Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?"

Transcript

1 Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile per questo scopo. 1. A) PRIME DOMANDE SULLE FUNZIONI [in blu la domanda-soluzione e in nero la mia risposta] [ ] le mando come ho risolto alcuni esercizi e i dubbi [ ] Z Z f(x)= 2x Dominio A codominio B Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio? LO E Sì il doppio! Anche se ha dimenticato il segno MENO! ma nel disegno ha fatto corretto. E una funzione iniettiva perche ad ogni elemento di B corrisponde un solo elemento di A. Iniettiva lo è, ma non ha dato la giustificazione completa. Una funzione è iniettiva se ad ogni elemento di B corrisponde l insieme vuoto o un solo elemento di A. In ogni caso deve dimostrarlo per TUTTI i numeri di Z così: f(x)=f(y) x=y per ogni x, y Z f(x) = 2x, f(y) =2y 2x=2y x=y OK! Non e surgettiva perche non vengono raggiunti tutti gli elementi di B. Sì esatto, ma essendo NON surgettiva, deve dare un esempio numerico, che mostri il perché. Ad esempio : 1 Im(f) perché non esiste alcun n Z t.c. 1=2n 1

2 1. B) PRIME DOMANDE SULLE FUNZIONI [in blu la domanda-soluzione e in nero la mia risposta] [ ] per studiare Q Q f(x)=2x Dominio A codominio B ho difficolta nel rappresentare i razionali. Devo considerare anche le frazioni oltre agli interi e naturali, pero quali? TUTTI! Un intero è una particolare frazione con 1 al denominatore. Q Q f(x)=x² Agli elementi del codominio corrispondono piu di un elemento del dominio quindi non e iniettiva. Deve determinare un caso numerico che provi ciò che afferma! Ad esempio può dire: l elemento 1 del codominio proviene dai due diversi elementi 1 e -1 del dominio. Nell esempio lei dice che non esiste x ε Q t.c. x²=-1. Devo considerare gli elementi del codominio verificando se corrisponde un quadrato nel dominio? Io ho preso l elemento -1 del codominio e ho detto che non c è nessun elemento x del dominio che elevato al quadrato dia -1. 2

3 2. DOMANDA SULLE FUNZIONI : IL PRIMO ESERCIZIO DELLA PROVA SCRITTA DEL [..] Il primo esercizio era questo: Sia f: R x R ---> R definita da f(z,w) = z³ + w² a) Dire se f è iniettiva b) Dire se f è surgettiva - Per la risposta a) la funzione non è iniettiva perchè ad esempio f(1,0) = f(0,1) = 1. - Per la b) ho pensato a questa cosa: per ogni x appartenente ad R vale questa uguaglianza: f( 3 x, 0) = ( 3 x )³ + 0 = x ed essendo il dominio e il codominio della funzione radice cubica definiti su R, la funzione è surgettiva. Volevo chiederle se è corretta la mia idea e se questo tipo di risposta è valida come risposta nella prova d'esame. Risposta validissima! 3. DOMANDA SULLE FUNZIONI : COME SI FA A VEDERE SE UNA FUNZIONE E INIETTIVA/SURGETTIVA? [ ]volevo sapere si mi può spiegare brevemente come fare il sistema per vedere se una funzione è iniettiva e/o surgettiva. E' iniettiva se: f(x)=f(y) => x=y. Per esempio la funzione f : N x N in Z data da f((x,y)) = 2x-y. La soluzione dice che non è iniettiva perchè: f((1,2)) = 0 = f((2,4)). Ma (1,2) e (2,4) come sono stati trovati? La definizione di f, detta a parole, è: alla coppia di numeri naturali (x,y) faccio corrispondere il numero intero 2x-y, ossia il doppio della prima componente meno la seconda componente. Se prendo a caso due coppie distinte in NxN ad esempio (0,1), (1,1), risulta f((0,1))= 2(0)-1 = -1 e f((1,1))= 2(1)-1 =1. Così ho trovato due elementi distinti nel dominio che hanno immagine distinta nel codominio. Ma sarà così tutte le volte che considero due coppie distinte nel dominio? E qua basta saper trovare le 2 coppie 'buone', ad esempio (1,2), (2,4) coppie diverse, che hanno la stessa immagine =0. Oppure ( 1,3), (2,5) ( molto meno spontaneo! ), ma va bene perchè f(( 1,3))=2(1)-3=-1 e f(( 2,5))=2(2)-5 = 4-5=-1. Dunque per i casi in cui le funzioni NON sono surgettive/iniettive basta trovare un caso, un esempio numerico. Per i casi invece in cui la funzione è iniettiva/surgettiva bisogna dimostrarlo per tutti gli elementi. 3

4 4. DOMANDA SULLE FUNZIONI : DUBBIO SULLA PRIMA DOMANDA DELLA PROVA SCRITTA DELL [ ] riguardo al primo esercizio appartenente alla prova scritta del , alla domanda trovare, se esistono, tre coppie distinte aventi immagine (1,2), per la funzione f: ZxZ ZxZ definita da f(z,w)=(z+w, 2z+2w) io ho svolto così: dato che ho definita f(z,w)=(z+w,2z+2w) e ho la coppia (1,2) ciò vuol dire che z+w=1 e 2z+2w=2 quindi devo trovare valori che sostituiti a z e w mi diano 1 in z+w e 2 in 2z+2w. Io ho trovato le seguenti coppie (1,0)(0,1)(-5,6). Va bene! [ ] L'altra domanda è dire se la funzione è surgettiva: come faccio a provare se una funzione è surgettiva? La funzione data è f: ZxZ ZxZ definita da f(z,w)=(z+w,2z+2w). La funzione è surgettiva se Im(f) coincide con l insieme ZxZ di arrivo, ossia se l insieme dei trasformati del dominio mediante f coincide con tutto il codominio ZxZ. f trasforma l elemento (z,w) del dominio ZxZ nell elemento (z+w,2z+2w) del codominio ZxZ Gli elementi (z+w,2z+2w) al variare di z, w in Z danno tutto ZxZ? questo numero è pari Allora ad esempio l elemento (1,3) del codominio non può essere raggiunto mediante f essendo il 3 dispari! Quindi f NON è surgettiva. Un altro modo poteva essere quello di notare che gli elementi (z+w,2z+2w) hanno la seconda componente doppia della prima, e quindi non possono ricoprire tutto il codominio, ad esempio l elemento (1,3) non viene raggiunto poiché 3 non è doppio di 1. 4

5 5. DOMANDA SULLE FUNZIONI : COME GIUSTIFICARE LA SURGETTIVITÀ DI QUESTA FUNZIONE [ ] Ho un dubbio riguardante l'argomento delle funzioni (iniettività e surgettività). In pratica, riesco a capire quando una funzione è surgettiva;non capisco,però, come giustificare la surgettività di questa funzione: Sia f : Q^2 -> Q la funzione definita da f ((x, y)) = x + y se x >= 0 2x se x < 0 Noto che per x<0 sono compresi sia i pari che i dispari,le frazioni e i numeri interi;stessa cosa per x>=0. Mi domando:come faccio (nell'esame di domani) a giustificarlo nella maniera corretta??(per farle capire meglio,come faccio a dire che se esiste ad esempio una coppia di numeri con immagine 6 ne esiste un'altra con immagine uguale a un altro numero intero qualsiasi?) Non so se sono stata chiara... Si è spiegata benissimo! Lei ha capito esattamente dove sta il problema. L esercizio non è dei più elementari, una soluzione è ad esempio questa, cerco di commentargliela. La funzione è : f: QxQ Q definita così f((x,y)) = Il dominio è suddiviso in due : le coppie (x,y) con la prima componente x 0 e le coppie (x,y) con la prima componente x <0. x + y 2x se x 0 se x < 0 In genere in questo tipo di esercizi in cui la funzione è definita a pezzi occorre sdoppiare la prova della surgettività. Allora sdoppiamo l insieme di arrivo in elementi 0 ed elementi <0 ( questo è un modo, si potrebbe farlo in modi diversi! ) Se a Q ed è a 0 esiste (a,0) QxQ t.c. f((a,0)) = a+0=a ( ho usato la definizione di f nel primo caso, cioè quello in cui la prima componente è 0 ) Se a Q ed è a<0 esiste ( 2 a,0) QxQ t.c. f(( 2 a,0)) = 2 2 a = a ( ho potuto usato la definizione di f nel secondo caso, cioè quello in cui la prima componente è <0, perché è a <0, essendo a<0 ). 2 Così qualunque sia l elemento a nell insieme di arrivo, trovo sempre un elemento del dominio che va a finire, mediante f in a. Le suggerisco, anche in casi più semplici di questo, di verificare prima (su un suo foglio a parte) qualche caso particolare, per rendersi conto se davvero la funzione è surgettiva. Questo aiuta sempre a stabilire la non surgettività e anche nel caso che la funzione sia surgettiva, suggerisce un metodo valido per tutti gli elementi e fare così poi la prova della surgettività. 5

6 6. DOMANDA : TECNICA DI RIDUZIONE FUNZIONI INIETTIVE, SURGETTIVE [ ]Come prima cosa vorrei chiederle di spiegarmi il metodo della riduzione che viene spesso usato negli esempi delle sue dispense... non è che non lo riesco a capire ma vorrei comprendere meglio le "dinamiche" del meccanismo... E poi volevo farle vedere la risoluzione di un esercizio per vedere se è corretto o meno... Sia f:zxz->zxz definita da f(z,w)=(z+w,2z+3w) a) dire se f è iniettiva b) dire se f è surgettiva inizio da b) 1. z+w=a 2. 2z+3w=b da cui si ha che z=3a-b utilizzando la riduzione [ ] prendo 1 fava con 2 piccioni e provo a spiegarle qua la riduzione per arrivare al risultato, seguendo i calcoli da lei indicati: decido di eliminare (ad esempio) w : moltiplico 1. per -3 e ottengo 1bis : -3z-3w=- 3 a, sommo membro a membro 1bis e 2. 2z+3w=b e ottengo 1*: z=-3 a +b che posso sostituire nel sistema al posto di 2. o di 1. come preferisco! Così il sistema di partenza si trasforma nel sistema equivalente ( con le stesse soluzioni) 1* : z=-3 a +b => z=3a-b che è il suo risultato scritto sopra! 2: 2z+3w=b In pratica con la riduzione sostituisco una delle equazioni del sistema con un altra equazione, ottenuta facendo la somma di un equazione del sistema con il multiplo di un altra equazione del sistema. ( O altre varianti simili, ma quella indicata è la più conveniente, altrimenti piuttosto di manipolare ancora, conviene la sostituzione ). Questo garantisce che il nuovo sistema ha le stesse soluzioni del precedente. E il resto continua correttamente come ha scritto lei! risolvendo il sistema inserendo la soluzione appena trovata si ha che 2(3a-b)+3w=b da cui si ricava che w=b-2a, quindi si ha che per ogni (a.b) appartenente a ZxZ esiste unico la coppia (z,w) appartenente a ZxZ tc f(z,w)=(a,b): l esistenza di almeno una soluzione ci garantisce la surgettività di f ed essendo unica ci garantisce inoltre l iniettività di f. 6

7 7. STUDIO DELLA FUNZIONE: f: ZxZ ZxZ definita da f(z,w) = (z+w, 3z+6w) [in blu la domanda-soluzione e in nero la mia risposta] [ ] nell appello scorso c era da dire se la funzione f: ZxZ ZxZ definita da f(z,w) = (z+w, 3z+6w) è surgettiva. Ho fatto così : Applico il metodo di confronto z+ w = a w=a-z w = a-z w = a-z w = a-z 3z+6w = b 6w= b-3z w = b-3z /6 a-z = b-3z / 6 Una volta trovata la soluzione come riconosco la funzione? In questo caso NON può proseguire senza osservare se l operazione di dividere per 6 è lecita o no: siamo in Z e non in R! Ma comunque anche se prosegue, trova z= (6a-b)/3 che è elemento di Z solo se 6a-b è multiplo di 6. Quindi se ad esempio a=0, b=1 troviamo z=-1/3 che non appartiene a Z! Questo significa che la controimmagine di (0,1) tramite f è l insieme vuoto! Se vuole può fare la verifica che (0,1) Imf. Se fosse vero il contrario, si avrebbe : 1) 0=z+w => z=-w 2) 1=3(z+2w), sostituendo la 1) => 1=3(-w+2w) => 1= 3w => w=1/3 che non sta in Z : OK! C è da notare che più facilmente si poteva rispondere così : f(z,w)= (z+w,3(z+2w)) e allora la seconda componente è multipla di 3 indipendentemente dai valori attribuiti a z e w. Quindi f non è surgettiva, ad esempio (1,2) Imf non essendo 2 un multiplo di 3. La seconda domanda chiedeva se f: ZxZ ZxZ definita da f(z,w) = (z+w, 3z+6w) è iniettiva. [ ] f e iniettiva se la controimmagine e vuota o ha 1 elemento [ ] No, così non arriva alla meta, perché torna ad imbattersi nel problema precedente, dividendo trovo un elemento di Z se Meglio applicare la definizione di funzione iniettiva! Cosa vuol dire f(z,w)? Secondo la definizione data dal testo dell esercizio f(z,w) = (z+w, 3z+6w). Cosa vuol dire f(x,y)? Secondo la definizione data dal testo dell esercizio f(x,y) = (x+y, 3x+6y), (cambiando i nomi ). Ora f(x, y) = f(z, w) => (x+y, 3x+6y) = (z+w, 3z+6w) => uguagliamo le componenti, le prime danno 1) x+y=z+w, le seconde danno 2) 3x+6y= 3z+6w. Mettiamo a sistema 1) e 2) e con la riduzione o sostituzione o confronto fa i passaggi e deve trovare x=z e y=w e quindi (x,y)=(z,w), ossia abbiamo ricavato che : f(x, y) = f(z, w) => (x,y)=(z,w) il che significa che f è iniettiva. 7

8 8. TANTE DOMANDE SULLE FUNZIONI : ALLA RICERCA DI UNA CLASSIFICAZIONE DELLE FUNZIONI [ ] Avrei una domanda sulle funzioni riguardante surgettivita' e iniettivita' : nel caso in cui dominio e codominio sono (R,Z,N,Q) il tutto ricade nel casi trattati dall'analisi. Nel caso in cui il dominio ed il codominio della funzione e' pari in dimensione cioe' ZxZ -> ZxZ, RxR -> RxR si risolve con un sistema secondo la definizione di iniettivita' e surgettivita'. I problemi esistono,almeno per me, quando la dimensione del dominio e del codominio non sono uguali esempio (ZxZ -> Z) o (Q -> QxQ) [ ] vorrei sapere se oltre al semplice caso del controesempio mi puo' fornire una rigorosa dimostrazione matematica nei due sensi per risolvere il problema della surgettivita' e della iniettivita' e se puo' dare una breve spiegazione del significato di esse in spazi multidimensionali sempre a livello matematico [ ] Ecco la mia risposta. a. Occorre precisare che il concetto di funzione ( privo di ogni altro attributo) è uguale in ogni ambito ed è quello che abbiamo dato nel corso. b. L'analisi reale I studia funzioni da R in R o comunque da intervalli reali ad R. Quelle che lei chiama a 'dominio e codominio semplice' sono oggetto, per quanto riguarda le loro proprietà più elementari ( iniettività e surgettività ) del corso di Matematica Discreta. c. Veniamo alla parte più interessante della sua domanda, lei individua una certa 'classificazione' di funzioni e vorrebbe avere a disposizione un metodo matematico che possa essere applicato a ciascun caso. Come giustamente osserva, escludendo il caso delle funzioni dell analisi reale I, c'è poi il caso delle funzioni da ZxZ in sè stesso, RxR in sè stesso etc.. Il caso RxR RxR può essere studiato (vantaggiosamente ) con lo studio di un sistema, specie se questo è lineare ( di I grado), applicando le regole elementari di riduzione o sostituzione che sono note dalla scuola media. Non altrettanto si può dire del caso ZxZ ZxZ, come mostra la domanda 1.! Infine quello che lei individua come uno dei suoi problemi : casi del tipo Z -> ZxZ, RxR->R, R->RxR etc., in cui si debba mostrare la surgettività o iniettività. 8

9 Vediamo ad esempio questa funzione: f : Z x Z Z la funzione così definita f (m,n) = m+n. Vogliamo provare la surgettività. f è surgettiva se per ogni x Z esiste (m,n) ZxZ t.c. m+n = x. Può sembrare una forzatura proseguire l analogia con il caso di funzioni da ZxZ in sè stesso, ma c è! Si tratta di studiare L EQUAZIONE m+n = x nelle due incognite m ed n e con termine noto x. Ha almeno una soluzione? Cioè c è almeno una coppia (m, n) che la risolve in funzione di x? Sì, ad esempio la coppia (x,0). Questo ci prova che la controimmagine di x è non vuota, qualunque sia x Z e quindi f è surgettiva. Già che ci siamo proseguiamo sulla stessa linea : f è iniettiva? Essendo la controimmagine di x non vuota, qualunque sia x Z, f sarà iniettiva se questa controimmagine è costituita da un solo elemento. Ma così non è : L EQUAZIONE m+n = x nelle due incognite m ed n e con termine noto x, non ha un unica soluzione, la coppia (x,0) è distinta dalla coppia (0,x) (se x 0) ed entrambe le coppie risolvono l equazione. Quindi la controimmagine di x (se x 0) è costituita almeno da 2 elementi e allora f non è iniettiva. Le ho mostrato questo metodo per uno dei casi che lei evidenzia, perché in termini astratti si può ricondurre, in analogia con il caso ZxZ->ZxZ etc., allo studio di un equazione. Ma non è affatto vantaggioso disporre di questo metodo per lo studio dell iniettività! La risposta naturale, spontanea, che viene in mente ai più è dettata dall osservazione ( in questo caso la risposta è negativa) : f non è iniettiva (1,0) (0,1), ma f(1,0)=f(0,1)=1. Questo per spiegarle che NON c è un unico metodo matematico vantaggioso per lo studio di surgettività iniettività. Si tratta di procedere caso per caso, osservando inizialmente qualche esempio numerico particolare, e poi usando le definizioni di iniettività, surgettività. d. Infine la sua domanda : se puo' dare una breve spiegazione del significato di iniettività-surgettività in spazi multidimensionali sempre a livello matematico. Questo non è possibile poiché il termine di funzione e i suoi attributi sono strettamente legati all ambiente e al contesto in cui compaiono. Nel corso vediamo tra l altro esempi di funzioni che fanno parte del mondo della teoria dei numeri, essendo connesse alle equazioni diofantee. E per farsi un idea nel mondo informatico, guardi la funzione di Hash! 9

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio? Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite Questo breve file è dedicato alle questioni di derivabilità di funzioni reali di variabile reale. Particolare attenzione viene posta alla classificazione dei punti di non derivabilità delle funzioni definite

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Com'è definita la funzione composta

Com'è definita la funzione composta Tra le varie operazioni tra funzioni abbiamo introdotto la composizione di funzioni: lo scopo di questo articolo è definire la nozione di funzione composta e di spiegare come si calcola la composizione

Dettagli

Esempi di problemi di 1 grado risolti Esercizio 1 Problema: Trovare un numero che sommato ai suoi 3/2 dia 50

Esempi di problemi di 1 grado risolti Esercizio 1 Problema: Trovare un numero che sommato ai suoi 3/2 dia 50 http://einmatman1c.blog.excite.it/permalink/54003 Esempi di problemi di 1 grado risolti Esercizio 1 Trovare un numero che sommato ai suoi 3/2 dia 50 Trovare un numero e' la prima frase e significa che

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Vince il più piccolo. Contenuti

Vince il più piccolo. Contenuti Vince il più piccolo Livello scolare: 4 a classe Competenze interessate Contenuti Nuclei coinvolti Collegamenti esterni Comprendere il significato e l uso dello zero e della virgola. Comprendere il significato

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

FUNZIONI. N indica l insieme dei numeri naturali; Z indica l insieme dei numeri relativi interi; Q indica l insieme dei numeri razionali;

FUNZIONI. N indica l insieme dei numeri naturali; Z indica l insieme dei numeri relativi interi; Q indica l insieme dei numeri razionali; 1 FUNZIONI Introduzione Una lingua è fatta di parole; essa si impara soprattutto con la pratica. La matematica, per esprimere i concetti logici, usa un proprio alfabeto fatto di simboli; anche questo si

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

1. LA MOTIVAZIONE. Imparare è una necessità umana

1. LA MOTIVAZIONE. Imparare è una necessità umana 1. LA MOTIVAZIONE Imparare è una necessità umana La parola studiare spesso ha un retrogusto amaro e richiama alla memoria lunghe ore passate a ripassare i vocaboli di latino o a fare dei calcoli dei quali

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

La prof.ssa SANDRA VANNINI svolge da diversi anni. questo percorso didattico sulle ARITMETICHE FINITE.

La prof.ssa SANDRA VANNINI svolge da diversi anni. questo percorso didattico sulle ARITMETICHE FINITE. La prof.ssa SANDRA VANNINI svolge da diversi anni questo percorso didattico sulle ARITMETICHE FINITE. La documentazione qui riportata è ricavata dalla trascrizione dei lucidi che vengono prodotti dall

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Esempio II.1.2. Esempio II.1.3. Esercizi

Esempio II.1.2. Esempio II.1.3. Esercizi Calcolo combinatorio Il calcolo combinatorio consiste nello sviluppo di nozioni e tecniche per contare i possibili ordinamenti di un insieme e le possibili scelte di sottoinsiemi di un insieme Ha numerosi

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli

INTERVISTA 1 DI DEBORA ROSCIANI A MAURIZIO ZORDAN, FOCUS ECONOMIA, RADIO24

INTERVISTA 1 DI DEBORA ROSCIANI A MAURIZIO ZORDAN, FOCUS ECONOMIA, RADIO24 25 ottobre 2013 INTERVISTA 1 DI DEBORA ROSCIANI A MAURIZIO ZORDAN, FOCUS ECONOMIA, RADIO24 Audio da min. 12:00 a 20:45 su http://www.radio24.ilsole24ore.com/player.php?channel=2&idprogramma=focuseconomia&date=2013-10-25&idpuntata=gslaqfoox,

Dettagli

PROVA DI VERIFICA DEL 24/10/2001

PROVA DI VERIFICA DEL 24/10/2001 PROVA DI VERIFICA DEL 24/10/2001 [1] Il prodotto di due numeri non nulli è maggiore di zero se: a. il loro rapporto è maggiore di zero, b. il loro rapporto è minore di zero, c. il loro rapporto è uguale

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi:

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: Funzioni Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la temperatura

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli