Algebra. I numeri relativi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra. I numeri relativi"

Transcript

1 I numeri relativi I numeri relativi sono quelli preceduti dal segno << + >> o dal segno <<->>. I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti dal segno - (zero escluso). I numeri positivi, quelli negativi e lo zero formano l insieme dei numeri relativi. Definiamo valore assoluto o modulo di un numero relativo il numero stesso senza segno. 7 = 7, + 7 = 7, = Lo zero è considerato senza il segno perché non ha significato scriverlo preceduto dal segno + o dal segno -. Il segno + dei numeri positivi può essere sottinteso, cioè + 1= 1. Due numeri relativi si dicono concordi se hanno lo stesso segno, si dicono discordi se hanno segni diversi. I numeri relativi 5 e 4 sono concordi; i numeri + 4 e 7 sono discordi. Due numeri relativi discordi aventi lo stesso modulo si dicono opposti. I numeri relativi 8 e + 8 sono opposti. Due numeri relativi sono uguali se hanno lo stesso segno e lo stesso valore assoluto. Confronto dei numeri relativi Per confrontare due numeri relativi, cioè per stabilire se uno di essi è maggiore, uguale o minore dell altro, si tiene presente quanto segue: 1) di due numeri positivi è maggiore quello che ha valore assoluto maggiore ) di due numeri negativi è maggiore quello che ha valore assoluto minore ) ogni numero positivo è maggiore di un qualsiasi numero negativo 4) lo zero è maggiore di ogni numero negativo e minore di ogni numero positivo 1

2 Rappresentazione grafica dei numeri relativi Disegniamo una retta r e fissiamo su di essa un punto O, detto origine, che corrisponde al numero zero. La retta, a partire dal punto O, puo essere percorsa in due versi uno opposto dell altro. semiretta negativa O origine semiretta positiva r Assumiamo come verso positivo quello che va dall origine O alla sua destra e come verso negativo quello che va dall origine O alla sua sinistra. I numeri positivi li riportiamo sulla semiretta positiva, cioè alla destra dell origine O, I numeri negativi li riportiamo sulla semiretta negativa, cioè alla sinistra dell origine O. Un numero relativo è maggiore di qualsiasi numero relativo che si trova alla sua sinistra ed è minore di qualsiasi numero relativo che si trovi alla sua destra. Simbolismo di particolari insiemi numerici N = { },,,,,,...insieme dei numeri naturali { } Z =,,,,,,,,,...insieme dei numeri interi relativi { } Z + =,,,,,......insieme dei numeri interi positivi { 5 4 1} Z =,,,,...insieme dei numeri interi negativi Q...insieme dei numeri razionali relativi Q insieme dei numeri razionali positivi Q...insieme dei numeri razionali negativi R... R insieme dei numeri reali relativi...insieme dei numeri reali positivi R...insieme dei numeri reali negativi C......insieme dei numeri complessi

3 N Q + Z Q R + R C Numeri reali Dicesi numero razionale un qualsiasi numero che può essere scritto sotto forma i frazione. Sono pertanto numeri razionali: 1) tutti i numeri interi ) tutti i numeri decimali limitati ) tutti i numeri decimali periodici. Dicesi numero irrazionale ogni numero che non può essere scritto sotto forma di frazione. Un numero razionale o irrazionale dicesi reale. 1) Numeri interi RAZIONALI ( numeri frazionari ) ) Numeri decimali limitati ) Numeri decimali periodici numeri reali IRRAZIONALI= numeri che si possono scrivere sotto forma di frazione = = numeri decimali illimitati e non periodici Addizione di due numeri relativi La somma di due numeri relativi concordi è un ( + 8) + ( + ) = + 11 ( 8) + ( ) = 11 numero relativo avente lo stesso segno degli addendi e come ( + 8) + ( ) = + 5 valore assoluto la somma dei loro valori assoluti. ( 8) + ( + ) = 5 La somma di due numeri relativi discordi è un numero relativo avente come segno il segno dell addendo che ha valore assoluto maggiore e come modulo la differenza tra il valore assoluto maggiore e quello minore. La somma di due numeri opposti è uguale a zero. Sottrazione di due numeri relativi La differenza tra due numeri relativi è un terzo numero relativo che sommato al secondo dà come risultato il primo numero relativo, cioè la differenza tra due numeri relativi è uguale al primo

4 numero più l opposto del secondo. Quindi per effettuare la differenza tra due numeri relativa basta aggiungere al primo l opposto del secondo. ( + 8) ( ) = ( + 8) + ( + ) = + 10, ( ) ( ) ( ) ( ) ( 8) ( ) = ( 8) + ( + ) = = = = = = = Si dice espressione algebrica numerica una successione di numeri relativi legati da segni di operazioni con la presenza di eventuali parentesi. Per calcolare il valore di una espressione algebrica bisogna calcolare prima le somme contenute nelle parentesi tonde, poi quelle nelle parentesi quadre e infine le somme nelle parentesi graffe. { ( ) ( ) } ( ) ( ) { } = = { [ ]} { [ ]} { } { } = = = = 15 4 = = 19 Moltiplicazione di due numeri relativi Il prodotto di due numeri relativi è uguale al numero relativo che ha come valore assoluto il prodotto dei valori assoluti dei numeri e come segno quello positivo se i numeri sono concordi, quello negativo se i numeri sono discordi. REGOLA DEI SEGNI + per + = + ( ) ( 5) = + 10 per = + ( ) ( + 5) = 10 + per = ( + ) ( 5) = 10 per + = ( ) ( 5) = + 10 OSSERVAZIONE Due numeri si dicono reciproci o inversi quando il loro prodotto è 1. I numeri 4 e 4 sono reciproci perché: 4 = 4 1. Il reciproco del numero 7 è il numero 7 in quanto: = Il reciproco di un numero è il numero che si ottiene scambiando il numeratore col denominatore. Due numeri si dicono antireciproci quando il loro prodotto è 1. 4

5 Espressioni con addizioni algebriche e moltiplicazioni Se nell espressione non figurano parentesi si eseguono prima le moltiplicazioni e poi le somme algebriche. Se nell espressione compaiono le parentesi, si eseguono le operazioni contenute in esse, iniziando dalle parentesi più interne = = = = = = = = + = = = Divisione di due numeri relativi Il quoziente di due numeri relativi è uguale al prodotto del primo numero per il reciproco del secondo. REGOLA DEI SEGNI : = = diviso + = + diviso = + + diviso = diviso + = Espressioni algebriche con le quattro operazioni Per calcolare il valore diun espressione algebrica contenente le quattro operazioni con i numeri relativi si procede come segue: si eseguono prima le moltiplicazioni e le divisioni nell ordine in cui sono indicate poi si eseguono le addizioni algebriche. 5

6 : : = : = : = = 15 : : = 16 : = = 16 : 16 : ( 1) = = = = = 1 1 Potenza di numeri relativi La potenza di un numero relativo è il prodottodi tanti fattori uguali alla base quante sonole unità dell esponente. a n = a a a a a a n volte Per calcolare la potenza di un numero relativo basta ricordare che una potenza è un prodotto di 4 fattori uguali: = 16 = + 81 La potenza di un numero positivo è un numero positivo. La potenza di un numero negativo è un numero positivo se l esponente è pari, un numero negativo se l esponente è dispari. In conclusione possiamo affermare che la potenza di un numero relativo è un numero negativo solo quando la base è negativa e l esponente è dispari. In tutti gli altri casi è un numero positivo. Potenza con esponente intero negativo La potenza di un numero relativo con esponente intero negativo è la frazione che come numeratore il numero 1 e come denominatore la stessa potenza con esponente positivo: a n = 1 n a = = ( ) = = = 7 7 ( ) = = =+ =

7 Calcola il valore delle seguenti espressioni [ 1 ] [ 7 ] 7

8 8

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme

Dettagli

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra due numeri naturali ci ha portati a vedere la frazione

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze) Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è

Dettagli

L INSIEME DEI NUMERI RELATIVI

L INSIEME DEI NUMERI RELATIVI L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

L insieme dei numeri Relativi

L insieme dei numeri Relativi L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali} GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI

I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI ALGEBRA I NUMERI RELATIVI PREREQUISITI l conoscere le proprietaá delle quattro operazioni con i numeri naturali e saperle applicare l svolgere calcoli con le frazioni CONOSCENZE gli insiemi Z, Q, R la

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI

CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI CAPITOLO I NUMERI RELATIVI E GLI INSIEMI NUMERICI VIDEO SETTIMANA DA CASSIERE PRIMA DI COMINCIARE GUARDA! IL VIDEO Robert lavora alla cassa di un negozio e a fine giornata deve vedere dagli scontrini quanto

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

I numeri relativi e gli insiemi numerici

I numeri relativi e gli insiemi numerici Capitolo algebra I numeri relativi e gli insiemi numerici E nella tua lingua? Italiano Inglese Francese Tedesco Spagnolo Insieme Z dei numeri interi N Z Set Z of integers Ensemble Z des nombres entiers

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

SEGNO DIVERSO - VALORE ASSOLUTO DIVERSO SEGNO DIVERSO - STESSO VALORE ASSOLUTO

SEGNO DIVERSO - VALORE ASSOLUTO DIVERSO SEGNO DIVERSO - STESSO VALORE ASSOLUTO SCHEDA DI LAVORO: I NUMERI RELATIVI CARATTERISTICHE DEI NUMERI RELATIVI I NUMERI RELATIVI COMPRENDONO TUTTI I NUMERI POSITIVI, TUTTI I NUMERI NEGATIVI E LO ZERO OGNI NUMERO INTERO RELATIVO È FORMATO DA

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

I numeri reali sulla retta e nei calcoli. Daniela Valenti, Treccani scuola

I numeri reali sulla retta e nei calcoli. Daniela Valenti, Treccani scuola I numeri reali sulla retta e nei calcoli Daniela Valenti, Treccani scuola 1 Un video per esplorare il tema Dove si trovano i numeri reali? Guardiamo un breve video per trovare le prime risposte I numeri

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza e quando si calcola non si dice fare la radice, ma si dice estrarre la radice. Le particolarità della radice sono: l esponente

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA Esercizi di ripasso 1. 4 5>0 4>5 > : > 2. 4 5>0 +3 0 > 3 > : 3 Soluzione

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

I Numeri Interi Relativi

I Numeri Interi Relativi I Numeri Interi Relativi Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si

Dettagli

Per esempio se doveste scrivere 2 moltiplicato per se stesso 5 volte, sarebbe scomodissimo scrivere ogni volta

Per esempio se doveste scrivere 2 moltiplicato per se stesso 5 volte, sarebbe scomodissimo scrivere ogni volta POTENZE Le potenze sono moltiplicazioni ripetute, individuate da due numeri detti base ed esponente. Scriverean, ossia elevare il numero a (la base) a potenza con esponente n, significa moltiplicare la

Dettagli

Progetto Matematica in Rete - Numeri interi - I numeri interi

Progetto Matematica in Rete - Numeri interi - I numeri interi I numeri interi Con i numeri naturali non sempre è possibile eseguire l'operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per esempio non

Dettagli

MATEMATICA LEZIONE 15 I MONOMI. (Prof. Daniele Baldissin) Un MONOMIO è il PRODOTTO di più FATTORI rappresentati da NUMERI e LETTERE.

MATEMATICA LEZIONE 15 I MONOMI. (Prof. Daniele Baldissin) Un MONOMIO è il PRODOTTO di più FATTORI rappresentati da NUMERI e LETTERE. MATEMATICA LEZIONE 15 ARGOMENTI 1) Definizione di monomio 2) Riduzione in forma normale 3) Monomi simili, interi e frazionari 4) Grado di un monomio I MONOMI (Prof. Daniele Baldissin) Un MONOMIO è il PRODOTTO

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

1 La frazione come numero razionale assoluto

1 La frazione come numero razionale assoluto 1 La frazione come numero razionale assoluto DEFINIZIONE. La frazione che dà origine ad un numero decimale si dice frazione generatrice. Consideriamo le frazioni e determiniamo i corrispondenti valori

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

è impossibile (*) per x = -25 e per x = -5

è impossibile (*) per x = -25 e per x = -5 Calcolo letterale Calcolo letterale (UbiMath) - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto a un restrittivo esempio numerico

Dettagli

L insieme dei numeri relativi

L insieme dei numeri relativi SCUOLA MEDIA DELLA REPUBBLICA DI SAN MARINO CIRCOSCRIZIONE 1 A A.S. 2002-2003 COOPERATIVE-LEARNING IN MATEMATICA L insieme dei numeri relativi Progettazione e realizzazione di un modulo didattico organizzativo

Dettagli

Gli insiemi numerici. Operazioni e loro proprietà

Gli insiemi numerici. Operazioni e loro proprietà Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Scheda per il recupero 1

Scheda per il recupero 1 A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA

TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA TORINO, FEBBRAIO 2012 COMPENDIO DI ALGEBRA di BART VEGLIA 1 2 1.1 I NUMERI E LE OPERAZIONI CON ESSI Comprendono i numeri assoluti, i frazionari, i relativi, i razionali, gli irrazionali, i reali, gli immaginari,

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli

CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE UNITÀ. DISEQUAZIONI ALGEBRICHE. Generalità e definizioni sulle diquazioni algebriche.. Diquazioni di primo grado.. Diquazioni di condo grado.. Diquazioni di grado superiore al condo.. Diquazioni fratte.

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

1.2f: Operazioni Binarie

1.2f: Operazioni Binarie 1.2f: Operazioni Binarie 2 18 ott 2011 Bibliografia Questi lucidi 3 18 ott 2011 Operazioni binarie Per effettuare operazioni è necessario conoscere la definizione del comportamento per ogni coppia di simboli

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a e b si dicono TERMINI del rapporto e il primo

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie Unità Didattica N 07 Le equazioni di primo grado ad una incognita 6 U.D. N 07 Le equazioni di primo grado ad una incognita 0) Identità ed equazioni 0) Equazione di primo grado ad una incognita 0) Equazione

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

MONOMI. In ogni monomio si distingue il coefficiente numerico e la parte letterale

MONOMI. In ogni monomio si distingue il coefficiente numerico e la parte letterale CALCOLO LETTERALE MONOMI E POLINOMI MONOMI In ogni monomio si distingue il coefficiente numerico e la parte letterale Il coefficiente numerico è il numero che è davanti al monomio e può essere 1 o anche

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

FRAZIONI e NUMERI RAZIONALI

FRAZIONI e NUMERI RAZIONALI FRAZIONI e NUMERI RAZIONALI Frazioni Come per i numeri naturali, anche per gli interi relativi si definisce l'operazione di divisione come operazione inversa della moltiplicazione: Divisione di numeri

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

5 + 8 = 13 5,2 + 8,4 = 13,6

5 + 8 = 13 5,2 + 8,4 = 13,6 concetto di addizione i termini dell addizione sono gli addendi il risultato è la somma addendo addendo 5 + 8 = 13 somma 5,2 + 8,4 = 13,6 proprietà commutativa se cambio l ordine degli addendi il risultato

Dettagli

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3. UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..

Dettagli

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE 6.1 Le proporzioni. Problemi del tre semplice e del tre composto Se consideriamo 4 numeri a, b, c, d; con b e d diversi da zero, essi formano una proporzione

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

5 10 : : 5 = 5 10 : ( ): 5 = 5 10 : (5 3. (5 2 : 5 ))= 5 10 ( : 5) = 5 10 : ( : 5) =

5 10 : : 5 = 5 10 : ( ): 5 = 5 10 : (5 3. (5 2 : 5 ))= 5 10 ( : 5) = 5 10 : ( : 5) = 6 7 7 2 7 6 7 = 7 7 3 7 7 0 = (7 7 3 ) (7 0 7) = 7 (7 3 7) 0 7 = 7 + 7 3 +7 0 + 7 = 5 10 : 5 3 5 2 : 5 = 5 10 : (5 3 5 2 ): 5 = 5 10 : (5 3. (5 2 : 5 ))= 5 10 ( 5 3 5 2 : 5) = 5 10 : (5 3 5 2 : 5) = 7

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

LE OPERAZIONI CON I NUMERI

LE OPERAZIONI CON I NUMERI ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

NUMERATORE dice quante sono le parti che sono state prese LINEA DI FRAZIONE

NUMERATORE dice quante sono le parti che sono state prese LINEA DI FRAZIONE FRAZIONI FRAZIONI La parola frazione nel linguaggio comune indica una parte di qualcosa, ad esempio di un Comune. In MATEMATICA una FRAZIONE è un NUMERO che indica una o più parti in cui è stata SUDDIVISA

Dettagli

Programma di matematica classe I sez. B a.s

Programma di matematica classe I sez. B a.s Programma di matematica classe I sez. B a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri

Dettagli