Università del Sannio

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università del Sannio"

Transcript

1 Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1

2 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare il moto di un corpo istante per istante quando si conoscono le forze agenti su di esso e le condizioni iniziali. Un altro modo, complementare, per caratterizzare il possibile moto o comportamento del corpo in esame, è attraverso il concetto di energia. In fisica si definiscono varie forme di energia (cinetica, potenziale, termodinamica, elettrica, magnetica) così come in chimica - fisica si definisce l energia chimica, di legame e lo studio del comportamento di un sistema può essere fatto considerando come le varie forme di energia si trasformano una nell altra. Il concetto di energia non è svincolato dalle forze che agiscono sul corpo mentre avvengono dei cambiamenti da una posizione a un altra, o da uno stato della materia a un altro (per esempio liquido-gas), o da una configurazione a una altra (per es. da atomi isolati alla costruzione di una molecola), o mentre scorre corrente all interno di un filo elettrico. Vi sono sempre forze che agiscono e che determinano le nuove configurazioni, il movimento Mentre le equazioni della dinamica possono, in linea di principio, descrivere puntualmente nello spazio e nel tempo ciò che avviene, attraverso la descrizione in termini di energia e dei principi di conservazione si danno, come vedremo, descrizioni globali. Spesso quello che interessa non è che cosa succede istante per istante, ma la relazione tra quantità a due istanti di tempo, anche lontani tra loro, ma che, indipendentemente da quello che è successo nel frattempo, se certe condizioni sono soddisfatte, determinano esattamente la dipendenza dello stato finale dall iniziale. 2

3 Lavoro di una forza I Nella figura è rappresentata una massa che si muove senza attrito lungo il piano inclinato dall alto verso il basso: lo spostamento totale è il vettore s. Le forze che agiscono sono la forza peso, m g e la reazione N del piano inclinato. Sia il vettore spostamento che le forze sono costanti in modulo, direzione e verso. 3

4 Lavoro di una forza II Se F ed s sono tra loro perpendicolari: θ = π/2, cos θ = 0. Quindi il lavoro è nullo. Il lavoro è massimo se forza e spostamento sono allineati (θ = 0, cos θ = 1); Il lavoro è positivo L > 0, se π/2 < θ < π/2; Il lavoro è negativo L < 0 se (π/2 < θ < 3π/2). 4

5 Lavoro di una forza III Nell esempio dato si nota che il lavoro della reazione vincolare è nullo: L N = N s = N s cos π/2 = 0: la forza di reazione esercitata dal piano (che serve a sostenere il corpo, non a farlo muovere) non compie lavoro. Invece il lavoro della forza peso m g è positivo: L p = m g s = m g s cos(π/2 - θ) = m g s sen θ. Inoltre poiché s sen θ = h abbiamo che L p = m g h: solo la componente parallela allo spostamento della forza peso fa lavoro diverso da zero. Tale lavoro è uguale al lavoro che farebbe la forza peso sulla massa m in caduta libera e che cade in verticale di h (con variazione di quota h). 5

6 Lavoro di una forza IV Se il piano è con attrito, nel moto agisce anche la forza di attrito dinamico F a = f d N = f d m g cos θ. Il lavoro compiuto dalla forza d attrito radente, sia nel moto in discesa che in salita, è negativo L a = - f d m g s cos θ dato che è sempre contraria allo spostamento. Valutiamo il lavoro compiuto da tutte le forze durante lo spostamento da A a B (su tutta la lunghezza del piano) nell ipotesi che la massa m sia partita da ferma da A: v(t=0) = v 0 = 0. Durante il moto l accelerazione, costante, con cui m si muove verso il basso è, in presenza di forza di attrito, a = g (sen θ f d cos θ), con direzione parallela al piano e nel verso dello spostamento vero il basso. Tale accelerazione è determinata dalla risultante diversa da zero delle forze agenti (componente della forza peso verso il basso ed attrito dinamico: F t = m g sen θ m f d g cos θ). Il lavoro totale quindi di tutte le forze che agiscono sul corpo è: L tot = m g (sen θ f d cos θ) s AB = m a s AB.Lo spostamento totale nel moto uniformemente accelerato con velocità iniziale nulla è: s AB = 1/2 a t 2, ed il tempo necessario al corpo a percorrere tutto il piano è t = v B / a; per cui s AB = v B2 / (2 a). Quindi otteniamo: L = mg(sinθ f cosθ ) s = tot d AB 1 2 mv 2 B 6

7 Lavoro di una forza V 1/2 m v 2 è definita come l energia cinetica della massa m quando ha velocità v (come modulo). L energia cinetica è uno scalare, la cui unità di misura è il Joule (J) le cui dimensioni sono [M][L] 2 [T] -2. Infine otteniamo la relazione Supponiamo che non vi sia attrito e che il corpo parta sempre da fermo dal punto A (v(t = 0) = v 0 = 0). Non essendoci l attrito l accelerazione è sempre costante ma ora vale a = g sen θ, corrispondente ad un forza netta pari a F t = m g sen θ. Il lavoro totale di tutte le forze che agiscono sul corpo è dato da: L tot = m g sen θ s AB = m a s AB. Ripetendo la stessa analisi fatta in precedenza otteniamo: L v tot 2 B = mg(sinθ ) s = 2gh AB = mgh = 1 2 mv 2 B Dato che s AB sen θ = h, otteniamo che il lavoro compiuto dalla forza peso è esattamente uguale al prodotto della forza peso per la quota h. L energia cinetica finale (di un corpo che partendo da fermo) scivola senza attrito lungo un piano è uguale al lavoro che la forza peso farebbe sul corpo in caduta libera sulla stessa variazione di quota. 7

8 Teorema dell energia cinetica Partendo dalla definizione di lavoro, considerando delle forze costanti, possiamo affermare che il lavoro fatto da tutte le forze agenti sul corpo che parte da fermo può essere uguagliato all energia cinetica del corpo nel punto finale dello spostamento considerato. Tuttavia si dimostra più in generale (anche per forze variabili e quindi con accelerazioni non costanti e quindi per corpi in moto vario) il Teorema dell energia cinetica (o delle forze vive): il lavoro totale compiuto dalla risultante delle forze agenti su un corpo lungo la traiettoria seguita dal corpo, da un qualunque punto iniziale i a un qualunque punto finale f, è uguale alla variazione di energia cinetica tra i due punti considerati. 8

9 Lavoro di una forza variabile I Se la forza è variabile in direzione e/o verso e/o modulo, come nel caso della forza elastica esercitata dalla molla su una massa, il lavoro deve essere definito e calcolato tenendo conto che o il modulo della forza o l angolo che essa forma con lo spostamento (o tutti e due) cambiano continuamente e quindi il prodotto scalare non è sempre uguale su tutto lo spostamento considerato. Per la forza elastica se la si considera tra x i e x f, la forza cambia valore mentre ci si sposta da x i verso x f. Inoltre l angolo tra la direzione della forza e la direzione dello spostamento varia tra 0, quando la molla è in compressione, e 180, quando la molla è in allungamento. Il prodotto scalare tra forza e spostamento cambia valore e segno e non è definito il suo valore sullo spostamento totale. Bisogna, dunque, dare una definizione più precisa considerando spostamenti piccoli, in cui il prodotto abbia un valore definito e sommare tutti questi contributi. 9

10 Lavoro di una forza variabile II Nella figura abbiamo una generica traiettoria curva e dei vettori che rappresentano la forza, in modulo e direzione e verso in vari punti della traiettoria. La forza è variabile (varia in modulo direzione e verso). La curva è stata divisa in segmenti piccoli, in modo che per ognuno di essi possa essere definito lo spostamento infinitesimo dr, che ha la stessa lunghezza del segmento che approssima il tratto di curva ed è orientato nel verso del moto, dr (il modulo è uguale allo spostamento elementare ds ed è tangente alla traiettoria). La lunghezza dei segmenti viene scelta in modo che si possa supporre che in tutto quel segmento, individuato dal vettore posizione r i, la forza F(r i ) ha un valore (in modulo), direzione e verso definito. Si può allora per ogni segmento definire il lavoro elementare come segue: Il lavoro totale dal punto iniziale (i) al punto finale (f) viene ottenuto sommando tutti i contributi: al limite per dr i che tende a zero. La somma è costituita da infiniti termini (successione) e la somma diventa la definizione dell integrale di linea della forza F sulla linea curva data. 10

11 Lavoro di una forza variabile III Il calcolo può essere fatto più semplicemente se si conoscono le componenti della forza rispetto ad un sistema di assi cartesiani: F x (x,y,z), F y (x,y,z), F z (x,y,z). Quindi Riportiamo alcuni esempi. In questo primo esempio la forza elastica varia in modulo e verso. 11

12 Lavoro di una forza variabile IV Nell esempio 2, la forza è costante mentre lo spostamento cambia in direzione e verso lungo la traiettoria. Nell esempio 3 abbiamo la forza gravitazionale su traiettoria circolare. Il lavoro è nullo (la forza e lo spostamento sono sempre perpendicolari su tutto la traiettoria). Quindi non vi è nessuna variazione di energia cinetica. Infatti il moto è circolare uniforme con velocità in modulo costante. 12

13 Lavoro di una forza variabile V 13

14 Forze conservative Le forze possono essere divise in conservative e non conservative. Si intende per forza conservativa un forza il cui lavoro non dipende in maniera dettagliata dalla traiettoria, o dal particolare percorso su cui il lavoro viene calcolato, ma che dipende solo dalle coordinate del punto iniziale i e del punto finale f del percorso considerato. Se la forza è conservativa il lavoro può essere calcolato su qualunque percorso che unisca i punti finali e iniziale, non necessariamente sulla traiettoria. 14

15 Energia potenziale delle forze conservative Se una forza è conservativa, può essere definita la funzione (scalare) energia potenziale U F (r) tale che: Questo significa che è possibile trovare, per ogni forza conservativa, una funzione scalare U F (r), la cui variazione, ΔU = U(r f ) - U(r i ) esprime il lavoro, cambiato di segno, eseguito dalla forza in questione. E da notare che data una forza conservativa, l energia potenziale di quella forza non è unica. Infatti detta U F (r) = U F (r) + C con C una costante qualsiasi, si ha: U F (r f ) - U F (r i ) = (U F (r f ) + C) - (U F (r i ) + C) = U F (r f ) - U F (r i ). L energia potenziale è definita a meno di una costante, da definire volta per volta. Dato un sistema di massa m su cui agiscono solo forze conservative F 1, F 2, il lavoro fatto da queste forze è uguale alla variazione di energia cinetica del sistema (teorema delle forze vive): 15

16 Conservazione dell energia meccanica Dall'uguaglianza del lavoro, per un sistema di massa m su cui agiscono solo forze conservative, se U(r) è la somma delle energie potenziali, si ha: La somma dell energia cinetica e dell energia potenziale (totale) in un punto i è uguale alla somma dell energia cinetica e dell energia potenziale (totale) in un qualunque altro punto: l energia meccanica E = K + U si conserva, nello spazio e nel tempo (principio di conservazione dell energia meccanica). Una diminuzione di energia potenziale è compensata da un aumento di energia cinetica e viceversa. Se la funzione energia potenziale è conosciuta e le forze che agiscono sono conservative questo principio permette di determinare la velocità in modulo in ogni punto, dato il valore iniziale delle posizioni e delle velocità. Tuttavia questo approccio non permette di determinare né la direzione del moto, né il tempo in cui una posizione verrà occupata. Abbiamo soltanto una descrizione globale (integrale) complementare alla descrizione ottenuta con le equazioni del moto, che si ottengono risolvendo le equazioni differenziali associate alla seconda legge della dinamica (descrizione locale). 16

17 Energia potenziale e forze conservative Energia potenziale della forza peso (m g): du p = - dl = m g dz. Quindi U p (z) = m g z + C. Generalmente si assume che U(z) = 0 quando z = 0 (C = 0), sulla superficie della terra, ma sia il valore di riferimento della costante C che il punto può essere scelto a piacere. Basta ricordare di definirlo caso per caso. Energia potenziale della forza elastica ( k x): du el = - dl = k x dx. Quindi U el (x) = ½k x 2 + C. Generalmente si assume energia potenziale elastica nulla per x = 0, (posizione di riposo della molla) per cui C = 0. Energia potenziale della forza gravitazionale (- G m 1 m 2 r / r 3 ): du g = - dl = G m 1 m 2 dr / r 2. Quindi U g (x) = - G m 1 m 2 / r + C. All infinito l energia potenziale gravitazionale deve essere nulla quindi C = 0. 17

18 Energia potenziale gravitazionale L energia potenziale gravitazionale è sempre negativa. Notare che se una delle masse è la terra (M T ) e l altra è la massa m di un corpo sulla superficie terrestre (r = R T ) L energia potenziale gravitazionale dovuta alla forza che la terra esercita su una massa m e l energia potenziale della forza peso differiscono per una costante: se si definisce (asse z verticale e z = 0 sulla superficie terrestre): U p (z) = m g z e U(z = 0) = 0, la differenza tra le due costanti è U p (z = 0) - U g (R T ) = m g R T. Questo valore, costante, corrisponde al lavoro, positivo, che la forza gravitazionale dovuta alla Terra farebbe per portare la massa m dall infinito alla superficie della terra. 18

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro Energia e Lavoro Energia, Energia potenziale, Energia cineca Definizione di lavoro Conce7o di Energia Nella meccanica classica l energia è definita come quella grandezza fisica che può venire "consumata"

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Fisica applicata Lezione 5

Fisica applicata Lezione 5 Fisica applicata Lezione 5 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 8 Novembre 2016 Parte I Lavoro ed energia Definizione di lavoro Il lavoro L compiuto

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

L energia potenziale gravitazionale di un oggetto di massa m che si trova ad un altezza h rispetto ad un livello scelto come riferimento è: E PG = mgh

L energia potenziale gravitazionale di un oggetto di massa m che si trova ad un altezza h rispetto ad un livello scelto come riferimento è: E PG = mgh Lezione 15 - pag.1 Lezione 15: L energia potenziale e l'energia meccanica 15.1. L energia potenziale gravitazionale Consideriamo quello che succede quando solleviamo un oggetto, applicando un forza appena

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale

Dettagli

15/aprile 2013. Esercizi

15/aprile 2013. Esercizi 15/aprile 2013 Esercizi ESEMPIO: Si consideri un punto materiale 1. posto ad un altezza h dal suolo, 2. posto su un piano ilinato liscio di altezza h, 3. attaccato ad un filo di lunghezza h il cui altro

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

ENERGIA LAVORO ED ENERGIA

ENERGIA LAVORO ED ENERGIA ENERGIA Prima di definire l energia nelle sue diverse forme è conveniente fare un osservazione sulle differenze tra fisica newtoniana delle forze e fisica ce studia le trasformazioni energetice: APPROCCIO

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B 1 ENERGI PTENZILE 1 Energia potenziale 1.1 orze conservative Se un punto materiale è sottoposto a una forza costante, cioè che non cambia qualunque sia la posizione che il punto materiale assume nello

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

4. LE FORZE E LA LORO MISURA

4. LE FORZE E LA LORO MISURA 4. LE FORZE E LA LORO MISURA 4.1 - Le forze e i loro effetti Tante azioni che facciamo o vediamo non sono altro che il risultato di una o più forze. Le forze non si vedono e ci accorgiamo della loro presenza

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Teorema dell energia cinetica

Teorema dell energia cinetica Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Grandezze importanti. Un lavoro positivo si chiama lavoro motore, mentre un lavoro negativo si chiama lavoro resistente.

Grandezze importanti. Un lavoro positivo si chiama lavoro motore, mentre un lavoro negativo si chiama lavoro resistente. Grandezze importanti Lavoro Lavoro è ciò che compie una forza quando il punto su cui agisce si sposta, in un senso o nell'altro, parallelamente alla forza stessa. La forza è un vettore e quindi quanto

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Lezione del F t = componente lungo la tangente della forza lungo il percorso.

Lezione del F t = componente lungo la tangente della forza lungo il percorso. Lezione del 04.03.2016 Lavoro = lo si indica con W. Il lavoro prodotto da una forza F produce uno spostamento dal punto A al B punto lungo la linea γ. Il lavoro da A ad B è diverso da quello fatto da B

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 9 lezione (23 / 10 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_)

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Energia meccanica Lavoro Energia meccanica Concetto di campo in Fisica Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro potete

Dettagli

g.bonomi fisica sperimentale (mecc., elettrom.) Introduzione

g.bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Nello sport del salto con l elastico il saltatore si lancia nel vuoto appeso ad una corda elastica. Come si può prevedere con certezza fino a dove arriverà nella sua caduta? La risposta è

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

L ENERGIA E LA QUANTITÀ DI MOTO

L ENERGIA E LA QUANTITÀ DI MOTO L ENERGIA E LA QUANTITÀ DI MOTO Il lavoro In tutte le macchine vi sono forze che producono spostamenti. Il lavoro di una forza misura l effetto utile della combinazione di una forza con uno spostamento.

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi seconde - Fisica CONTENUTI SECONDO ANNO MODULO LE FORZE E IL MOTO Conoscenze Significato e unità di misura della velocità Legge

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

ESERCIZIO 1. 5N 2Kg 1Kg

ESERCIZIO 1. 5N 2Kg 1Kg ESERCIZIO 1 Una mano spinge due corpi su una superficie orizzontale priva di attrito, come mostrato in figura. Le masse dei corpi sono Kg e 1 Kg. La mano esercita la forza di 5 N sul corpo di Kg. 5N Kg

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Lezione XVI Impulso, forze impulsive e urti

Lezione XVI Impulso, forze impulsive e urti Lezione XVI Impulso, forze impulsive e urti 1 Impulso di una forza Sempre nell ambito della dinamica del punto materiale, dimostriamo il semplice teorema dell impulso, che discende immediatamente dalla

Dettagli

Cap 7 - Lavoro ed energia Lavoro di una forza costante

Cap 7 - Lavoro ed energia Lavoro di una forza costante N.Giglietto A.A. 2005/06-7.3 - Lavoro di una forza costante - 1 Cap 7 - Lavoro ed energia Abbiamo visto come applicare le leggi della dinamica in varie situazioni. Spesso però l analisi del moto spesso

Dettagli

Legge di conservazione dell Energia Meccanica

Legge di conservazione dell Energia Meccanica 4-SBAC Fisica / ENERGIA e LAVORO Leggi ella Dinamica e spesso un problema molto complicato!!! risolverle e trovare la legge el moto r(t) Esempio Leggi i VARIAZIONE Leggi i CONSERVAZIONE energia massa carica

Dettagli

ESERCIZI SU LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

ESERCIZI SU LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 SRCIZI SU LAVORO D NRGIA Dott.ssa Silvia Rainò sempio 3 a) v=0 k =0 ed p =0 b) v=0, F si sostituisce ad N e aumenta c) F = mg. v=0. k =0, p = mgh => meccanica = k + p = mgh d) Mentre il corpo cade l

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

1 Indipendendenza dal percorso per forze conservative

1 Indipendendenza dal percorso per forze conservative Nicola GigliettoA.A. 12013/14 INDIPENDENDENZA DAL PERCORSO PER FORZE CONSERVATIVE Parte I 4.5 - Forze conservative 4.5 - Forze conservative In generale il lavoro L = f i F ds dipende dal percorso effettuato.

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

4 FORZE FONDAMENTALI

4 FORZE FONDAMENTALI FORZA 4! QUANTE FORZE? IN NATURA POSSONO ESSERE OSSERVATE TANTE TIPOLOGIE DI FORZE DIVERSE: GRAVITA' O PESO, LA FORZA CHE SI ESERCITA TRA DUE MAGNETI O TRA DUE CORPI CARICHI, LA FORZA DEL VENTO O DELL'ACQUA

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Riassunto fisica. Introduzione: La seconda legge di Newton =m a

Riassunto fisica. Introduzione: La seconda legge di Newton =m a Statica Introduzione: La seconda legge di Newton =m a F =0 F =0 M ) fissare un riferimento (assi x e y) ) scoporre ogni forza in x e y 3) scegliere il punto in cui calcolare il Movimento (punto + complicato)

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle).

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). I fenomeni di collisione avvengono quando due corpi, provenendo da punti lontani l uno dall altro, entrano in interazione reciproca, e

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag. I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero LICEO CLASSICO L. GALVANI Sommario Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N-... 1 Per studenti che hanno frequentato all estero... 1 Prova di Riferimento di Fisica per gli studenti

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT Lezione 6 Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. Classificazione delle Forze Distinguiamo tra: Forze attive Forze passive Forze attive Le 4 forze fondamentali:

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è il lavoro di una forza? Una forza F compie lavoro quando produce uno spostamento e ha una componente non nulla nella direzione dello spostamento.

Dettagli

Teorema dell impulso o della quantità di moto. Teorema delle forze vive o dell energia cinetica

Teorema dell impulso o della quantità di moto. Teorema delle forze vive o dell energia cinetica Teorema dell impulso o della quantità di moto estensione ai sistemi: f = ma = m Δv Δt secondo teorema del centro di massa (cancellazione delle forze interne) Teorema delle forze vive o dell energia cinetica

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Test di Matematica di base e Logica

Test di Matematica di base e Logica Università degli Studi di Perugia. Facoltà di Scienze MM.FF.NN. Test di Autovalutazione per l accesso al corso di laurea triennale in chimica 1 ottobre 2010 Test di Matematica di base e Logica 1) Un triangolo

Dettagli