAZIONE E RAGIONAMENTO. Per tutti i valori di p e q diversi da zero, l espressione è equivalente a p q (q + 2p) A p + 2 q [*] p + 2 q p + 2p q q p + 2 q Argomenti:. Algebra

Dettagli

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità.

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. LA LOGICA 1. Le proposizioni logiche ESERCIZI Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. 1 A «1 1 è uguale a 5»; «Non si

Dettagli

TEST SULLE COMPETENZE Classe Seconda

TEST SULLE COMPETENZE Classe Seconda TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito

Dettagli

GRIGLIA DI CORREZIONE DOMANDE APERTE Matematica Classe II Scuola Primaria

GRIGLIA DI CORREZIONE DOMANDE APERTE Matematica Classe II Scuola Primaria GRIGLIA DI CORREZIONE DOMANDE APERTE Matematica Classe II Scuola Primaria DOMANDA RISPOSTA Codifica della risposta D3a 93 o novantatre D3b 3 o tre D4b D5a D5b D5c D5d D6 Il numero 60 deve essere posizionato

Dettagli

Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it]

Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it] Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it] Tutti conosciamo l esistenza della costante matematica definita come pi greco ( π ) che stabilisce il rapporto fra

Dettagli

1.2. Inserisci nel testo le parole che hai trovato con il cruciverba. Le parole sono elencate qui sotto in ordine alfabetico.

1.2. Inserisci nel testo le parole che hai trovato con il cruciverba. Le parole sono elencate qui sotto in ordine alfabetico. da Caro Michele 1 Attività introduttiva 1.1 Completa il cruciverba. ORIZZONTALI 1 20.000 in lettere. 5 Participio passato del verbo incominciare. 7 Mattina, pomeriggio e 8 Articolo femminile. 9 6 in lettere.

Dettagli

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

Nome.. Cognome..classe data.. PROVA DI INGRESSO MATEMATICA

Nome.. Cognome..classe data.. PROVA DI INGRESSO MATEMATICA Nome. Cognome.classe data.. 1) Scomponi i seguenti numeri PROVA DI INGRESSO MATEMATICA 8 621 52 632 648 105 896 654 098 2) Inserisci i simboli < o > 548 584 24760 24706 1009 1090 21001 21010 675 757 3)

Dettagli

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO BENJAMIN B1. (5 punti ) Ad una esibizione di danza partecipano 4 ragazzi di nomi A, B, C e D e 6 ragazze di

Dettagli

A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket.

A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket. Logica La logica si occupa della correttezza del ragionamento, un ragionamento è formato da un insieme di proposizioni (enunciati di cui è possibile stabilire se sono veri o falsi) Carlo è un alunno di

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012 Ministero della ifesa irezione Generale per il Personale Militare I Reparto - 3^ ivisione N TI MTEMTI II^ IMMISSIONE oncorso VFP4 2012 Servizio inerente la fornitura di due archivi di quesiti e materiali

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1B 23.11.2012 prof. Mimmo Corrado 1. Dati gli insiemi: = è = è " = è " = è " = è

Dettagli

LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi

LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi LE FRAZIONI Scrivi la frazione corrispondente alla parte colorata. 3 7 9 Riscrivi la frazione in cifre e colora la parte indicata. cinque settimi dieci quindicesimi nove diciottesimi dodici ventesimi quattordici

Dettagli

GARA DI MATEMATICA ON-LINE (9/11/2015)

GARA DI MATEMATICA ON-LINE (9/11/2015) GR I MTEMTI ON-LINE (9//0) LE ZUHE I HLLOWEEN [] Riscriviamo la prima equazione costruendo a secondo termine un quadrato di binomio: c a b c a ab b ab c ( a b) ab alla prima equazione ricaviamo a b c :

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Parallelogrammi 1 Parallelogrammi Nome: classe: data:

Parallelogrammi 1 Parallelogrammi Nome: classe: data: www.matematicamente.it Parallelogrammi 1 Parallelogrammi Nome: classe: data: 1. Quali tra le seguenti sono proprietà del parallelogramma?. ciascuna diagonale lo divide in due triangoli uguali. gli angoli

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

PQM PON Potenziamento degli apprendimenti nell area logico matematica

PQM PON Potenziamento degli apprendimenti nell area logico matematica PQM PON Potenziamento degli apprendimenti nell area logico matematica Progetto realizzato con il contributo del Fondo Sociale Europeo Programma Operativo Nazionale Competenze per lo Sviluppo Azione A.2

Dettagli

2) Stabilisci se ognuna delle seguenti affermazioni è vera ( V ) o falsa ( F )

2) Stabilisci se ognuna delle seguenti affermazioni è vera ( V ) o falsa ( F ) COGNOME NOME ESERCITAZIONE DI MATEMATICA ) Il valore relativo di nel CLASSE DATA è. è ) Stabilisci se ognuna delle seguenti affermazioni è vera ( V ) o falsa ( F ) A { x x è un naturale x } è formato da

Dettagli

Tetrapyramis. organizza. Warm up. Gara di giochii logici a squadre per Istituti Scolastici

Tetrapyramis. organizza. Warm up. Gara di giochii logici a squadre per Istituti Scolastici Tetrapyramis organizza Warm up Gara di giochii logici a squadre per Istituti Scolastici Autore: Data: Durata: Categoria: Sito web: ALBERTO FABRIS martedì 25 ottobre 2016, 14.30 16.00 (orario server Italia)

Dettagli

DI CHE COSA SI OCCUPA LA LOGICA

DI CHE COSA SI OCCUPA LA LOGICA Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione

Dettagli

UNIVERSITA' DI MILANO DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES" KANGOUROU della MATEMATICA 2005 GARA A SQUADRE PER LE SCUOLE ELEMENTARI

UNIVERSITA' DI MILANO DIPARTIMENTO DI MATEMATICA FEDERIGO ENRIQUES KANGOUROU della MATEMATICA 2005 GARA A SQUADRE PER LE SCUOLE ELEMENTARI DIPARTIMENTO DI MATEMATICA Livello TERZA elementare Vogliamo accoppiare le seguenti carte in modo che la somma dei numeri riportati sulle due carte di ogni singola coppia sia la stessa per tutte le coppie.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 60 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli