Elementi di sismologia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di sismologia"

Transcript

1 Elementi di sismologia Sismologia e Rischio Sismico Anno Accademico Giovanna Cultrera, Istituto Nazionale di Geofisica e Vulcanologia Trasformata di Fourier Premessa: l equazione delle onde Integrale di Fourier Proprietà Casi particolari Crediti D. Boore (USGS) S.Stein & M.Wysession An Introduction to Seismology, Earthquakes, and Earth Structure

2 Equazione del moto Soluzione omogenea equazione delle onde 2 u i = 1 v 2 x j 2 2 u i ( x, t) 2 t La soluzione è del tipo: u(x, t)= f(x + v t) f(x - v t) Funzioni di questo tipo descrivono un onda che si propaga nel tempo e nello spazio ad una velocità v

3 Equazione del moto Onde 2 u i 1 = x 2 1 v 2 2 u i ( x, t) 2 t u(x, t)= f(x + v t) f(x - v t) f può essere della forma: u( x, t) Ae i( wt kx) Acos( wt kx) + Ai sin( wt kx) che rappresenta un onda armonica (o sinusoidale), periodica nel tempo e nello spazio, che si propaga con velocità v = w / k

4 Equazione del moto Onde u( x, t) Ae i( wt kx) Acos( wt kx) + Ai sin( wt kx) onda armonica (o sinusoidale) varia nel Tempo Periodo: T = 2p / w Spazio Lunghezza d onda: l 2p /k

5 Ampiezza Ampiezza Trasformata di Fourier Definizioni utili Lunghezza d onda l Periodo T Distanza dalla sorgente Tempo k=1/l numero d onda In uno stesso istante di tempo, lo spostamento è periodico nello spazio (distanza). f=1/t frequenza w=2p/t frequenza angolare Fissata la posizione, lo spostamento è periodico nel tempo.

6 Light is a usually a multiple frequency signal, and the different frequencies correspond to what we call Sismogrammi in frequenza: La trasformata di Fourier Richiami sulla Trasformata di Fourier (si veda Numerical Recepies)

7 Serie temporale (accelerazione) Sismogrammi in frequenza Come possiamo vedere un sismogramma? a) nel tempo t [s] BAGNOLI: Terremoto dell Irpinia (23 novembre 1980; M=6.9)

8 fase ampiezza Sismogrammi in frequenza Come possiamo vedere un sismogramma? b) in frequenza Trasformata di Fourier f [Hz] BAGNOLI: Terremoto dell Irpinia (23 novembre 1980; M=6.9)

9 Trasformata di Fourier Cosa significa? Un segnale arbitrario...

10 Trasformata di Fourier Cosa significa?... Si puo ottenere sommando sinusoidi di frequenza diversa:

11 Trasformata di Fourier Cosa significa? Ovvero: Segnale arbitrario Combinazione di sinusoidi......di frequenza fissata

12 Trasformata di Fourier integrale di Fourier Una qualsiasi funzione (continua e dotata di derivata generalmente continua) può essere rappresentata come sovrapposizione di funzioni sinusoidali (coseni e seni): f (t) = [a(w) cos(w t )+ b(w) sen(w t)] dw 0 con w 2p/t a(w) p cos(w t) dt = C(w) cosf(w) b(w) p sen(w t) dt = C(w) senf(w) l integrale di Fourier riproduce il segnale tra [ 0, ]

13 Trasformata di Fourier integrale di Fourier f (t) = [a(w) cos(w t )+ b(w) sen(w t)] dw 0 Utilizziamo i numeri complessi (coppie di numeri reali): (a, b) = a + i b a = parte reale, I numeri complessi ammettono una rappresentazione geometrica nel piano. Passando in coordinate polari (A, f): a = A cos(f), b = A sen(f) b = parte immaginaria y b A f * a x

14 Trasformata di Fourier: definizione a(w) p cos(w t) dt = C(w) cosf(w) b(w) p sen(w t) dt = C(w) senf(w) Usando la rappresentazione esponenziale: e iw t =exp(iwt)= cos(w t) + i sen(w t) F(w) = F(w) e i f(w) = f(t) e iw t dt - Spettro delle ampiezze Spettro delle fasi

15 Trasformata di Fourier: definizione Definiamo quindi la trasformata di Fourier come una funzione complessa F(w) = F(w) e i f(w) Spettro delle ampiezze Spettro delle fasi Che si ottiene dall funzione di partenza f(t) F(w) = f(t) e iw t dt -

16 Trasformata di Fourier integrale di Fourier f (t) = [a(w) cos(w t )+ b(w) sen(w t)] dw 0 Si può dimostrare che f (t) = 1 2p F(w) e iw t dw -

17 Trasformata di Fourier: definizione Un segnale temporale f(t) di durata T si può esprimere come: f (t) = 1 F(w) e iw t dw - 2p con w 2p/t dove F(w) = f(t) e iw t dt - è la trasformata di Fourier

18 Trasformata di Fourier: definizione La trasformata di Fourier è una funzione complessa F(w) = f(t) e iw t dt - Si può anche scrivere come F(w) = F(w) e i f(w) Spettro delle ampiezze Spettro delle fasi

19 Trasformata di Fourier: definizione A partire dallo spettro di Fourier (AMPIEZZA e FASE), F(w) = f(t) e iw t dt = F(w) e i f(w) - con w 2p/t è possibile ottenere il sismogramma di partenza: f (t) = 1 2p F(w) e i[w t +f(w)] dw - (se il segnale temporale f(t) ha durata T )

20 Trasformata di Fourier: definizione Segnale f (t) = 1 F(w) e iw t dw 2p - Spettro di ampiezza F(w) = F(t) e iw t dt -

21 fase ampiezza Trasformata di Fourier Sismogramma in frequenza: Esempio 1 Serie temporale (accelerazione) t [s] FFT (ampiezza e fase) FFT ampiezza (scala logaritmica) f [Hz]

22 fase ampiezza Trasformata di Fourier Esempio 2 ANZIO, 22/08/2005 (Mw=4.5)

23 Ampiezza ampiezza 0 f (Hz) 10 Trasformata di Fourier Esempio 3 SUMATRA, 26/12/2004 (Mw=9.3) BOB ANZIO, 22/08/2005 (Mw=4.5)

24 Ampiezza FFT S. Stein & M. Wysession Trasformata di Fourier Esempio 4

25 Trasformata di Fourier proprietà Derivata e integrale Es. d f (t) d = 1 dt dt 2p F(w) e iw t - dw Convoluzione Linearità ( n) n f ( t) ( iw) f ( w) + w f ( t) * f ( t) f ( t ) f ( t t ) dt f ( w) f ( ) a f t) + a f ( t) a f ( w) + a f ( ) = 1 iw F(w) e iw t dw 2p - 1 1( w Traslazione iwa f ( t a) e f ( w) Teorema di Parseval f ( t) w f ( ) 2 2 Parseval identity (sum of the square values)

26 Prodotto di convoluzione * il prodotto di convoluzione rappresenta un integrale nel tempo f(t) * g(t) = f(t) g(t-t) dt - + nel dominio del tempo

27 Prodotto di convoluzione f(t) * g(t) = f(t) g(t-t) dt - + nel dominio del tempo t1 t2 t3

28 f(t) * g(t) = f(t) g(t-t) dt nel dominio del tempo + -

29 Prodotto di convoluzione * il prodotto di convoluzione rappresenta un integrale nel tempo f(t) * g(t) = f(t) g(t-t) dt - + TF[f(t) * g(t)] = F(w) x G(w) nel dominio del tempo nel dominio della frequenza

30 Casi particolari Funzione limitata (durata T) Funzione discreta (passo dt)

31 1- Serie di Fourier Funzione limitata nel tempo Funzione limitata nel tempo Segnale È equivalente ad un segnale periodico di periodo T Segnale T T T T

32 1- Serie di Fourier integrale di Fourier serie di Fourier Per un segnale PERIODICO di periodo T, Segnale l integrale di Fourier T f (t) = 1 2p T F(w) e i[w t +f(w)] dw - T Integrale di Fourier diventa una serie (sommatoria) Serie di t C o [C n sen( nw o t + f n )] Fourier

33 1- Serie di Fourier integrale di Fourier serie di Fourier t C o [C n sen( nw o t + f n )] dove C n = (a n2 + b n2 ) f n = arctan (a n / b n ) fase ampiezza 2 /2 e 2 /2 /2 /2 cos(nw o t) dt = C n cosf n sen(nw o t) dt = C n senf n

34 1- serie di Fourier Ampiezza e frequenza t C o [C n sen( nw o t + f n )] Serie di Fourier somma di funzioni sinusoidali di diversa ampiezza e fase C n = (a n2 + b n2 ) ampiezza f n = arctan (a n / b n ) fase con frequenze discrete f = n w o /2p

35 1- serie di Fourier Ampiezza e frequenza C n = (a n2 + b n2 ) Spettro di ampiezza /T /T /T /T /T /T /T frequenza fondamentale w o 2p / T armoniche superiori n w o 2p n / T

36 1- serie di Fourier frequenza La serie di Fourier è discreta con frequenza fondamentale f o = w o /2p = 1 / T frequenza fondamentale (n=1) armoniche superiori n wo 2p n / T

37 Casi particolari Funzione limitata (durata T) Funzione discreta (passo dt)

38 2-Trasformata di Fourier Caso particolare: funzione discreta Se la funzione è discreta, ovvero rappresentata da un numero discreto di punti (passo di campionamento Dt fs=1/dt) la trasformata di Fourier è periodica Intervallo di validità [-f N f N ], dove f N =1 / (2 Dt) è la frequenza di Nyquist

39 2-Trasformata di Fourier Frequenza di Nyquist f N = 1 / (2 Dt) = 1/T N Se il passo di campionamento è Dt, la sinusoide di frequenza f N (ovvero di periodo T N ) è campionata con 2 punti T N Dt =T N /2 t 2 punti/ciclo sono il numero minimo di punti necessario per definire univocamente una sinusoide

40 2-Trasformata di Fourier Frequenza di Nyquist Quindi le armoniche con frequenze f tali che f < fn (T>2Dt) vengono ben campionate con un numero di punti maggiore di 2 Dt t f > fn (T<2Dt) vengono viste come sinusoidi con frequenza f*< fn Dt t

41 2-Trasformata di Fourier Caso particolare: funzione discreta la trasformata di Fourier è periodica Intervallo di validità [-f N f N ], f N =1 / (2 Dt) è la frequenza di Nyquist Se il segnale ha un contenuto in frequenza al di fuori dell intervallo [-f N f N ] Fenomeno di ALIASING (sovrapposizione)

42 2-Trasformata di Fourier Caso particolare: funzione discreta Fenomeno di ALIASING (sovrapposizione) la trasformata di Fourier non permette di rappresentare correttamente le frequenze del segnale al di fuori dell intervallo [-fn fn] Segnale discreto con passo di campionamento 1 / fs < 1 / fn Segnale discreto con passo di campionamento 1 / fs > 1 / fn ALIASING

43 Casi particolari Funzione limitata (durata T) la trasformata di Fourier è discreta [df= 1/T ] Funzione discreta (passo dt) la trasformata di Fourier è periodica [ f N =1 / (2 dt) ]

44 FFT limitata: f < 1/ (2 dt)=f Nyquist f (t) = 1 F(w) e iw t dw 2p - Trasformata di Fourier F(w) = f(t) e iw t dt = F(w) e i f(w) - con w 2p/T ATTENZIONE!!! Il segnale sismico è limitato di durata T FFT discreta : w dw n w o ~ n 2p/ T discreto (passo di campionamento dt)

45 Sismogrammi in frequenza: La trasformata di Fourier FINE della digressione

Elementi di sismologia

Elementi di sismologia Elementi di sismologia Sismologia e Rischio Sismico Anno Accademico 2009-2010 Giovanna Cultrera, cultrera@ingv.it Istituto Nazionale di Geofisica e Vulcanologia Parametri per descrivere il movimento del

Dettagli

Introduzione al Campionamento e

Introduzione al Campionamento e Introduzione al Campionamento e all analisi analisi in frequenza Presentazione basata sul Cap.V di Introduction of Engineering Experimentation, A.J.Wheeler, A.R.Ganj, Prentice Hall Campionamento L'utilizzo

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

All.n.7 GAD PEC RI12 INDAGINE GEOFISICA TRAMITE TECNICA MASW

All.n.7 GAD PEC RI12 INDAGINE GEOFISICA TRAMITE TECNICA MASW All.n.7 GAD PEC RI2 INDAGINE GEOFISICA TRAMITE TECNICA MASW Easy MASW La geofisica osserva il comportamento delle onde che si propagano all interno dei materiali. Un segnale sismico, infatti, si modifica

Dettagli

RAPPRESENTAZIONE DI UN SEGNALE DETERMINISTICO NEL DOMINIO DEL TEMPO

RAPPRESENTAZIONE DI UN SEGNALE DETERMINISTICO NEL DOMINIO DEL TEMPO CAPITOLO RAPPRESENTAZIONE DI UN SEGNALE DETERMINISTICO NEL DOMINIO DEL TEMPO. - APPROSSIMAZIONE DI UN SEGNALE Si è detto che un segnale deterministico è rappresentabile analiticamente con una funzione

Dettagli

Introduzione all Analisi dei Segnali

Introduzione all Analisi dei Segnali Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Introduzione all Analisi dei Segnali Prof. Ing. Felice Carlo PONZO - Ing. Rocco DITOMMASO Scuola di

Dettagli

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R.

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R. Serie di Fourier 1 Serie di Fourier In questo capitolo introduciamo le funzioni periodiche, la serie di Fourier in forma trigonometrica per le funzioni di periodo π, e ne identifichiamo i coefficienti.

Dettagli

Nota di Copyright. Leonardo Fanelli Urbino - Ottobre 05

Nota di Copyright. Leonardo Fanelli Urbino - Ottobre 05 Nota di Copyright Questo insieme di trasparenze (detto nel seguito slide) è protetto dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo e i copyright relativi alle slides

Dettagli

Corso di Acustica prof. ing. Gino Iannace

Corso di Acustica prof. ing. Gino Iannace Corso di Acustica prof. ing. Gino Iannace e-mail: gino.iannace@unina2.it prof. ing. Gino IANNACE 1 Il suono è un "rumore sgradevole", "un suono fastidioso, non desiderato". Dal punto di vista fisico, il

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

L A B O R A T O R I O D I I N F O R M A T I C A M U S I C A L E

L A B O R A T O R I O D I I N F O R M A T I C A M U S I C A L E L A B O R A T O R I O D I I N F O R M A T I C A M U S I C A L E MODULO 1: MANIPOLAZI ONE DEL SEGNALE AUDI O G.PRESTI - 12/03/2015 - LE ZI ON E 2 1. CONVERSIONE DA ANALOGICO A DIGITALE Convertire un segnale

Dettagli

Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica. Centro sui Rischi nelle Costruzioni

Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica. Centro sui Rischi nelle Costruzioni Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica Centro sui Rischi nelle Costruzioni INDICE DELLA PRESENTAZIONE - Concetti base di dinamica dei sistemi discreti oscillazioni libere e smorzamento

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale. Area Didattica di Ingegneria. Corso di Laurea in Ingegneria Industriale

Università degli Studi di Cassino e del Lazio Meridionale. Area Didattica di Ingegneria. Corso di Laurea in Ingegneria Industriale Università degli Studi di Cassino e del Lazio Meridionale Area Didattica di Ingegneria Corso di Laurea in Ingegneria Industriale Lezioni del Corso di Misure Industriali 1 Università degli Studi di Cassino

Dettagli

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero di soluzioni circuitali, in dipendenza sia dal livello

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 Parte II 1 Analisi in frequenza di un segnale l analisi in frequenza di un segnale o analisi di Fourier descrive il

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

1 - I segnali analogici e digitali

1 - I segnali analogici e digitali 1 - I segnali analogici e digitali Segnali analogici Un segnale analogico può essere rappresentato mediante una funzione del tempo che gode delle seguenti caratteristiche: 1) la funzione è definita per

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza Modulazioni Vittorio Maniezzo Università di Bologna Vittorio Maniezzo Università di Bologna 06 Modulazioni 1/29 Comunicazione a lunga distanza I segnali elettrici si indeboliscono quando viaggiano su un

Dettagli

Misure di mobilità - Definizioni

Misure di mobilità - Definizioni Misure di mobilità - Definizioni La base di una specifica classe di analisi modale sperimentale è la misura di un insieme di Funzioni di Risposta in Frequenza (FRF). Il movimento può essere descritto in

Dettagli

Capitolo 4 FILTRAGGIO NEL DOMINIO DELLA FREQUENZA

Capitolo 4 FILTRAGGIO NEL DOMINIO DELLA FREQUENZA Capitolo 4 FILTRAGGIO NEL DOMINIO DELLA FREQUENZA Il filtraggio nel dominio della frequenza è possibile grazie alle caratteristiche della serie di Fourier e della trasformata di Fourier, che permette di

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

Capitolo 4 Tecnica di analisi on-line

Capitolo 4 Tecnica di analisi on-line Capitolo 4:Tecniche di analisi in on-line 70 Capitolo 4 Tecnica di analisi on-line 4.1 Introduzione L analisi in tempo reale di un sistema complesso comporta la scelta di tecniche di analisi di tipo statistico

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura. ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Trasformate integrali

Trasformate integrali Trasformate integrali Gianni Gilardi Pavia, 12 dicembre 1997 Siano I e J due intervalli di R, limitati o meno, e K : I J C una funzione fissata. Data ora una generica funzione u : I R, consideriamo, per

Dettagli

TEORIA DEI SEGNALI. Introduzione. La Comunicazione

TEORIA DEI SEGNALI. Introduzione. La Comunicazione TEORIA DEI SEGNALI Introduzione L obiettivo principale di un servizio di telecomunicazione è il trasferimento dell'informazione emessa da una sorgente agli utenti cui è destinata, nell'ambito di una particolare

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Trasmissione Dati. Trasmissione Dati. Sistema di Trasmissione Dati. Prestazioni del Sistema

Trasmissione Dati. Trasmissione Dati. Sistema di Trasmissione Dati. Prestazioni del Sistema I semestre 03/04 Trasmissione Dati Trasmissione Dati Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ Ogni tipo di informazione può essere rappresentata come insieme

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4 INFO (DF-M) PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 3.06.005. Tempo:.5 ore. È consentito l uso di libri ed appunti propri. ESERCIZIO (0 punti) x(t) g(x) z(t) H(f) H(f) y (t) + + y (t) y(t) H(f) = 4 ( e

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Sommario. Capitolo 1 Introduzione 1. Prefazione all edizione italiana XVII XVIII XXI XXV

Sommario. Capitolo 1 Introduzione 1. Prefazione all edizione italiana XVII XVIII XXI XXV Sommario Prefazione all edizione italiana Prefazione Basi teoriche Applicazioni pratiche Simboli Funzioni definite Notazione degli operatori Acronimi XV XVII XVII XVIII XXI XXIV XXIV XXV Capitolo 1 Introduzione

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di rasmissione Numerica docente: Prof. Vito Pascazio 18 a Lezione: 13/1/4 19 a Lezione: 14/1/4 Sommario rasmissione di segnali PM numerici su

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Analisi di un segnale sonoro

Analisi di un segnale sonoro Analisi di un segnale sonoro 1. Introduzione Lo scopo di questa esperienza è quello di scoprire com è fatto un suono, riconoscere le differenze fra i timbri, imparare a fare un analisi in frequenza e vedere

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

Un Algoritmo parallelo per l Equazione delle Onde nelle Applicazioni Geofisiche

Un Algoritmo parallelo per l Equazione delle Onde nelle Applicazioni Geofisiche UNIVERSITÀ DEGLI STUDI DI ROMA TRE FACOLTÀ DI SCIENZE M.F.N. Un Algoritmo parallelo per l Equazione delle Onde nelle Applicazioni Geofisiche Sintesi della tesi di Laurea in Matematica di Riccardo Alessandrini

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 6CFU DIGITAL SIGNAL PROCESSING macroarea: Ingegneria Prof. Marina Ruggieri ruggieri@uniroma2.it Ing. Tommaso Rossi tommaso.rossi@uniroma2.it

Dettagli

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni parametri fisici (cenni)

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni parametri fisici (cenni) Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. Anno Accademico 2008/2009 Docente: ing. Salvatore

Dettagli

III IL RUMORE NEL DOMINIO DELLE FREQUENZE E DEL TEMPO

III IL RUMORE NEL DOMINIO DELLE FREQUENZE E DEL TEMPO III IL RUMORE NEL DOMINIO DELLE FREQUENZE E DEL EMPO 1. Le sequenze casuali nel dominio del tempo e nel dominio delle frequenze Storicamente lo studio delle reti lineari e la trattazione dei segnali nascono

Dettagli

Leggi di Newton ed esempi

Leggi di Newton ed esempi Leggi di Newton ed esempi 1 Leggi di Newton Lo spazio delle fasi. Il moto di un punto materiale nello spazio è descritto dalla dipendenza temporale delle sue grandezze cinematiche, posizione, velocità

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Esercizi di teoria dei segnali. Laura Dossi Arnaldo Spalvieri

Esercizi di teoria dei segnali. Laura Dossi Arnaldo Spalvieri Esercizi di teoria dei segnali Laura Dossi Arnaldo Spalvieri Gli autori desiderano ringraziare gli ingg. Fabio Marchisi e Raffaele Canavesi per il preziosissimo contributo alla stesura della dispensa.

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE. Dispense redatte dal Prof. Francesco Valdoni, riviste e sistemate editorialmente dal Prof.

FONDAMENTI DI SEGNALI E TRASMISSIONE. Dispense redatte dal Prof. Francesco Valdoni, riviste e sistemate editorialmente dal Prof. FONDAMENTI DI SEGNALI E TRASMISSIONE Dispense redatte dal Prof. Francesco Valdoni, riviste e sistemate editorialmente dal Prof. Michele Luglio 2 3 INDICE!! "#$%&'()"&#*+,!!-!!.".$*/"+*+.*%0")"+'"+$*1*2&/(#"23)"&#"+

Dettagli

Capitolo 1 - Campionamento (I)

Capitolo 1 - Campionamento (I) Appunti di Elaborazione numerica dei segnali apitolo - ampionamento (I) Introduzione... deinizione di campionamento... segnale campionato...3 eorema del campionamento...5 Formula di ricostruzione...8 Errore

Dettagli

Nella presa palmare Soggetto normale

Nella presa palmare Soggetto normale Università degli Studi di Bari Analisi multirisoluzione segnali prof. ing. Livio Quagliarella Nella presa palmare Soggetto normale Paziente con morbo di Parkinson Analisi Multirisoluzione (AMR) Forza [N]

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

ESPERIENZE DI LABORATORIO

ESPERIENZE DI LABORATORIO MISURE ELETTRICHE INDUSTRIALI (01GKDFD) ESPERIENZE DI LABORATORIO A.A. 010 011 GRUPPO 09 Faustino elettrix01 Ezio Maxwell LABORATORIO 01 Acquisizione dati attraverso una DAQ Board Obiettivi Comprendere

Dettagli

Motivazioni e Obiettivi EMC Group @ POLIMI Dip. ELETTROTECNICA

Motivazioni e Obiettivi EMC Group @ POLIMI Dip. ELETTROTECNICA Propagazione del Rumore nei Sistemi di Misura EMI nel Dominio del Tempo D. Bellan and S. A. Pignari POLITECNICO DI MILANO Dipartimento di ELETTROTECNICA EMC Group @ POLIMI Milano, Italy 1 Motivazioni e

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2014

COORDINAMENTO PER MATERIE SETTEMBRE 2014 Pagina 1 di 8 COORDINAMENTO PER MATERIE SETTEMBRE 2014 AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico) [ ] Biennio, Attività e Insegnamenti obbligatori di

Dettagli

RICCARDO SANTOBONI ANNA RITA TICARI. Fondamenti di Acustica e Psicoacustica

RICCARDO SANTOBONI ANNA RITA TICARI. Fondamenti di Acustica e Psicoacustica RICCARDO SANTOBONI ANNA RITA TICARI Fondamenti di Acustica e Psicoacustica 1 2 Riccardo Santoboni Anna Rita Ticari Fondamenti di Acustica e Psicoacustica 3 Terza edizione (2008) 4 Sommario 5 6 Sommario

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

SVILUPPO IN SERIE DI FOURIER. Prof. Attampato Daniele

SVILUPPO IN SERIE DI FOURIER. Prof. Attampato Daniele SVILUPPO IN SERIE DI FOURIER Prof. Attampato Daniele SVILUPPO IN SERIE DI UNA FUNZIONE Uno dei problemi più frequenti in matematica è legato alla necessità di approssimare una funzione. Uno degli strumenti

Dettagli

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase.

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase. Come nel caso dei convertitori c.c.-c.c., la presenza di un carico attivo non modifica il comportamento del convertitore se questo continua a funzionare con conduzione continua. Nei convertitori trifase

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Università degli Studi del Sannio Corso di laurea magistrale in Scienze e Tecnologie Geologiche. Insegnamento di Geofisica Applicata modulo B 4 CFU

Università degli Studi del Sannio Corso di laurea magistrale in Scienze e Tecnologie Geologiche. Insegnamento di Geofisica Applicata modulo B 4 CFU Corso di laurea magistrale in Scienze e Tecnologie Geologiche Insegnamento di Geofisica Applicata modulo B 4 CFU Anno accademico 2010/2011 docente: Rosalba Maresca E-mail: maresca@unisannio.it 1 MASW (Multichannel

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Appunti di Elaborazione dei Segnali Multimediali a.a. 29/2 L.Verdoliva Il dominio della frequenza è un potente strumento per l analisi e l elaborazione delle immagini e permette di comprendere meglio il

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Teoria dei Segnali & Elaborazione Dati

Teoria dei Segnali & Elaborazione Dati Teoria dei Segnali & Elaborazione Dati Facoltà di Ingegneria- Ingegneria Biomedica Corso di Elaborazione dati e Segnali Biomedici Ing.Irene Tagliente Irene.tagliente@opbg.net Il termine Segnale e' usato

Dettagli

Suono: aspetti fisici. Tutorial a cura di Aldo Torrebruno

Suono: aspetti fisici. Tutorial a cura di Aldo Torrebruno Suono: aspetti fisici Tutorial a cura di Aldo Torrebruno 1. Cos è il suono Il suono è generalmente prodotto dalla vibrazione di corpi elastici sottoposti ad urti o sollecitazioni (corde vocali, corde di

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

1 - I segnali analogici e digitali

1 - I segnali analogici e digitali 1 1 - I segnali analogici e digitali Segnali analogici Un segnale analogico può essere rappresentato mediante una funzione del tempo che gode delle seguenti caratteristiche: 1) la funzione è definita per

Dettagli

Il Suono Digitale. Capitolo 1 - Dal segnale analogico al segnale digitale. Introduzione

Il Suono Digitale. Capitolo 1 - Dal segnale analogico al segnale digitale. Introduzione Il Suono Digitale Capitolo 1 - Dal segnale analogico al segnale digitale Introduzione pag 1 Vantaggi del segnale digitale pag 2 Svantaggi della rappresentazione digitale pag 2 Schema della catena audio

Dettagli

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente CAPITOLO 6 ANALISI IN REGIME PERMANENTE 6.1 Circuiti dinamici in regime permanente I Capitoli 3 e 4 sono stati dedicati, ad eccezione del paragrafo sugli induttori accoppiati, esclusivamente all analisi

Dettagli

Descrizione del funzionamento di un Lock-in Amplifier

Descrizione del funzionamento di un Lock-in Amplifier Descrizione del funzionamento di un Lock-in Amplifier S.C. 0 luglio 004 1 Propositi di un amplificatore Lock-in Il Lock-in Amplifier é uno strumento che permette di misurare l ampiezza V 0 di una tensione

Dettagli