Aritmetica in Floating Point

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Aritmetica in Floating Point"

Transcript

1 Aritmetica in Floating Point Esempio di non associatività Alcune proprietà delle operazioni in aritmetica esatta possono non valere in aritmetica finita in virgola mobile (floating point). Ad esempio: >> a=1.0e+308; >> b=1.1e+308; >> c=-1.001e+308; >> (a+b)+c ans = Inf >> a+(b+c) ans = e+308 Esempio di cancellazione numerica In aritmetica esatta, usando la nota identità (a+b)(a b) = a 2 b 2, si ottiene facilmente x x = x 2 x x 2 R Calcolando con Matlab: >> x= ; >> y1=sqrt(x^2+1)-x y1 = 0 >> y2=1/(sqrt(x^2+1)+x) y2 = e-09 >> err=abs((y1-y2)/y2) err = 1

2 In aritmetica esatta i valori y1 e y2 dovrebbero essere uguali e l errore relativo err nullo. In realtà i risultati ottenuti (y1 e y2) sono assai diversi. Il risultato finale dipende fortemente da come viene effettivamente calcolata la funzione (errore di arrotondamento, dovuto all aritmetica finita del calcolatore). Il risultato corretto `e y2, mentre y1 è soggetto a un fenomeno di cancellazione. Precisione di macchina L errore relativo che si commette approssimando un numero reale x con il numero floating point fl(x) è tale che dove M t = β 1 fl( x) x x Cε ε è detto epsilon macchina, dove β è la base e t il numero di cifre significative dell insieme dei numeri macchina considerato. Nel caso della doppia precisione β = 2 e t = 53. ε M può anche essere definito come il più piccolo numero macchina positivo tale che fl(1 + x) > 1. M Esercizio Verificare (in format hex) che: 1+eps > 1 1+eps/2 =1 10^20 +1 =1 (perchè?); verificare il valore di eps(1e20) ε M non va confuso con il più piccolo numero rappresentabile in un sistema floating point (quello è realmin!!!), esso definisce invece una stima di quanto possa valere al più l errore relativo quando si approssima un numero reale con un numero macchina. In Matlab è predefinita la variabile eps che contiene il suo valore. >> eps ans = e-16

3 Esercizio Calcolare algoritmo: ε M scrivendo un breve codice che implementi il seguente e 0 = 1/2, k = 0 se e k + 1 > 1 allora e k+1 = e k /2 altrimenti STOP Risolvere Esercizi dall 1 al 5 Matlab come linguaggio di programmazione Cicli condizionati (comando while ) Sintassi generale: while (condizione == true) istruzione aggiornamento condizione end Cicli non condizionati con contatore (comando for ) Sintassi generale: for contatore = [elementi di un vettore] istruzione istruzione end

4 Istruzioni condizionali (comando if ) Sintassi generale: if (condizione1==true) istruzioni 1 elseif (condizione2==true) istruzioni 2 else istruzioni 3 end Operatori relazionali e logici Il valore 1 corrisponde ad una condizione vera, 0 ad una falsa. <, <=, >=, >, = =, ~= a == b 1 se a = b, 0 altrimenti a ~= b 1 se a b, 0 altrimenti &,, ~, xor

5 Per assegnare le matrici Matrici in Matlab (primi comandi) A = , B = 11 0 >> A=[1 2 3; 4 5 6]; >> B =[ ;3 11 0]; Si costruiscono elencandone gli elementi per riga. Matrici particolari Matrici nulle >> zeros(3,2) Matrici con elementi uguali a 1 >> ones(4,2) Matrici di numeri casuali >> ones(4,2) Matrici identità >> I =eye(4) Matrici di Hilbert >> H=hilb(5) Matrici di Vandermonde: sono matrici le cui colonne contengono le potenze successive di un vettore di riferimento x = [x1,..., xn] >> V=vander([ ]) Elementi di una matrice Possiamo, usando indici di riga e colonna, estrarre gli elementi ed elaborarli >> s=b(1,2)+a(2,3) oppure riassegnarli: >> B(2,2) =100 (Attenzione: controllate il risultato dell assegnazione B(3,5) = 1 oppure B(4,6) = 5)

6 Concatenazione (come per i vettori) la virgola accoda in orizzontale, il punto e virgola in verticale. Esempio Date A=[1 2; 3 4], B=[1 2;-1 1] verificare il risultato di >> C = [[A, B]; ones(2,8)]; >> D = [zeros(8,4),[a;b]]; Manipolazione di sottoblocchi di matrici Sia A=eye(4) e B=hilb(2). Per sostituire alle ultime due righe e colonne di A la matrice B: >> A=eye(4); B=hilb(2); >> A(3:4,3:4)=B si utilizzano gli stessi metodi visti con i vettori ma lavorando su due indici. Per estrarre la quarta riga di A: >> r=a(4,:) Per eliminare una colonna usiamo il vettore vuoto []: >> A(:,4)=[] Operazioni tra matrici Possiamo calcolare somma e sottrazione >> C=A+B; >> D=A-B; purché gli addendi abbiano le stesse dimensioni. Sia C = >> C*A ; l operatore * esegue il prodotto righe per colonne: equivale all oparazione matematica =

7 MEMO: date due matrici S m,n (m righe, n colonne) e R p,q (p righe, q colonne), il prodotto righe per colonne S m,n * R p,q = W m,q se e solo se n = p è possibile solo se n = p e il risultato sarà una matrice di m righe e q colonne Esempio Dati i due vettori a = [ ] e b = [ ] verificare i risultati delle 4 operazioni: a*b, a *b, a *b, a*b Operazioni elemento per elemento (come per i vettori): >> A=[1 2; 3 4], B=[1 2;-1 1]; >> A.*B; >> A./B; >> A.^B; Risolvere Esercizi 6, 7, 8.

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 2 - Introduzione a MATLAB

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 2 - Introduzione a MATLAB Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 2 - Introduzione a MATLAB Che cos è? Programmare con Matlab: Script-files È un file con estensione.m (ad esempio: myfile.m). Contiene

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

GLI ERRORI. Problema. valutare l'accuratezza del risultato di un calcolo e quindi l'affidabilità del risultato stesso. Prof.

GLI ERRORI. Problema. valutare l'accuratezza del risultato di un calcolo e quindi l'affidabilità del risultato stesso. Prof. GLI ERRORI Prof. Almerico Murli a.a. 2002-2003 1 Problema valutare l'accuratezza del risultato di un calcolo e quindi l'affidabilità del risultato stesso 2 Esempio Si vuole approssimare x = 10.1294 con

Dettagli

3. Matrici e algebra lineare in MATLAB

3. Matrici e algebra lineare in MATLAB 3. Matrici e algebra lineare in MATLAB Riferimenti bibliografici Getting Started with MATLAB, Version 7, The MathWorks, www.mathworks.com (Capitolo 2) Mathematics, Version 7, The MathWorks, www.mathworks.com

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 2015-2016 Quando si risolve un problema reale con l ausilo di un computer si avrà inevitabilmente a che fare con degli errori. Tali errori possono essere

Dettagli

Elaborazione aut. dei dati

Elaborazione aut. dei dati Programma Elaborazione aut. dei dati Sistema interattivo MATLAB Risoluzione di sistemi lineari e di equazioni non lineari Interpolazione e smoothing di dati Opzioni finanziarie Approssimazione di integrali

Dettagli

PON 2007 2013 Liceo Scientifico Leonardo da Vinci. Vallo della Lucania

PON 2007 2013 Liceo Scientifico Leonardo da Vinci. Vallo della Lucania PON 2007 2013 Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. Matlab - 2: Lavorare con le matrici Vallo della Lucania 26 Settembre 2008

Dettagli

Problema numerico. Relazione funzionale chiara e non ambigua tra dati iniziali e soluzione. Dati iniziali e soluzione sono due vettori finiti x, y.

Problema numerico. Relazione funzionale chiara e non ambigua tra dati iniziali e soluzione. Dati iniziali e soluzione sono due vettori finiti x, y. Problema numerico Relazione unzionale chiara e non ambigua tra dati iniziali e soluzione. Dati iniziali e soluzione sono due vettori initi, y. (=y Metodo numerico Descrizione matematica dei calcoli che

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Variabile, costante ed espressione

Variabile, costante ed espressione Variabile, costante ed espressione All interno di un programma un informazione può essere organizzata in vari modi: Variabile Costante Espressione Le variabili a loro volta possono essere: scalari vettori

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Matlab: esempi ed esercizi Sommario e obiettivi Sommario Esempi di implementazioni Matlab di semplici algoritmi Analisi di codici Matlab Obiettivi

Dettagli

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?

Dettagli

Corso di Calcolo Numerico Informatica e Comunicazione Digitale - Taranto A.A. 2015/2016

Corso di Calcolo Numerico Informatica e Comunicazione Digitale - Taranto A.A. 2015/2016 di Corso di Calcolo Numerico Informatica e Comunicazione Digitale - Taranto A.A. 2015/2016 Giuseppina Settanni Dipartimento di Matematica Università degli Studi di Bari Aldo Moro 1 / 50 di 1 2 di Table

Dettagli

VBA Principali Comandi

VBA Principali Comandi VBA Principali Comandi Sintassi Significato Esempio Dim As Dichiarazione Dim x As Integer di una variabile Dim , , ,.,

Dettagli

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli

Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli Codice La relazione che associa ad ogni successione ben formata di simboli di un alfabeto il dato corrispondente è detta codice. Un codice mette quindi in relazione le successioni di simboli con il significato

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Introduzione a Matlab (e al Calcolo Numerico)

Introduzione a Matlab (e al Calcolo Numerico) Introduzione a Matlab (e al Calcolo Numerico) Giuseppe Rodriguez Università di Roma Tor Vergata Seminario nell ambito del corso di Fondamenti di Informatica per gli studenti di Ingegneria Meccanica e Ingegneria

Dettagli

Somma di numeri binari

Somma di numeri binari Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Somma di numeri binari 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 Esempio: 10011011 + 00101011 = 11000110 in base e una base Fondamenti di

Dettagli

Laboratorio di Programmazione Laurea in Ingegneria Civile e Ambientale

Laboratorio di Programmazione Laurea in Ingegneria Civile e Ambientale Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Laboratorio di Programmazione Laurea in Ingegneria Civile e Ambientale Algebra di Boole Stefano Cagnoni Algebra di Boole L algebra

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

PROGRAMMAZIONE STRUTTURATA

PROGRAMMAZIONE STRUTTURATA PROGRAMMAZIONE STRUTTURATA Programmazione strutturata 2 La programmazione strutturata nasce come proposta per regolamentare e standardizzare le metodologie di programmazione (Dijkstra, 1965) Obiettivo:

Dettagli

MATRICI. 1. Esercizi

MATRICI. 1. Esercizi MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Introduzione 14 Ottobre 2014 Info Docente: Annalisa Pascarella Studio: Via dei Taurini,19 (IAC-CNR) Ricevimento: su appuntamento Homepage:

Dettagli

Aritmetica dei Calcolatori

Aritmetica dei Calcolatori Aritmetica dei Calcolatori Luca Abeni March 5, 2014 Codifica dei Numeri Interi k bit codificano 2 k simboli/valori/numeri... Si usa la base 2 per codificare i numeri Numeri naturali n N: valori da 0 a

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Mini-Corso di Informatica

Mini-Corso di Informatica Mini-Corso di Informatica CALCOLI DI PROCESSO DELL INGEGNERIA CHIMICA Ing. Sara Brambilla Tel. 3299 sara.brambilla@polimi.it Note sulle esercitazioni Durante le esercitazioni impareremo a implementare

Dettagli

Linguaggio C Espressioni e operatori

Linguaggio C Espressioni e operatori FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Ing.DAVIDE PIERATTONI Facoltà di Ingegneria Università degli Studi di Udine Linguaggio C Espressioni e operatori 2001 Pier Luca Montessoro - Davide

Dettagli

Introduzione alla programmazione Algoritmi e diagrammi di flusso. Sviluppo del software

Introduzione alla programmazione Algoritmi e diagrammi di flusso. Sviluppo del software Introduzione alla programmazione Algoritmi e diagrammi di flusso F. Corno, A. Lioy, M. Rebaudengo Sviluppo del software problema idea (soluzione) algoritmo (soluzione formale) programma (traduzione dell

Dettagli

1 Esercizi di Matlab. L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi.

1 Esercizi di Matlab. L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi. Esercizi di Matlab L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi. Esempio Consideriamo la matrice A formata da n = righe e m = colonne M = 5 6 7 8. 9 0

Dettagli

Caratteristiche di un linguaggio ad alto livello

Caratteristiche di un linguaggio ad alto livello Caratteristiche di un linguaggio ad alto livello Un linguaggio ad alto livello deve offrire degli strumenti per: rappresentare le informazioni di interesse dell algoritmo definire le istruzioni che costituiscono

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla

Dettagli

Fondamenti di Programmazione. Strutture di controllo

Fondamenti di Programmazione. Strutture di controllo Fondamenti di Programmazione Strutture di controllo 1! Controllo del flusso! n Flusso di esecuzione: ordine in cui le istruzioni di un programma sono eseguite! n Salvo contrordini, è in sequenza! n Due

Dettagli

Unità Didattica 2 Linguaggio C. Espressioni, Operatori e Strutture linguistiche per il controllo del flusso

Unità Didattica 2 Linguaggio C. Espressioni, Operatori e Strutture linguistiche per il controllo del flusso Unità Didattica 2 Linguaggio C Espressioni, Operatori e Strutture linguistiche per il controllo del flusso 1 Espressioni e assegnazioni Le espressioni sono definite dalla grammatica: espressione = variabile

Dettagli

28/02/2014 Copyright V. Moriggia

28/02/2014 Copyright V. Moriggia Informatica per la Finanza 3 Le variabili in VBA Altri I/O 28/02/2014 Copyright 2005-2007 V. Moriggia 1 28/02/2014 3.2 Le variabili in VBA V. Moriggia 1 28/02/2014 3.3 Dichiarazione di variabili in VBA

Dettagli

Fondamenti di Programmazione. Sistemi di rappresentazione

Fondamenti di Programmazione. Sistemi di rappresentazione Fondamenti di Programmazione Sistemi di rappresentazione Numeri e numerali Il numero cinque 5 V _ Π 五 Arabo Romano Maya Greco Cinese Il sistema decimale Sistemi posizionali 1 10 3 + 4 10 2 + 9 10 1 + 2

Dettagli

Introduzione alla programmazione in C(++)

Introduzione alla programmazione in C(++) Testi Testi Consigliati: Introduzione alla programmazione in C(++) A. Kelley & I. Pohl C didattica e programmazione A. Kelley & I. Pohl C didattica e programmazione B.W. Kernighan & D. D. M. M. Ritchie

Dettagli

Calcolo numerico e programmazione Rappresentazione dei numeri

Calcolo numerico e programmazione Rappresentazione dei numeri Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori

Dettagli

Matlab 5. Funzioni. Slide basate sul corso di C. Blundo. A.A. 2010/ GPersiano. Laboratorio di Informatica per Fisici 1

Matlab 5. Funzioni. Slide basate sul corso di C. Blundo. A.A. 2010/ GPersiano. Laboratorio di Informatica per Fisici 1 Matlab 5 Funzioni Slide basate sul corso di C. Blundo A.A. 2010/2011 -- GPersiano Laboratorio di Informatica per Fisici 1 Funzioni Le funzioni sono utili quando occorre ripetere una serie di comandi più

Dettagli

Cos è un algoritmo. Si dice algoritmo la descrizione di un metodo di soluzione di un problema che sia

Cos è un algoritmo. Si dice algoritmo la descrizione di un metodo di soluzione di un problema che sia Programmazione Un programma descrive al computer, in estremo dettaglio, la sequenza di passi necessari a svolgere un particolare compito L attività di progettare e realizzare un programma è detta programmazione

Dettagli

Introduzione. MATLAB è l acronimo di MATrix LABoratory

Introduzione. MATLAB è l acronimo di MATrix LABoratory MatLab Lezione 1 Introduzione MATLAB è l acronimo di MATrix LABoratory E un ambiente per l analisi e la simulazione dei sistemi lineari e non lineari e per l analisi numerica Il sito ufficiale per informazioni

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Rappresentazione dei numeri in un calcolatore

Dettagli

Algoritmi e soluzione di problemi

Algoritmi e soluzione di problemi Algoritmi e soluzione di problemi Dato un problema devo trovare una soluzione. Esempi: effettuare una telefonata calcolare l area di un trapezio L algoritmo è la sequenza di operazioni (istruzioni, azioni)

Dettagli

I vettori in C. Vettori. Definizione di vettori in C. int dato[10] ; int. Numero di elementi. Tipo di dato base. Nome del vettore.

I vettori in C. Vettori. Definizione di vettori in C. int dato[10] ; int. Numero di elementi. Tipo di dato base. Nome del vettore. I vettori in C Sintassi della definizione Definizione di costanti Operazioni di accesso Vettori Definizione di vettori in C I vettori in C Definizione di vettori in C Definizione di vettori in C Stesse

Dettagli

Architetture aritmetiche

Architetture aritmetiche Architetture aritmetiche Sommatori: : Full Adder, Ripple Carry Sommatori: Carry Look-Ahead Ahead, Carry Save, Add/Subtract Moltiplicatori: Combinatori, Wallace,, Sequenziali Circuiti per aritmetica in

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Strutture di Controllo

Strutture di Controllo Introduzione Strutture di Controllo per strutture condizionali e cicliche Quando si affronta la programmazione si devono indicare al computer delle istruzioni da eseguire. Se il computer potesse comprendere

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Presentazione del Matlab Riferimenti bibliografici

Dettagli

Linguaggio C. Tipi predefiniti e operatori. Università degli Studi di Brescia. Docente: Massimiliano Giacomin

Linguaggio C. Tipi predefiniti e operatori. Università degli Studi di Brescia. Docente: Massimiliano Giacomin Linguaggio C Tipi predefiniti e operatori Università degli Studi di Brescia Docente: Massimiliano Giacomin Elementi di Informatica e Programmazione Università di Brescia 1 RICHIAMI char 8 bit Valori interi

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

A = Quindi > b=a(:) b =

A = Quindi > b=a(:) b = Una breve digressione. Se si vuole uscire da Matlab, occorre digitare ( come già riferito)il comando >> quit Se si vogliono utilizzare le variabili create per una successiva sessione di lavoro, prima di

Dettagli

Lezione 7: La Formalizzazione degli Algoritmi - Strutture di Controllo e Selettive La Programmazione Strutturata (3 p) Giovedì 21 Ottobre 2010

Lezione 7: La Formalizzazione degli Algoritmi - Strutture di Controllo e Selettive La Programmazione Strutturata (3 p) Giovedì 21 Ottobre 2010 Università di Salerno Corso di FONDAMENTI DI INFORMATICA Corso di Laurea Ingegneria Corso B Docente : Ing. Anno Accademico 2010-2011 Lezione 7: La Formalizzazione degli Algoritmi - Strutture di Controllo

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Formule e funzioni. Manuale d uso

Formule e funzioni. Manuale d uso EXCEL Modulo 2 Formule e funzioni Manuale d uso Formule (1/2) Le formule sono necessarie per eseguire calcoli e utilizzano i valori presenti nelle celle di un foglio di lavoro. Una formula inizia col segno

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

Costrutti condizionali e iterativi

Costrutti condizionali e iterativi Costrutti condizionali e iterativi Introduction to Fortran 90 Paolo Ramieri, CINECA Aprile 2014 Strutture di controllo Le strutture di controllo permettono di alterare la sequenza di esecuzione delle istruzioni

Dettagli

Analisi e Programmazione

Analisi e Programmazione Algoritmi 1 Analisi e Programmazione I Calcolatori Elettronici si differenziano da altri tipi di macchine per il fatto che possono essere predisposti alla risoluzione di problemi di diversa natura. A tale

Dettagli

AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI

AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI Costruisci un foglio di lavoro che calcoli il resto r della divisione tra a e b (con a, b N e b 0) ed emetta uno dei seguenti messaggi : a

Dettagli

Istruzioni iterative (o cicliche)

Istruzioni iterative (o cicliche) Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Istruzioni iterative (o cicliche) Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria

Dettagli

Rappresentazione dei dati in memoria

Rappresentazione dei dati in memoria Rappresentazione dei dati in memoria La memoria Una memoria deve essere un insieme di oggetti a più stati. Questi oggetti devono essere tali che: le dimensioni siano limitate il tempo necessario per registrare

Dettagli

Strutture dati e loro organizzazione. Gabriella Trucco

Strutture dati e loro organizzazione. Gabriella Trucco Strutture dati e loro organizzazione Gabriella Trucco Introduzione I linguaggi di programmazione di alto livello consentono di far riferimento a posizioni nella memoria principale tramite nomi descrittivi

Dettagli

Matlab: Strutture di Controllo. Informatica B

Matlab: Strutture di Controllo. Informatica B Matlab: Strutture di Controllo Informatica B Tipo di dato logico È un tipo di dato che può avere solo due valori true (vero) 1 false (falso) 0 I valori di questo tipo possono essere generati direttamente

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 1 Approssimazione di dati e funzioni Problema Data la tabella {x i, y i }, i = 0,..., n, si vuole trovare una funzione analitica ϕ

Dettagli

Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton.

Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton. Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 2 Calcolo simbolico, limiti e derivate. Metodo di Newton. 1 Introduzione al Toolbox simbolico Con le routines del Symbolic

Dettagli

Sommario PREFAZIONE...XI CAPITOLO 1: INTRODUZIONE AI COMPUTER, A INTERNET E AL WEB... 1 CAPITOLO 2: INTRODUZIONE ALLA PROGRAMMAZIONE IN C...

Sommario PREFAZIONE...XI CAPITOLO 1: INTRODUZIONE AI COMPUTER, A INTERNET E AL WEB... 1 CAPITOLO 2: INTRODUZIONE ALLA PROGRAMMAZIONE IN C... Sommario PREFAZIONE...XI Aggiornamenti e novità... xi Lo scopo di questo libro... xii Diagramma delle dipendenze... xii La metodologia di insegnamento... xiii Panoramica sul libro... xvi Ringraziamenti...

Dettagli

UTILIZZIAMO GLI OPERATORI MATEMATICI E COMMENTIAMO IL CODICE

UTILIZZIAMO GLI OPERATORI MATEMATICI E COMMENTIAMO IL CODICE Utilizziamo gli operatori matematici e commentiamo il codice Unità 4 UNITÀ DIDATTICA 4 UTILIZZIAMO GLI OPERATORI MATEMATICI E COMMENTIAMO IL CODICE IN QUESTA UNITÀ IMPAREREMO... come utilizzare gli operatori

Dettagli

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012 Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario Operazioni aritmetiche tra numeri in virgola mobile Algoritmi Esempi Errore di rappresentazione (assoluto e relativo) Approssimazione

Dettagli

Sviluppo di programmi

Sviluppo di programmi Sviluppo di programmi Per la costruzione di un programma conviene: 1. condurre un analisi del problema da risolvere 2. elaborare un algoritmo della soluzione rappresentato in un linguaggio adatto alla

Dettagli

Fondamenti di Programmazione. Sistemi di rappresentazione

Fondamenti di Programmazione. Sistemi di rappresentazione Fondamenti di Programmazione Sistemi di rappresentazione Numeri e numerali Il numero cinque 5 V _ Π 五 Arabo Romano Maya Greco Cinese Sistemi posizionali 1 10 3 + 4 10 2 + 9 10 1 + 2 10 0 Sistemi posizionali

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Lezione 2. La conoscenza del mondo

Lezione 2. La conoscenza del mondo Lezione 2 Analogico/Digitale Il sistema binario L aritmetica binaria La conoscenza del mondo Per poter parlare (ed elaborare) degli oggetti (nella visione scientifica) si deve poter assegnare a questi

Dettagli

Aritmetica dei Calcolatori

Aritmetica dei Calcolatori Aritmetica dei Calcolatori Nicu Sebe March 14, 2016 Informatica Nicu Sebe 1 / 34 Operazioni su Bit Bit Scienza della rappresentazione e dell elaborazione dell informazione Abbiamo visto come i computer

Dettagli

MATLAB:Condizionamento Sistemi Lineari.

MATLAB:Condizionamento Sistemi Lineari. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Condizionamento Sistemi Lineari. Innanzitutto vediamo qual è la funzione Matlab che ci permette di calcolare il

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Rappresentazione dei Dati

Rappresentazione dei Dati Parte II I computer hanno una memoria finita. Quindi, l insieme dei numeri interi e reali che si possono rappresentare in un computer è necessariamente finito 2 Codifica Binaria Tutti i dati usati dagli

Dettagli

Esercizi svolti di Calcolo Numerico. C. Fassino

Esercizi svolti di Calcolo Numerico. C. Fassino Esercizi svolti di Calcolo Numerico. C. Fassino 2 Gli esercizi presentati illustrano alcune nozioni di base di Analisi Numerica e sono quindi principalmente rivolti a tutti gli studenti che, pur non frequentando

Dettagli

Algoritmi e dintorni: La radice quadrata Prof. Ettore Limoli. Formule iterative

Algoritmi e dintorni: La radice quadrata Prof. Ettore Limoli. Formule iterative Algoritmi e dintorni: La radice quadrata Prof. Ettore Limoli Formule iterative L algoritmo che, comunemente, viene presentato a scuola per l estrazione della radice quadrata è alquanto laborioso e di scarsa

Dettagli

Laboratorio computazionale numerico Lezione 1

Laboratorio computazionale numerico Lezione 1 Laboratorio computazionale numerico Lezione 1 Federico Poloni 2009-10-07 1 Primo programma Lanciamo Octave con il comando octave in una finestra di terminale (shell). octave :1> Hello,

Dettagli

Algebra di Boole Algebra di Boole

Algebra di Boole Algebra di Boole 1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Note sull implementazione in virgola fissa di filtri numerici

Note sull implementazione in virgola fissa di filtri numerici Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti

Dettagli

Laboratorio Algoritmi 2014 Secondo Semestre

Laboratorio Algoritmi 2014 Secondo Semestre Laboratorio Algoritmi 2014 Secondo Semestre Lunedì 14:30 17:30 Aula 2. Ricevimento: inviare e-mail a frasca@di.unimi.it. 44 ore (9 CFU) Linguaggio di programmazione: MATLAB Esame : progetto e/o prova scritta

Dettagli

Excel & VBA. Excel e Visual Basic for Application

Excel & VBA. Excel e Visual Basic for Application Excel & VBA Excel e Visual Basic for Application Automazione Excel con VBA incorpora la tecnologia dell automazione (OLE automation) Excel dialoga con VBA attraverso un insieme di comandi detto libreria

Dettagli

Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica

Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

I.4 Rappresentazione dell informazione

I.4 Rappresentazione dell informazione I.4 Rappresentazione dell informazione Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Introduzione 1 Introduzione 2 3 L elaboratore Introduzione

Dettagli

Inversa di una matrice quadrata. L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero).

Inversa di una matrice quadrata. L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero). Inversa di una matrice quadrata L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero). richiami di algebra lineare TRASPOSIZIONE DI MATRICE Il calcolo

Dettagli

11.4 Chiusura transitiva

11.4 Chiusura transitiva 6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)

Dettagli

La "macchina" da calcolo

La macchina da calcolo La "macchina" da calcolo Abbiamo detto che gli algoritmi devono essere scritti in un linguaggio "comprensibile all'esecutore" Se il nostro esecutore è il "calcolatore", questo che linguaggio capisce? che

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli