Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi"

Transcript

1 Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Francesco Pasquale 6 maggio 2015 Esercizio 1. Su una strada rettilinea ci sono n case nelle posizioni 0 c 1 < c 2 < < c n. Bisogna installare dei ripetitori di segnale lungo la strada in modo da garantire che tutte le case siano coperte dal segnale. Ogni ripetitore ha un range d > 0, quindi una casa è coperta dal segnale se ha un ripetitore a distanza minore o uguale a d. Descrivere un algoritmo che prenda in input le posizioni delle case e il range dei ripetitori e restituisca in output le posizioni dove installare i ripetitori in modo che tutte le case siano coperte dal segnale e il numero di ripetitori installati sia il piú piccolo possibile. Dimostrare la correttezza dell algoritmo. Soluzione. L input del problema è dato dalla posizione delle case e dal range dei ripetitori. Una soluzione ammissibile è un insieme di ripetitori, che possiamo indicare con dei numeri r 1,..., r m dove r i rappresenta la posizione del ripetitore i-esimo, tale che ogni casa c sia a distanza minore o uguale a d da almeno un ripetitore. L obiettivo è minimizzare il numero di ripetitori. Possiamo quindi formalizzare il problema in questo modo: input: C = {c 1,..., c n } N con 0 c 1 < c 2 < < c s ; d N sol: S = {r 1,..., r m } N tale che per ogni c C esiste r S con c r d goal: min S Idea: Le case sono ordinate in senso crescente c 1 < < c n. Se devo coprire la prima casa c 1 dovrò posizionare almeno un ripetitore nell intervallo [c 1 d, c 1 +d]. In che punto dell intervallo mi conviene posizionarlo? Una scelta naturale sembra quella di posizionarlo nel punto più lontano possibile verso destra, ossia nel punto c 1 +d, in modo da coprire certamente c 1 e magari anche qualcuna delle case che vengono dopo. Un semplice algoritmo greedy allora è il seguente: - Se c è la posizione della prima casa non ancora coperta, metti un ripetitore r nel punto c + d - Elimina tutte le case coperte da r - Ripeti finchè ci sono case non ancora coperte In pseudocodice: Algorithm 1 Ripetitori input: Le posizioni delle case C = {c 1,..., c n } con 0 c 1 c n ; Il range dei ripetitori d > 0 output: Le posizioni dei ripetitori S = {r 1,..., r k }. S = while C do c = min C r = c + d S = S {r} C = C \ {x C : x r d } return S

2 L algoritmo trova chiaramente una soluzione ammissibile, perché una casa in posizione c viene tolta dall insieme C solo dopo che è stato inserito in S un ripetitore in posizione r tale che c r d. Quindi quando l algoritmo termina, in al più n iterazioni del ciclo while, tutte le case hanno un ripetitore a distanza minore o uguale a d. Ora dimostriamo che l algoritmo trova effettivamente una soluzione ottima. Per farlo useremo la tecnica greedy stays ahead. In particolare, se S A = {r 1,..., r k } è la soluzione fornita dal nostro algoritmo e S = {r 1,..., r m} è una soluzione ottima ordinata in senso crescente, faremo prima vedere che deve essere r i r i per ogni i. Da questo poi sarà facile vedere che S A è effettivamente una soluzione ottima. Lemma 1.1. Sia S A = {r 1,..., r k } la soluzione fornita dal nostro algoritmo e sia S = {r1,..., r m} una soluzione ottima con r1 < < r m. Allora per ogni i = 1,..., m si ha che ri r i. Proof. Lo dimostriamo per induzione su i: Base (Verifichiamo che r1 r 1): Siccome S deve essere una soluzione ammissibile, ci deve essere un r S che copre la casa c 1, ossia r [c 1 d, c 1 + d]. In particolare deve essere r c 1 + d, ma c 1 + d = r 1 è proprio la posizione del primo ripetitore posizionato dal nostro algoritmo, e siccome r1 è il piú piccolo in S deve essere r1 r r 1. Passo induttivo (Supponiamo che ri r i e dimostriamo che ri+1 r i+1): Consideriamo la (i+1)-esima iterazione del ciclo while del nostro algoritmo. Se l algoritmo ha inserito il ripetitore in posizione r i+1 vuol dire che dopo l iterazione i-esima c era ancora una casa non coperta da nessuno dei ripetitori r 1,..., r i, quindi la sua posizione deve essere c > r i + d, e per l ipotesi induttiva ri r i si ha anche c > ri + d. La casa in posizione c quindi non è coperta dal ripetitore ri della soluzione ottima. Siccome S è una soluzione ammissibile, il ripetitore ri+1 deve coprire la casa c, quindi deve stare nell intervallo [c d, c + d]. In particolare ri+1 c + d e siccome il nostro algoritmo posiziona l (i + 1)-esimo ripetitore in r i+1 = c + d abbiamo che ri+1 r i+1. Theorem 1.2. La soluzione fornita dal nostro algoritmo è ottima. Proof. Sia S A = {r 1,..., r k } la soluzione fornita dal nostro algoritmo e sia S = {r 1,..., r m} una soluzione ottima con r 1 < < r m. Siccome S è ottima, S A deve contenere almeno tanti elementi quanti ne contiene S, ossia k = S A S = m. Ora dimostriamo che in realtà vale l uguaglianza k = S A = S = m. Osserviamo che non ci può essere nessuna casa in posizione c > r m + d, altrimenti quella casa non sarebbe coperta da nessuno dei ripetitori in S. L ultima casa quindi deve essere in posizione c n r m + d. Per il Lemma 1.1, il ripetitore posizionato all m-esima iterazione del ciclo while del nostro algoritmo si trova in posizione r m r m c n d. Quindi dopo al più m iterazioni del ciclo while tutte le case sono coperte e il nostro algoritmo termina. Esercizio 2 (Gara di Triathlon). State organizzando una gara di Triathlon in cui i partecipanti devono completare 20 vasche in piscina, poi percorrere 10 km in bicicletta, infine correre per 3 km. Per evitare confusione in piscina, questa può essere usata da un solo partecipante per volta. Quindi all inizio della gara fate entrare in piscina il primo partecipante, nel momento in 2

3 cui il primo completa le 20 vasche e inizia il tratto in bicicletta fate entrare in piscina il secondo partecipante e così via. Per ogni partecipante i avete una stima sui tempi p i, b i, c i che impiega rispettivamente in piscina, in bicicletta e di corsa. La gara termina quando tutti i partecipanti hanno completato tutte e tre le specialità. In che ordine fate entrare in piscina i partecipanti per minimizzare la durata della gara? Perché? Soluzione. Indichiamo con n il numero degli atleti e indichiamo con σ S n l ordine con cui li facciamo entrare in piscina, ossia σ(1) indica l atleta che parte per primo, σ(2) quello che parte per secondo, σ(n) quello che parte per ultimo. Se assumiamo che la gara parte all istante 0, allora l atleta che parte per primo dovrebbe arrivare al traguardo all istante p σ(1) + b σ(1) + c σ(1) ; quello che parte per secondo entra in piscina appena il primo esce dalla piscina, quindi dovrebbe arrivare al traguardo all istante p σ(1) + p σ(2) + b σ(2) + c σ(2). In generale quindi, se indichiamo con l σ (j) il tempo atteso in cui l atleta che parte j-esimo arriva al traguardo, abbiamo che l σ (j) = j p σ(k) + b σ(j) + c σ(j) La durata della gara pertato è L σ = max{l σ (j) : j = 1,..., n}. In che modo scegliamo σ per minimuzzare L σ? Idea: Osserviamo che siccome tutti gli atleti devono passare in piscina uno per volta, la gara deve per forza avere un tempo superiore a n i=1 p i. Per comodità chiamiamo P questa quantità P = n i=1 p i. Se per esempio osserviamo l arrivo degli ultimi due atleti, abbiamo che l atleta σ(n), che parte per ultimo, dovrebbe arrivare al traguardo al tempo P +b σ(n) +c σ(n) ; l atleta σ(n 1), che parte per penultimo, dovrebbe arrivare al traguardo al tempo (P p σ(n) )+b σ(n 1) +c σ(n 1). Per minimizzare la durata della gara allora sembra ragionevole mandare i partecipanti che sono più veloci a terra (b i + c i ) per ultimi. Proviamo quindi a usare questa strategia: Ordiniamo i partecipanti per b i + c i decrescente. Per comodità, per ogni atleta i chiamiamo t i il suo tempo a terra, ossia t i = b i + c i. Il nostro ordinamento allora soddisfa t σ(1) t σ(2) t σ(n) (1) Osserviamo che potrebbe esserci più di un ordinamento che soddisfa la condizione (1), perché non stiamo specificando come ci comportiamo se abbiamo due atleti i e h che hanno lo stesso tempo a terra t i = t h. Se tutti i t i sono distinti, allora c è un unico ordinamento σ che soddisfa la (1) e possiamo passare direttamente al Teorema 2.2. Altrimenti, non è difficile convincersi che tutti gli ordinamenti che soddisfano la (1) devono avere la stessa durata; lo dimostriamo formalmente nel prossimo lemma. Lemma 2.1. Tutti gli ordinamenti che soddisfano la (1) hanno la stessa durata. Proof. Due ordinamenti σ e µ che soddisfano la (1) possono differire solo per l ordine dei partecipanti con lo stesso tempo a terra, ossia deve essere t σ(i) = t µ(i) per ogni i. Infatti, se per assurdo così non fosse, prendiamo il più piccolo i per cui t σ(i) t µ(i) e supponiamo senza perdita di generalità che t σ(i) > t µ(i), allora dovrebbe esistere un k > i tale che t µ(k) = t σ(i) > t µ(i), ma questo contraddirrebbe l ipotesi che µ soddisfa la (1). 3

4 Per quanto riguarda i tempi di arrivo dei singoli atleti nei due ordinamenti ( j ) ( j ) l σ (j) = p σ(k) + t σ(k) e l µ (j) = p µ(k) + t µ(k) (2) in generale non è vero che queste due quantità coincidono per ogni j, ma certamente coincidono se j è l ultimo indice fra quelli che hanno uno stesso tempo a terra. Infatti, se j < n è un indice tale che t σ(j) > t σ(j+1) allora entrambe le somme in (2) sono estese a tutti e soli gli atleti che hanno un tempo a terra minore o uguale a t σ(j), quindi coincidono. Più formalmente, se indichiamo con S l insieme S = {n} {j = 1,..., n 1 : t σ(j) > t σ(j+1) } = {n} {j = 1,..., n 1 : t µ(j) > t µ(j+1) } allora l σ (j) = l µ (j) per ogni j S. Infine osserviamo che se j / S, allora l atleta che parte j-esimo non può arrivare per ultimo né in σ né in µ. Infatti, se j / S allora t σ(j+1) = t σ(j) e t µ(j+1) = t µ(j), quindi in entrambi gli ordinamenti l istante di arrivo dell atleta che parte (j + 1)-esimo è maggiore di quello che parte j-esimo l σ (j + 1) = l σ (j) + p σ (j + 1) > l σ (j) l µ (j + 1) = l µ (j) + p µ (j + 1) > l µ (j) Quindi in entrambi gli ordinamenti un atleta che arriva per ultimo deve essere il j-esimo, per qualche indice j S, ma siccome per tutti i j S si ha l σ (j) = l µ (j) la durata della gara deve essere la stessa in entrambi gli ordinamenti. A questo punto siamo pronti per dimostrare che un ordinamento che soddisfa la (1) minimizza la durata della gara. Theorem 2.2. Sia σ A un ordinamento che soddisfa la (1), allora σ A è ottimo. Proof. Sia σ un ordinamento ottimo. Se σ soddisfa la (1), allora per il Lemma 2.1 il nostro ordinamento σ A ha la stessa durata di σ, quindi σ A è ottimo. Se invece σ non soddisfa la (1) allora deve esistere un j {1,..., n 1} tale che il tempo a terra di σ (j) è più piccolo del tempo a terra di σ (j + 1), t σ (j) < t σ (j+1) (3) Siccome l atleta σ (j) ha un tempo a terra più piccolo di quello di σ (j +1) e parte anche prima deve chiaramente arrivare al traguardo prima di σ (j + 1). Scriviamo esplicitamente il tempo di arrivo dell atleta σ (j + 1), ché ci servirà più avanti l σ (j + 1) = P j 1 + p σ (j) + p σ (j+1) + t σ (j+1) (4) Dove per comodità abbiamo chiamato P j 1 = j 1 p σ(k) il tempo che impiegano in piscina i primi j 1 atleti. Ora proviamo a scambiare l ordine degli atleti σ (j) e σ (j + 1), ossia consideriamo una nuova soluzione µ tale che µ(j) = σ (j + 1) µ(j + 1) = σ (j) µ(k) = σ (k) per ogni k j, j + 1 4

5 Osserviamo che i tempi di arrivo di tutti gli atleti che partono prima di µ(j) non cambiano, e siccome p σ (j) + p σ (j+1) = p µ(j) + p µ(j+1) anche tutti i tempi di arrivo degli atleti che partono dopo µ(j + 1) sono gli stessi che nell ordinamento σ, ossia l µ (k) = l σ (k) per ogni k j, j + 1 L atleta µ(j) = σ (j + 1) parte prima nell ordinamento µ che nell ordinamento σ, quindi il suo tempo di arrivo nell ordinamento µ è senz altro più piccolo del suo tempo di arrivo nell ordinamento σ : l µ (j) l σ (j + 1). Per quanto riguarda l atleta µ(j + 1) = σ (j) abbiamo che l µ (j + 1) = P j 1 + p µ(j) + p µ(j+1) + t µ(j+1) (5) = P j 1 + p σ (j+1) + p σ (j) + t σ (j) Confrontando la (5) con la (4) e tenendo conto della (3) abbiamo quindi che l µ (j+1) < l σ (j+1). Complessivamente quindi abbiamo dimostrato che l µ (k) l σ (k) per ogni k = 1,..., n. Ma allora la durata della gara con l ordinamento µ è L µ = max{l µ (k) : k = 1,..., n} max{l σ (k) : k = 1,..., n} = L σ Quindi anche µ è una soluzione ottima! Se µ soddisfa la (1) allora per il Lemma 2.1 anche la nostra soluzione σ A è ottima. Altrimenti possiamo ripetere l operazione con cui siamo passati da σ a µ per ottenere una nuova soluzione µ 2 che sarà ancora ottima, e così via finché non arriviamo a una soluzione ordinata 1 come la nostra σ A. 1 L operazione con cui siamo passati da σ a µ non è nient altro che uno step dell algoritmo Bubblesort 5

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza vale sse D l i = p i.. p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

VISITA IL SITO PER ALTRO MATERIALE E GUIDE

VISITA IL SITO  PER ALTRO MATERIALE E GUIDE COPYRIGHT SEGO LICENSE Questo documento viene fornito così come è: se pensate che faccia schifo problemi vostri, nessuno vi obbliga a leggerlo. Se pensate che sia qualcosa di positivo e/o avete suggerimenti

Dettagli

Permutazioni. 1 Introduzione

Permutazioni. 1 Introduzione Permutazioni 1 Introduzione Una permutazione su un insieme di n elementi (di solito {1, 2,...,n}) è una funzione biiettiva dall insieme in sé. In parole povere, è una regola che a ogni elemento dell insieme,

Dettagli

Appunti di informatica. Lezione 10 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 10 anno accademico Mario Verdicchio Appunti di informatica Lezione 10 anno accademico 2016-2017 Mario Verdicchio Esercizio Scrivere un programma che, data una sequenza di 10 interi (scelta dall utente), la ordini in ordine crescente Soluzione

Dettagli

Criteri di Scelta Finanziaria

Criteri di Scelta Finanziaria 3 Criteri di Scelta Finanziaria 3.1 Introduzione Spesso occorre confrontare operazioni definite su scadenzari diversi. Nel seguito presentiamo due criteri, quello del valore attuale netto (VAN) e quello

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un

Dettagli

1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi

1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi In ogni esercizio c è la data del giorno in cui l ho proposto. 1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi Se X è un insieme indichiamo con Sym(X) l insieme delle biiezioni X X. Si tratta

Dettagli

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2,

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2, 1 Elementi di Analisi Matematica e Ricerca Operativa prova del 6 luglio 2016 1) Discutere il seguente problema di Programmazione Lineare: Trovare il massimo di p x 1, x 2, x 3, x 4 # x 2 + 4 x 3 + x 4

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

Algoritmi di Ricerca

Algoritmi di Ricerca Algoritmi e Strutture Dati Autunno 01 Algoritmi di Ricerca Dip. Informatica ed Appl. Prof. G. Persiano Università di Salerno 1 Ricerca esaustiva 1 2 Backtrack 3 2.1 Backtrack per enumerazione......................................

Dettagli

Array e Oggetti. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 12. A. Miola Dicembre 2006

Array e Oggetti. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 12. A. Miola Dicembre 2006 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 12 Array e Oggetti A. Miola Dicembre 2006 http://www.dia.uniroma3.it/~java/fondinf1/ Array e Oggetti 1 Contenuti Array paralleli

Dettagli

Algoritmi e Strutture Dati Esercizi Svolti. Giuseppe Persiano Dipartimento di Informatica ed Appl. Renato M. Capocelli Università di Salerno

Algoritmi e Strutture Dati Esercizi Svolti. Giuseppe Persiano Dipartimento di Informatica ed Appl. Renato M. Capocelli Università di Salerno Algoritmi e Strutture Dati Esercizi Svolti Giuseppe Persiano Dipartimento di Informatica ed Appl Renato M Capocelli Università di Salerno Indice Esercizio 12-3 5 Esercizio 23-4 6 Esercizio 63-3 7 Esercizio

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

Liceo Galilei - ROMA 27 maggio 2010

Liceo Galilei - ROMA 27 maggio 2010 Liceo Galilei - ROMA 27 maggio 2010 L. Lamberti Dipartimento di Matematica La Sapienza L. Lamberti Dipartimento di Matematica La Sapienza 27 maggio 2010 L. Lamberti Dipartimento di Matematica La Sapienza

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi:

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: Pag 24 3) Il problema della ricerca Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: si incontrano in una grande varietà di situazioni reali; appaiono come sottoproblemi

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013 L algoritmo AKS Seminario per il corso di Elementi di Algebra Computazionale Oscar Papini 22 luglio 2013 Test di primalità Come facciamo a sapere se un numero n è primo? Definizione (Test di primalità)

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e analisi di algoritmi Roberto Cordone DTI - Università degli Studi di Milano Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordone@dti.unimi.it Ricevimento: su appuntamento

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

1 Esercizi in pseudocodice

1 Esercizi in pseudocodice Questa dispensa propone esercizi sulla scrittura di algoritmi in un linguaggio semiformale, utile all acquisizione delle abilità essenziali per implementare algoritmi in qualsiasi linguaggio di programmazione.

Dettagli

Divide et impera. Divide et impera. Divide et impera. Divide et impera

Divide et impera. Divide et impera. Divide et impera. Divide et impera Divide et impera Divide et impera La tecnica detta divide et impera è una strategia generale per impostare algoritmi (par. 9.4). Consideriamo un problema P e sia n la dimensione dei dati, la strategia

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi

Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Dimostrare che un albero non vuoto con n nodi interni, dove ogni nodo interno ha almeno

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 5 maggio 2011 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2011.html VALORE SHAPLEY per Giochi cooperativi ad utilità

Dettagli

2. Algoritmi e Programmi

2. Algoritmi e Programmi 12 2. Algoritmi e Programmi Dato un problema, per arrivare ad un programma che lo risolva dobbiamo: individuare di cosa dispongo: gli input; definire cosa voglio ottenere: gli output; trovare un metodo

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Il problema delle azioni

Il problema delle azioni Il problema delle azioni Per studiare l andamento del mercato azionario bisogna seguire i prezzi delle azioni in un lasso di tempo abbastanza lungo, diciamo n giorni. Se si dispone dei prezzi di un azione

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Branch-and-bound per KNAPSACK

Branch-and-bound per KNAPSACK p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme; come si effettua il branching; come si individuano

Dettagli

Ottimizzazione dei Sistemi Complessi

Ottimizzazione dei Sistemi Complessi 1 Giovedì 2 Marzo 2017 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Pseudo-code del metodo Fermi-Metropolis Input: x 0, 0, min, maxit k 0, x x 0, 0 while k maxit and min do k k + 1, x x

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

Esercitazione 6. Array

Esercitazione 6. Array Esercitazione 6 Array Arrays Array (o tabella o vettore): è una variabile strutturata in cui è possibile memorizzare un numero fissato di valori tutti dello stesso tipo. Esempio int a[6]; /* dichiarazione

Dettagli

Macchine di Turing: somma di due numeri

Macchine di Turing: somma di due numeri Informatica Teorica 2/2 M.Di Ianni Macchine di Turing: somma di due numeri Vogliamo definire una macchina di Turing che, presi in input due numeri n e m espressi in notazione binaria, calcola il valore

Dettagli

Un esempio per iniziare. Il controllo del programma in C. Altri cenni su printf() Esercizi (printf) printf( 8!=%d, fatt);

Un esempio per iniziare. Il controllo del programma in C. Altri cenni su printf() Esercizi (printf) printf( 8!=%d, fatt); Un esempio per iniziare Il controllo del programma in C DD Cap.3 pp.91-130 /* calcolo di 8!*/ #include #define C 8 int main() int i=1; int fatt=1; while (i

Dettagli

1 I numeri naturali. 1.1 Gli assiomi di Peano

1 I numeri naturali. 1.1 Gli assiomi di Peano 1 I numeri naturali I numeri naturali sono il punto di partenza per la costruzione degli altri insiemi numerici: numeri interi, razionali, reali e quindi complessi, interi modulo n. Il concetto di numero

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Cenni di programmazione ricorsiva. Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B)

Cenni di programmazione ricorsiva. Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B) Cenni di programmazione ricorsiva Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B) Corso di Laurea in Informatica Università di Pisa A.A. 2009/10 R. Barbuti, P. Mancarella Indice

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Appunti di informatica. Lezione 4 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 4 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 4 anno accademico 2015-2016 Mario Verdicchio Numeri primi Si definisce primo un numero intero maggiore di 1 che ha due soli divisori: se stesso e 1 Esempi di numeri primi:

Dettagli

Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29

Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29 Macchine di Turing Francesco Paoli Istituzioni di logica, 2016-17 Francesco Paoli (Istituzioni di logica, 2016-17) Macchine di Turing 1 / 29 Alan M. Turing (1912-1954) Francesco Paoli (Istituzioni di logica,

Dettagli

Secondo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Secondo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Secondo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 15 marzo 2016 Programma 1. Lettura di un problema tratto dalle

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it Ultimo aggiornamento: 3 novembre 2010 1 Trova la somma/1 Scrivere un algoritmo che dati in input un array A[1... n] di n interi

Dettagli

Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 17/01/2014/ Foglio delle domande / VERSIONE 1

Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 17/01/2014/ Foglio delle domande / VERSIONE 1 Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 17/01/2014/ Foglio delle domande/ VERSIONE 1 1) L approccio con cui si studia un sistema focalizzandosi solo sul rapporto tra input e output si chiama

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005 PROGETTO OLIMPIADI DI MATEMATIA U.M.I. UNIONE MATEMATIA ITALIANA SUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniBiennio 3 novembre 00 1 Griglia delle risposte corrette Risoluzione dei problemi Problema

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

A lezione sono stati presentati i seguenti passi per risolvere un problema:

A lezione sono stati presentati i seguenti passi per risolvere un problema: Calcolo delle radici di un polinomio Problema: Dati i coefficienti a,b,c di un polinomio di 2 grado della forma: ax^2 + bx + c = 0, calcolare le radici. A lezione sono stati presentati i seguenti passi

Dettagli

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0 1 ESERCIZI 1 Esercizi 1.1 Fibonacci1 Dimostrare che F 2 i = F n F n+1. Dimostrazione. Per induzione su n. Per n = 1 si ha F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. n+1

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

Esercizi. Andrea Marin. a.a. 2011/2012. Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time

Esercizi. Andrea Marin. a.a. 2011/2012. Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Test di primalità Definizione (Numeri primi) Un numero naturale è primo se è maggiore di

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it Ultimo aggiornamento: 10 novembre 2010 1 La bandiera nazionale (problema 4.7 del libro di testo). Il problema della bandiera

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

ERRATA CORRIGE. void SvuotaBuffer(void); void SvuotaBuffer(void) { if(getchar()!=10) {svuotabuffer();} }

ERRATA CORRIGE. void SvuotaBuffer(void); void SvuotaBuffer(void) { if(getchar()!=10) {svuotabuffer();} } ERRATA CORRIGE Pulizia del buffer di input: come fare? (1) Dopo aver richiamato getchar() per prelevare un carattere dal buffer di input, inseriamo una seconda chiamata a getchar(), senza assegnare il

Dettagli

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 1: Divide et Impera 1 Paradigma del divide et impera Strutturato in tre fasi. Sia Π() istanza di dimensione di un problema computazionale Π (dove è immediato

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione) RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno

Dettagli

Fattorizzazione QR con pivoting per colonne

Fattorizzazione QR con pivoting per colonne Fattorizzazione QR con pivoting per colonne Mele Giampaolo May 14, 211 1 Traccia Abstract Breve descrizione dell algoritmo implementato per l esame di calcolo scientifico con sperimentazione Implementare

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Convergenza del Simplesso e regole anti-ciclaggio

Convergenza del Simplesso e regole anti-ciclaggio Convergenza del Simplesso e regole anti-ciclaggio degenerazione e ciclaggio un esempio di ciclaggio regole anti-ciclaggio rif. Fi 3.2.6, BT 3.4 (Esempio 3.6), BT 3.7; Sulla convergenza del metodo del simplesso

Dettagli

Proprieta dei Linguaggi regolari

Proprieta dei Linguaggi regolari Proprieta dei Linguaggi regolari Pumping Lemma. Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l uso del pumping lemma mostrera una contraddizione.

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

Teoria dei Giochi Prova del 30 Novembre 2012

Teoria dei Giochi Prova del 30 Novembre 2012 Cognome, Nome, Corso di Laurea, email: Teoria dei Giochi Prova del 30 Novembre 2012 Esercizio 1. Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra {3,4,8,16,38}; il secondo

Dettagli

Linguaggi di programmazione - Principi e paradigmi 2/ed Maurizio Gabbrielli, Simone Martini Copyright The McGraw-Hill Companies srl

Linguaggi di programmazione - Principi e paradigmi 2/ed Maurizio Gabbrielli, Simone Martini Copyright The McGraw-Hill Companies srl Approfondimento 2.1 Non è questo il testo dove trattare esaurientemente queste tecniche semantiche. Ci accontenteremo di dare un semplice esempio delle tecniche basate sui sistemi di transizione per dare

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Informatica e Bioinformatica: Algoritmi

Informatica e Bioinformatica: Algoritmi Informatica e Bioinformatica: Algoritmi 20 Marzo 2014 Programmi Applicativi Programmi Applicativi Sistema Operativo (lezione 3) Macchina Hardware (lezione 1 e 2) La macchina hardware permette l esecuzione

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann.

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann. 4. Confronto tra l integrale di Lebesgue e l integrale di Riemann. Lo scopo di questo capitolo è quello di mettere a confronto i vari tipi di integrale (di Riemann, generalizzato e improprio) di funzioni

Dettagli

4.5 Tempo di calcolo: introduzione.

4.5 Tempo di calcolo: introduzione. 4.5 Tempo di calcolo: introduzione. Perché un programma o sottoprogramma sia una soluzione accettabile di un problema, non basta che sia corretto rispetto alla specifica del problema; occorre anche che

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Esercitazione 4. Comandi iterativi for, while, do-while

Esercitazione 4. Comandi iterativi for, while, do-while Esercitazione 4 Comandi iterativi for, while, do-while Comando for for (istr1; cond; istr2) istr3; Le istruzioni vengono eseguite nel seguente ordine: 1) esegui istr1 2) se cond è vera vai al passo 3 altrimenti

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 9 novembre 008 Griglia delle risposte

Dettagli