Trasmissione di calore per radiazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trasmissione di calore per radiazione"

Transcript

1

2 Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la radiazione, la quale può avvenire anche in assenza di un mezzo materiale ovvero anche nel vuoto. L'irraggiamento si basa sulla capacità di trasporto dell energia da parte delle onde elettromagnetiche. L'eventuale presenza di un mezzo solido, liquido o gassoso non annulla la trasmissione per irraggiamento, ma tuttavia il mezzo la attenua. Di fatto, solo pochi solidi e liquidi sono trasparenti (poco attenuanti) per le radiazioni termiche, mentre quasi tutti i gas sono tali. Tutti i corpi a temperatura diversa dallo zero assoluto emettono energia sotto forma di radiazioni elettromagnetiche.

3 Onde elettromagnetiche Le grandezze che caratterizzano qualsiasi fenomeno oscillatorio sono: lunghezza d onda λ ovvero la distanza che intercorre tra due punti dell onda che hanno la medesima fase [nm o mm] frequenza n numero di oscillazioni nell unità di tempo [Hz]: dipende solo dalla sorgente ; è indipendente dal mezzo in cui si propaga l = c / n dove c è la velocità di propagazione dell onda che dipende dal mezzo. Nel vuoto c = m/s (circa km/s)

4 Radiazione elettromagnetica: teoria ondulatoria o corpuscolare? La propagazione della radiazione elettromagnetica è un fenomeno con duplice natura, ondulatoria e corpuscolare, in cui si propagano dei pacchetti discreti di energia, detti quanti o fotoni. e = h n = h c /l h = [J s] costante di Plank Onde con piccola lunghezza d onda trasportano più energia.

5 Famiglie di onde elettromagnetiche

6 Emissione da una superficie Descrizione della radiazione in termini spaziali : Direzione di emissione radiazione monodirezionale radiazione emisferica Descrizione della radiazione in termini spettrali: radiazione monocromatica radiazione globale f

7 Grandezze fondamentali che caratterizzano l emissione di un corpo Le grandezze che caratterizzano l emissione spettralmente e spazialmente sono quattro e vengono solitamente indicate con i seguenti nomi e simboli: i (λ, θ) : intensità di radiazione monocromatica che caratterizza l emissione spazialmente (in funzione della direzione θ) e spettralmente (in funzione della lunghezza d onda λ). W/(m 2 sr mm) I (θ) : intensità di radiazione globale che caratterizza l emissione solo spazialmente (in funzione della direzione θ) e comprende invece tutte le lunghezze d onda da 0 a. W/(m 2 sr) e (λ) : emissione monocromatica o potere emissivo monocromatico che caratterizza spettralmente (in funzione della lunghezza d onda λ) l emissione irradiata in tutto lo spazio. W/(m 2 mm) E: emissione globale o potere emissivo che indica l emissione irradiata in tutto lo spazio a tutte le lunghezze d onda da 0 a. W/m 2

8 Ad esempio la grandezza intensità di radiazione monocromatica i (λ, θ) caratterizza il flusso di energia Q emesso, alla lunghezza d onda λ, dall area elementare da nella porzione infinitesima di spazio individuata dall angolo solido dω attorno alla direzione θ. l unità di misura dell intensità di radiazione monocromatica è il rapporto W/(m 2 μm sr) o in unita SI W/(m 3 sr). Dalla definizione di I (θ), inoltre, è evidente che esiste la relazione: Dalla definizione di E:

9 Grandezze fondamentali che caratterizzano l irradiazione su di un corpo Un corpo, oltre a emettere onde elettromagnetiche, può anche essere investito da radiazioni. In maniera analoga all emissione si possono definire le seguenti caratteristiche: g (λ, θ) : intensità di irradiazione monocromatica potenza radiante incidente nella direzione θ e alla lunghezza d onda λ per unità di superficie normale e di angolo solido e per unità di intervallo di lunghezza d onda considerato. W/(m 2 sr mm) G (q) : intensità di irradiazione globale che caratterizza l irradiazione solo spazialmente (in funzione della direzione θ) e comprende invece tutte le lunghezze d onda da 0 a. W/(m 2 sr) g (l) : irradiazione monocromatica globale che caratterizza spettralmente (in funzione della lunghezza d onda λ) l irradiazione da tutto lo spazio. W/(m 2 mm) G: irradiazione globale che indica l irradiazione ricevuta dall unità di area e proveniente da tutto lo spazio a tutte le lunghezze d onda da 0 a. W/m 2

10 Comportamento delle superfici nei confronti di un irradiazione Coefficienti totali emisferici: Coefficiente di assorbimento a: Coefficiente di riflessione r: Coefficiente di trasmissione t: G a G a G r G r Gt t G G a + G r + G t = G a + r + t =

11 Comportamento delle superfici nei confronti di un irradiazione: direzione della radiazione riflessa G i Riflessione speculare Riflessione diffusa Riflessione irregolare

12 Radiosità La radiosità, B, di una superficie è l insieme della radiazione emessa e di quella riflessa dalla superficie considerata. In pratica è la totale potenza che lascia una superficie. Anche per la radiosità si possono distinguere le seguenti grandezze: - Radiosità monocromatica direzionale - Radiosità monocromatica emisferica - Radiosità globale B = E + Gr G i Gr B E

13 Un modello: il corpo nero Nello studio della radiazione è utile riferirsi a un modello ideale detto corpo nero. Una superficie nera: assorbe tutta la radiazione incidente (a=); per una determinata temperatura e lunghezza d onda, emette più energia di qualsiasi altro corpo; emette in modo uniforme in ogni direzione; ha un comportamento descritto da leggi abbastanza semplici Legge di Planck: C = (W μm 4 /m 2 ) C 2 = (W μm K) T : temperatura del corpo [scala assoluta] E la legge fondamentale del corpo nero, le altre si possono ricavare da questa.

14 Legge di Planck: Legge di Stefan-Boltzman: E n T 4 [ W / m 2 ] q n AT 4 [ W σ n : costante di Stefan-Boltzman = W/(m 2 K 4 ) A: area del corpo nero emittente T: temperatura del corpo [scala assoluta] ]

15 Spettro di emissione di un corpo nero Osservazioni: Un corpo nero emette a tutte le lunghezze d onda Un corpo nero ha un massimo di emissione: cioè emette più energia ad una ben determinata lunghezza d onda Il massimo dell emissione monocromatica si sposta sempre più verso sinistra via via che la temperatura del corpo nero cresce. Legge di Wien: * l T 2898 λ : lunghezza d onda a cui si ha il massimo di emissione [μm] T: temperatura [K] C w : costante di Wien [μm K]

16 Superfici reali I corpi reali hanno emissioni vicine a quelle del corpo nero molto raramente (un esempio è il sole il cui spettro è simile a quello di un corpo nero a 6000 K). Negli altri casi l emissione dei corpi reali è molto minore di quella del corpo nero e lo spettro è difficilmente continuo.

17 Nello studio di un corpo reale è utile in ogni caso riferirsi al corpo nero attraverso l emissività ε definita come il rapporto tra l emissione del corpo ad una certa temperatura e quella del corpo nero alla medesima temperatura: ε = emissività del corpo = E / E n alla stessa temperatura E evidente che l emissività ha un valore che varia da 0 e. Per un corpo nero: ε = = a Per un corpo reale: ε = ε (l, q)

18 Superfici grigie Data la diversità del corpo reale rispetto al corpo nero si introduce allora un secondo modello che si trova a metà strada tra corpo nero e corpi reali e che riesce meglio a descrivere il comportamento di questi ultimi: il corpo grigio. Il corpo grigio consiste in un corpo che emette energia con la medesima distribuzione spettrale e spaziale del corpo nero ma in misura minore. - le sue proprietà non dipendono dalla direzione e dalla lunghezza d onda a λ = a = costante < ε λ = ε = costante < t λ = t = costante < si dimostra che anche per un corpo grigio si ha ε = a, relazione che va sotto il nome di legge di Kirchoff.

19 Superfici grigie

20 La radiazione solare Arch. Francesca Cappelletti Università IUAV di Venezia La radiazione solare è costituita da diverse tipologie di onde elettromagnetiche. Circa il 50% è nel campo IR, il 44% nel visibile e il 7% nell UV. Oltre i 2-3 mm si ha solo un %. 20

21 Caratterizzazione dei vetri: prestazioni radiative I coefficienti sono funzione della lunghezza d onda l e dell angolo di incidenza q della radiazione incidente r = r(l,q) t = t(l,q) a = a(l,q) 2

22 Trasmittanza (%) Parametri ottici: t e, r e, t v, r v 00 UV visibile visibile infrarosso Solare: visibile + IR + UV 80 t v Chiaro 20 Grigio Bronzo t e Verde Lunghezza d'onda (nm) 22

23 Parametri energetici: fattore solare FS o g Rapporto tra l energia globale trasmessa oltre la lastra e quella incidente su di essa; si considera sia l energia direttamente trasmessa che quella assorbita e scambiata per radiazione e convezione con l interno; FS ( τ I) c( α I I) ri ai ti (-c) ai c (ai) Il fattore solare è anche indicato come total solar energy transmittance TSET, e Solar heating gain coefficient SHGC. Per lastre non trattate il valore di c viene di solito assunto pari a 0,3; con ricoprimenti bassoemissivi si può arrivare a 0,5. 23

24 Parametri energetici: fattore solare FS o g 24

25 Scambi di energia tra superfici: il fattore di vista La trasmissione di energia termica per irraggiamento dipende dall orientazione reciproca delle superfici, dalle loro proprietà radiative e dalle loro temperature. E utile introdurre un parametro che descriva l orientazione delle superfici considerate: il fattore di vista Considerate una superficie i ed una superficie j esso corrisponde alla frazione di energia emessa da i che incide direttamente su j (F i j ). Esso è dunque il rapporto tra l energia partita da i che incide direttamente su j, E i j, e la totale energia emessa da i, E i,tot. F i j = E i j / E i,tot

26 Scambi di energia tra superfici: il fattore di vista F i j = E i j / E i,tot Se le temperature delle due superfici fossero uguali e il flusso scambiato fosse nullo si ottiene la relazione di reciprocità: F i j A i = F j i A j Per il principio di conservazione dell energia, la somma dei fattori di vista di una superficie verso tutte le N superfici che essa vede è pari all unità: N F i j j

27 Scambi di energia tra superfici: il fattore di vista

28 Scambi di energia tra superfici: il fattore di vista

29 Scambio termico tra superfici nere ] [ ) ( ] [ ) ( : ] [ ,2, 2 2,2 2 2, 2 2, , 2 2 W T T F A q W E E F A q ovvero W E F A E F A q E F A q E F A q n n n n n n Potenza partita da che raggiunge 2 Potenza partita da 2 che raggiunge Potenza netta scambiata tra e 2 Potenza netta scambiata tra e 2

30 Potenza scambiata tra superfici grigie q 2 A F 2 ( B B2 ) [ W ] radiosità

Fabio Peron. La trasmissione del calore: 3. radiazione termica. Le modalità di scambio del calore. La radiazione termica. Onde e oscillazioni

Fabio Peron. La trasmissione del calore: 3. radiazione termica. Le modalità di scambio del calore. La radiazione termica. Onde e oscillazioni Corso di Progettazione Ambientale prof. Fabio Peron Le modalità di scambio del calore Una differenza di temperatura costituisce uno squilibrio che la natura cerca di annullare generando un flusso di calore.

Dettagli

CORSO DI FISICA TECNICA

CORSO DI FISICA TECNICA CORSO DI FISICA TECNICA Trasmissione del calore Irraggiamento IRRAGGIAMENTO Trasferimento di energia per onde elettromagnetiche Moto vibratorio delle molecole Tutte le superfici emettono onde elettromagnetiche

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

L irraggiamento termico

L irraggiamento termico L irraggiamento termico Trasmissione del Calore - 42 Il calore può essere fornito anche mediante energia elettromagnetica; ciò accade perché quando un fotone, associato ad una lunghezza d onda compresa

Dettagli

Trasmissione del calore: Irraggiamento - I parte

Trasmissione del calore: Irraggiamento - I parte CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA FISICA TECNICA AMBIENTALE Trasmissione del calore: Irraggiamento - I parte Prof. Gianfranco Caruso A.A. 2013/2014 La trasmissione di calore per Irraggiamento

Dettagli

TRASMISSIONE DI CALORE PER IRRAGGIAMEMNTO

TRASMISSIONE DI CALORE PER IRRAGGIAMEMNTO TRASMISSIONE DI CALORE PER IRRAGGIAMEMNTO In generale un qualsiasi corpo è soggetto simultaneamente ad un flusso di energia entrante in esso e ad uno uscente da esso, che sono gli effetti dell interazione

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

IRRAGGIAMENTO IRRAGGIAMENTO E

IRRAGGIAMENTO IRRAGGIAMENTO E RRAGGAMENTO E il trasferimento di energia che avviene attraverso onde elettromagnetiche (o fotoni) prodotte da variazioni nelle configurazioni elettroniche degli atomi e delle molecole. La radiazione si

Dettagli

Lo scambio termico per radiazione

Lo scambio termico per radiazione 1 Lo scambio termico per radiazione 1.1 Introduzione Si consideri un corpo collocato in un ambiente in cui è stato fatto il vuoto e le cui pareti si trovino ad una temperatura superficiale uniforme di

Dettagli

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di SISTEMI PASSIVI Ogni corpo a temperatura T diversa da 0 K irradia spontaneamente potenza elettromagnetica distribuita su tutto lo spettro Attraverso un elemento da della superficie del corpo, fluisce p

Dettagli

TERMOLOGIA & TERMODINAMICA II

TERMOLOGIA & TERMODINAMICA II TERMOLOGIA & TERMODINAMICA II 1 TRASMISSIONE DEL CALORE Il calore può essere trasmesso attraverso tre modalità: conduzione: il trasporto avviene per contatto, a causa degli urti fra le molecole dei corpi,

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

Il comportamento termico di oggetti in presenza di radiazione e.m. assorbita ed emessa: Esperimenti didattici

Il comportamento termico di oggetti in presenza di radiazione e.m. assorbita ed emessa: Esperimenti didattici Il comportamento termico di oggetti in presenza di radiazione e.m. assorbita ed emessa: Esperimenti didattici PLS 2017 In che modo i materiali possono interagire con la radiazione? assorbanza riflettanza

Dettagli

DEFINIZIONI (D.Lgs. 81/08)

DEFINIZIONI (D.Lgs. 81/08) Radiazioni Ottiche Artificiali -ROA- Cosa sono Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Fonte ISPESL 1 DEFINIZIONI (D.Lgs. 81/08) si intendono per radiazioni ottiche:

Dettagli

Lezione 2.2: trasmissione del calore!

Lezione 2.2: trasmissione del calore! Elementi di Fisica degli Edifici Laboratorio di costruzione dell architettura I A.A. 2010-2011 prof. Fabio Morea Lezione 2.2: trasmissione del calore! 2.1 capacità termica 2.2 conduzione 2.3 convezione

Dettagli

Capitolo 4. L Insolazione e la Temperatura.

Capitolo 4. L Insolazione e la Temperatura. Capitolo 4. L Insolazione e la Temperatura. L energia di cui dispone la popolazione umana deriva direttamente o indirettamente dal Sole. Il Sole emette costantemente una radiazione di tipo elettromagnetico

Dettagli

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione LA LUCE Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione Perché vediamo gli oggetti? Perché vediamo gli oggetti? Noi vediamo gli oggetti perché da essi

Dettagli

Irraggiamento termico

Irraggiamento termico FISICA TECNICA Prof. Ing. Marina Mistretta Irraggiamento termico a.a. 0/0 //0 Lezione //0 Prof. Ing. Marina Mistretta Irraggiamento termico Tutte le superfici che possiedono una temperatura emettono energia

Dettagli

La conducibilità termica del vetro è poco sensibile alla composizione.

La conducibilità termica del vetro è poco sensibile alla composizione. Proprietà termiche 80-90 0.71 0.96 1.05 1.38 W m -1 K Glass science, 2nd edition, R.H. Doremus, J. Wiley and Sons, 1994 La conducibilità termica del vetro è poco sensibile alla composizione. 1 vetrate

Dettagli

Elettricità e Fisica Moderna

Elettricità e Fisica Moderna Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Elettricità e Fisica Moderna 1) Una candela emette una potenza di circa 1 W ad una lunghezza d onda media di 5500 Å a)

Dettagli

Il corpo nero e l ipotesi di Planck

Il corpo nero e l ipotesi di Planck Il corpo nero e l ipotesi di Planck La crisi della fisica classica Alla fine del XIX secolo ci sono ancora del fenomeni che la fisica classica non riesce a spiegare: lo spettro d irraggiamento del corpo

Dettagli

Michelle Melcarne matr Morena Iocolano matr Lezione del 04/06/2014 ora 9:30-12:30 PER IRRAGGIAMENTO

Michelle Melcarne matr Morena Iocolano matr Lezione del 04/06/2014 ora 9:30-12:30 PER IRRAGGIAMENTO Michelle Melcarne matr. 5 Morena Iocolano matr. 77 Lezione del /6/ ora 9:3-:3 (Lez./6/) Indice SCAMBIO TERMICO PER IRRAGGIAMENTO ESERCIZI ONDE ELETTROMAGNETICHE SCAMBIO TERMICO PER IRRAGGIAMENTO IN CAMPO

Dettagli

La misura della TEMPERATURA. Corso di Misure Termomeccaniche per MENR SAPIENZA Università di Roma A.A

La misura della TEMPERATURA. Corso di Misure Termomeccaniche per MENR SAPIENZA Università di Roma A.A La misura della TEMPERATURA Corso di Misure Termomeccaniche per MENR SAPIENZA Università di Roma A.A. 2012-13 La misura della TEMPERATURA Se ad un corpo viene fornito o sottratto calore Q, si modifica

Dettagli

Termografia a infrarossi

Termografia a infrarossi Termografia a infrarossi Nella radiometria a microonde si verifica che hν

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

La misura della temperatura

La misura della temperatura Calore e temperatura 1. La misura della temperatura 2. La dilatazione termica 3. La legge fondamentale della termologia 4. Il calore latente 5. La propagazione del calore La misura della temperatura La

Dettagli

Trasmissione del calore: Irraggiamento - II parte

Trasmissione del calore: Irraggiamento - II parte CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA FISICA TECNICA AMBIENTALE Trasmissione del calore: Irraggiamento - II parte Prof. Gianfranco Caruso A.A. 2013/2014 Proprietà selettive: i colori Le superfici

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

Lezione 22 - Ottica geometrica

Lezione 22 - Ottica geometrica Lezione 22 - Ottica geometrica E possibile, in certe condizioni particolari, prescindere dal carattere ondulatorio della radiazione luminosa e descrivere la propagazione della luce usando linee rette e

Dettagli

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano S P E T T R O S C O P I A SPETTROSCOPIA I PARTE Cenni generali di spettroscopia: La radiazione elettromagnetica e i parametri che la caratterizzano Le regioni dello spettro elettromagnetico Interazioni

Dettagli

Metabolismo: trasformazione dell energia chimica in energia termica e lavoro

Metabolismo: trasformazione dell energia chimica in energia termica e lavoro Metabolismo: trasformazione dell energia chimica in energia termica e lavoro Uomo: stufetta da 100W Al giorno: Uomo 2500 kcal; Donna 1800 kcal 1 Metabolismo - (lavoro+evaporazione+respirazione+radiazione+convezione)

Dettagli

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Corso di Laurea Magistrale in Ingegneria per l Ambiente e il Territorio A.A. 2012-2013 Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Telerilevamento: principi fisici Principi fisici del telerilevamento

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

Spettroscopia. Spettroscopia

Spettroscopia. Spettroscopia Spettroscopia Spettroscopia IR Spettroscopia NMR Spettrometria di massa 1 Spettroscopia E un insieme di tecniche che permettono di ottenere informazioni sulla struttura di una molecola attraverso l interazione

Dettagli

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali:

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali: La luce in fisica La luce: aspetti fisici Cos è la luce? Concetti fondamentali: - velocità, ampiezza, lunghezza d onda - assorbimento - riflessione -rifrazione - diffrazione - indice di rifrazione - temperatura

Dettagli

TERMODINAMICA. trasmissione del calore

TERMODINAMICA. trasmissione del calore TERMODINAMICA Lo studio delle proprietà e della Lo studio delle proprietà e della trasmissione del calore CALORE Il CALORE è una forma di energia e come tale può trasformarsi in altre forme di energia;

Dettagli

Sono processi unitari le Sintesi industriali.

Sono processi unitari le Sintesi industriali. 1 1 Per risolvere i problemi relativi agli impianti chimici è necessario fare uso di equazioni, esse vengono classificate in : equazioni di bilancio e equazioni di trasferimento. -Le equazioni di bilancio

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

La struttura della materia

La struttura della materia La struttura della materia IL CORPO NERO In fisica, i corpi solidi o liquidi emettono radiazioni elettromagnetiche, a qualsiasi temperatura. Il corpo nero, invece, è un oggetto ideale che assorbe tutta

Dettagli

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km)

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km) LE STELLE LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole (149 600 000 km) Anno luce = distanza percorsa in un anno dalla luce, che viaggia ad una velocità di 300 000 km/sec. (9

Dettagli

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Lo spettro di corpo nero Perché il

Dettagli

Astronomia Lezione 17/10/2011

Astronomia Lezione 17/10/2011 Astronomia Lezione 17/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley

Dettagli

Grandezze fotometriche

Grandezze fotometriche Capitolo 3 Grandezze fotometriche 3.1 Intensità luminosa E una grandezza vettoriale di simbolo I. Ha come unità di misura la candela(cd). La candela è l unità di misura fondamentale del sistema fotometrico.

Dettagli

Il Corpo Nero e la costante di Planck

Il Corpo Nero e la costante di Planck Il Corpo Nero e la costante di Planck Prof.ssa Garagnani Elisa Max Planck (1858-1947) Prof.ssa Garagnani Elisa Il Corpo Nero e la costante di Planck 1 / 21 Radiazione e materia L Universo è fatto di materia

Dettagli

LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO. Acqua, Luce, Calore: uso e risparmio

LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO. Acqua, Luce, Calore: uso e risparmio A LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO 1. IL NOSTRO ORGANISMO E CAPACE DI AUTOREGOLAZIONE TERMICA PER LA SOPRAVVIVENZA, IL NOSTRO ORGANISMO MANTIENE LA SUA TEMPERATURA INTERNA COSTANTE (A CIRCA

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Sorgenti di luce Colori Riflettanza

Sorgenti di luce Colori Riflettanza Le Schede Didattiche di Profilocolore IL COLORE Sorgenti di luce Colori Riflettanza Rome, Italy 1/37 La luce: natura e caratteristiche La luce è una radiazione elettromagnetica esattamente come lo sono:

Dettagli

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE U.21/0 UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE 21.1. Introduzione 21.2. Conduzione 21.3. Convezione 21.4. Irraggiamento 21.5. Modalità imultanee di tramiione del calore ATTENZIONE

Dettagli

Termoregolazione 1. Meccanismi fisici di scambio di calore con l esterno

Termoregolazione 1. Meccanismi fisici di scambio di calore con l esterno Termoregolazione 1. Meccanismi fisici di scambio di calore con l esterno Carlo Capelli, Fisiologia Generale e dell Esercizio, Facoltà di Scienze Motorie, Università degli Studi di Verona Obiettivi Animali

Dettagli

LA SCOMPOSIZIONE DELLA LUCE SOLARE USANDO UN PRISMA DI VETRO SI PUÒ SCOMPORRE LA LUCE BIANCA SOLARE NEI VARI COLORI DELL IRIDE

LA SCOMPOSIZIONE DELLA LUCE SOLARE USANDO UN PRISMA DI VETRO SI PUÒ SCOMPORRE LA LUCE BIANCA SOLARE NEI VARI COLORI DELL IRIDE I COLORI LA SCOMPOSIZIONE DELLA LUCE SOLARE USANDO UN PRISMA DI VETRO SI PUÒ SCOMPORRE LA LUCE BIANCA SOLARE NEI VARI COLORI DELL IRIDE LA RICOMPOSIZIONE DELLA LUCE SOLARE LA LUCE BIANCA SOLARE PU0 ESSERE

Dettagli

al top dell atmosfera al livello del mare

al top dell atmosfera al livello del mare LA RADIAZIONE La principale sorgente di energia per la terra è la radiazione solare, la quale è distribuita sull intero spettro elettromagnetico, parte più significativa per quanto riguarda il trasferimento

Dettagli

Temperatura. Temperatura

Temperatura. Temperatura TERMOMETRIA E CALORE Che cos è la? Grandezza che misura l energia accumulata da un corpo come energia 2 La regola molti processi chimico fisici, quali ad esempio la formazione delle calotte polari, le

Dettagli

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa Un immagine digitale Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa Y X x y f(x,y) = intensità luminosa in (x,y) Tre livelli di image

Dettagli

SPETTRO ELETTROMAGNETICO. Lunghezza d onda (m)

SPETTRO ELETTROMAGNETICO. Lunghezza d onda (m) SPETTRO ELETTROMAGNETICO Lunghezza d onda (m) ONDE RADIO λ 1 m f 3 10 8 Hz DOVE LE OSSERVIAMO? Radio, televisione, SCOPERTA Hertz (1888) Marconi: comunicazioni radiofoniche SORGENTE Circuiti oscillanti

Dettagli

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo Università degli Studi di Milano Dipartimento di Fisica Corso di laurea triennale in FISICA Anno accademico 2013/14 Figure utili da libri di testo Onde & Oscillazioni Corso A Studenti con il cognome che

Dettagli

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica 1 I raggi luminosi 1 I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan

Dettagli

Le onde elettromagnetiche

Le onde elettromagnetiche Campi elettrici variabili... Proprietà delle onde elettromagnetiche L intuizione di Maxwell (1831-1879) Faraday ed Henry misero in evidenza che un campo magnetico variabile genera un campo elettrico indotto.

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

Il fenomeno luminoso

Il fenomeno luminoso Un immagine Dimensioni finite (X,Y) No profondità inerente Rappresentazione numerica energia luminosa Y X x y B(x,y) = intensità luminosa in (x,y) Il fenomeno luminoso Fisica della luce e grandezze fotometriche

Dettagli

Pirometro Ottico Fig. 8 - Pirometro ottico a filamento evanescente. Questo tipo di termometro sfrutta il colore per indicare la temperatura di un corpo. Infatti, ogni corpo emette radiazione elettromagnetica

Dettagli

Astronomia Strumenti di analisi

Astronomia Strumenti di analisi Corso facoltativo Astronomia Strumenti di analisi Christian Ferrari & Gianni Boffa Liceo di Locarno Parte E: Strumenti di analisi Radiazione elettromagnetica Interazione radiazione - materia Redshift Misura

Dettagli

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo Università degli Studi di Milano Dipartimento di Fisica Corso di laurea triennale in FISICA Anno accademico 2013/14 Figure utili da libri di testo Onde & Oscillazioni Corso A Studenti con il cognome che

Dettagli

Convezione: meccanismo di scambio termico tra una superficie solida, a temperatura ts ed un fluido a temperatura tinfinito in moto rispetto ad essa.

Convezione: meccanismo di scambio termico tra una superficie solida, a temperatura ts ed un fluido a temperatura tinfinito in moto rispetto ad essa. Convezione naturale o forzata Meccanismo di scambio termico tra una superficie solida, a temperatura ts ed un fluido a temperatura tinfinito in moto rispetto ad essa. Convezione forzata: il fluido è in

Dettagli

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1 Chimica Fisica Biotecnologie sanitarie Lezione n. 13 Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo di idrogeno Antonino Polimeno 1 Radiazione elettromagnetica (1) - Rappresentazione

Dettagli

VINCI FINE INSTRUMENTS MONTEROTONDO ROMA Tel mail web : https//

VINCI FINE INSTRUMENTS MONTEROTONDO ROMA Tel mail web : https// UnitÄ fotometriche: lumen, candele, lux. Con la comparsa nel mercato di lampade e lampadine a LED sono diventati comuni anche i termini di lumen, candele e lux. UnitÄ di misura fotometriche molto importanti

Dettagli

Irraggiamento solare (1)

Irraggiamento solare (1) Irraggiamento solare (1) Trasmissione del Calore - 53 A causa: dell ellitticità dell orbita terrestre e dell inclinazione dell asse di rotazione rispetto al piano dell orbita (circa 23,5 ) si ha che l

Dettagli

FISICA CLASSE 4ASU. CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema

FISICA CLASSE 4ASU. CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema FISICA CLASSE 4ASU CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema.... Un urto si dice se in esso si conserva l energia totale dei

Dettagli

La candela. La storia della realizzazione della candela

La candela. La storia della realizzazione della candela La candela La storia della realizzazione della candela 1860 La prima realizzazione di riferimento per la misura delle luce utilizza delle candele ricavate dal grasso di balena (spermaceti). 1898 Il passo

Dettagli

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Unità Didattica 1. La radiazione di Corpo Nero

Unità Didattica 1. La radiazione di Corpo Nero Diapositiva 1 Unità Didattica 1 La radiazione di Corpo Nero Questa unità contiene informazioni sulle proprietà del corpo nero, fondamentali per la comprensione dei meccanismi di emissione delle sorgenti

Dettagli

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La luce La LUCE è una forma di energia detta radiazione elettromagnetica che si propaga nello spazio

Dettagli

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Laser? Light Amplification by Stimulated Emission of Radiation Produce un fascio coerente di radiazione ottica da una stimolazione elettronica, ionica, o transizione molecolare a più alti livelli energetici

Dettagli

INTRODUZIONE ALLA SPETTROMETRIA

INTRODUZIONE ALLA SPETTROMETRIA INTRODUZIONE ALLA SPETTROMETRIA La misurazione dell assorbimento e dell emissione di radiazione da parte della materia è chiamata spettrometria. Gli strumenti specifici usati nella spettrometria sono chiamati

Dettagli

Un percorso di ottica parte III. Ottica ondulatoria

Un percorso di ottica parte III. Ottica ondulatoria Un percorso di ottica parte III Ottica ondulatoria Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali

Dettagli

TRASMISSIONE DEL CALORE

TRASMISSIONE DEL CALORE TRASMISSIONE DEL CALORE Testi di riferimento: ÇENGEL Y. A., Termodinamica e trasmissione del calore, McGraw-Hill, Milano, 1998. GUGLIELMINI G., PISONI C., Elementi di trasmissione del calore, Editoriale

Dettagli

Elementi di Trasmissione del calore

Elementi di Trasmissione del calore Elementi di rasmissione del calore Prof.Ing Ing.. Luigi Maffei Versione 000-00 CLOE Se tra due sistemi sussiste una differenza di temperatura, dell'energia come calore verrà trasferita dal sistema a temperatura

Dettagli

La rifrazione della luce

La rifrazione della luce La rifrazione della luce E. Modica erasmo@galois.it Istituto Provinciale di Cultura e Lingue Ninni Cassarà A.S. 2010/2011 Il bastone spezzato La rifrazione e le sue leggi Il bastone spezzato Definizione

Dettagli

CALORIMETRO DELLE mescolanze

CALORIMETRO DELLE mescolanze CALORIMETRO DELLE mescolanze Scopo dell esperienza è la misurazione del calore specifico di un corpo solido. Il funzionamento del calorimetro si basa sugli scambi di energia, sotto forma di calore, che

Dettagli

L analisi della luce degli astri: fotometria e spettrometria

L analisi della luce degli astri: fotometria e spettrometria Università del Salento Progetto Lauree Scientifiche Attività formativa Modulo 1 L analisi della luce degli astri: fotometria e spettrometria Vincenzo Orofino Gruppo di Astrofisica LA LUCE Natura della

Dettagli

FISICA QUANTISTICA LIMITI AL MODELLO ATOMICO DI RUTHERFORD. e - Per spiegare la disposizione degli elettroni nell atomo (STRUTTURA ELETTRONICA)

FISICA QUANTISTICA LIMITI AL MODELLO ATOMICO DI RUTHERFORD. e - Per spiegare la disposizione degli elettroni nell atomo (STRUTTURA ELETTRONICA) LIMITI AL MODELLO ATOMICO DI RUTHERFORD e - + nucleo In base alle leggi della FISICA CLASSICA, una particella carica dotata di un movimento circolare libera energia. Di conseguenza, gli elettroni che,

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

Stelle. - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce

Stelle. - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce Stelle - corpo celeste di forma più o meno sferica - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce - il Sole è una stella - Quasi tutto ciò che sappiamo

Dettagli

RADIAZIONI OTTICHE ARTIFICIALI

RADIAZIONI OTTICHE ARTIFICIALI Via Cassala 88 Brescia Tel. 030.47488 info@cbf.191.it RADIAZIONI OTTICHE ARTIFICIALI DECRETO LEGISLATIVO 81/2008 TITOLO VIII CAPO V 1 LE RADIAZIONI OTTICHE Con il termine radiazioni ottiche si intende

Dettagli

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica.

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica. FOTODIDATTICA CONOSCERE LA LUCE Le caratteristiche fisiche, l analisi dei fenomeni luminosi, la temperatura di colore. Iniziamo in questo fascicolo una nuova serie di articoli che riteniamo possano essere

Dettagli

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati 4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi Accanto allo spettro continuo che i corpi emettono in ragione del loro stato termico, si osservano spettri discreti che sono caratteristici

Dettagli

LUCE E OSSERVAZIONE DEL COSMO

LUCE E OSSERVAZIONE DEL COSMO LUCE E OSSERVAZIONE DEL COSMO ALUNNI CLASSI QUINTE SAN BERARDO Ins. DE REMIGIS OSVALDO Ins.SANTONE M. RITA CHE COS E LA LUCE? Perché vediamo gli oggetti? Che cos è la luce? La propagazione della luce

Dettagli

Istituto di Biometeorologia LA RADIAZIONE SOLARE. Matteo De Vincenzi Ricercatore del CNR IBIMET

Istituto di Biometeorologia LA RADIAZIONE SOLARE. Matteo De Vincenzi Ricercatore del CNR IBIMET Istituto di Biometeorologia LA RADIAZIONE SOLARE 1 Matteo De Vincenzi Ricercatore del CNR IBIMET Trascurando il minimo contributo geotermico possiamo affermare che la radiazione solare è l unica fonte

Dettagli

4.5 Polarizzazione Capitolo 4 Ottica

4.5 Polarizzazione Capitolo 4 Ottica 4.5 Polarizzazione Esercizio 98 Un reticolo con N fenditure orizzontali, larghe a e con passo p, è posto perpendicolarmente a superficie di un liquido con n =.0. Il reticolo è colpito normalmente alla

Dettagli

L analisi della luce degli astri: fotometria e spettrometria

L analisi della luce degli astri: fotometria e spettrometria Università del Salento Progetto Lauree Scientifiche Attività formativa Modulo 1 L analisi della luce degli astri: fotometria e spettrometria Vincenzo Orofino Gruppo di Astrofisica LA LUCE Natura della

Dettagli

Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di

Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di IL SUONO Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di equilibrio Un corpo elastico è un corpo che può

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Dipartimento di Ingegneria Enzo Ferrari Università di Modena e Reggio Emilia

Dipartimento di Ingegneria Enzo Ferrari Università di Modena e Reggio Emilia Oggetto: Misure di riflettanza solare, emissività termica e Solar Reflectance Index Report Responsabile: Alberto Muscio Antonio Libbra Committente: MAD Ecoimpermeabilizzazioni Denominazione Campione: INOPAZ

Dettagli

Teoria dell immagine

Teoria dell immagine Archivi fotografici: gestione e conservazione Teoria dell immagine Elementi di base: la luce, l interazione tra luce e materia, il colore Mauro Missori Cos è la fotografia? La fotografia classica è un

Dettagli

Diffusione da elettroni legati elasticamente

Diffusione da elettroni legati elasticamente Diffusione da elettroni legati elasticamente Nell ipotesi di elettroni legati elasticamente nella materia, il moto del singolo elettrone è determinato dall equazione del moto classica r + γṙ + ω 0r F ext

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

LA TERMOGRAFIA SPETTRO ONDE ELETTROMAGNETICHE

LA TERMOGRAFIA SPETTRO ONDE ELETTROMAGNETICHE SPETTRO ONDE ELETTROMAGNETICHE La radiazione elettromagnetica è un mezzo di trasmissione dell energia sotto forma di onde aventi entrambe le componenti elettriche e magnetiche. La sequenza ordinata delle

Dettagli