Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Numeri relativi: numeri il cui valore dipende dal segno che li precede."

Transcript

1 . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri positivi è quasi sempre sottinteso: 4 vuol dire + 4) - 3 è un numero negativo, cioè minore di 0, perché preceduto dal segno. Z = insieme degli interi : comprende numeri interi sia positivi che negativi. Q = insieme dei razionali : comprende numeri razionali sia positivi che negativi I = insieme degli irrazionali : comprende numeri irrazionali sia positivi che negativi L'unione di Q e I forma l'insieme R dei numeri reali REALI Irrazionali Razionali interi 3, , decimali periodici limitati - 2 = -0,6 2 = 0,4 3 5 = 0,6-7 = -,7 6 0 Valore assoluto o modulo: parte numerica senza considerare il segno. Il valore assoluto si indica con. Esempi : + 4 = 4 ; -7 = 7 Numeri concordi: hanno stesso segno. Es. : + 3 e + 7; - 4 e - 6 Numeri discordi: hanno segno diverso. Es. : +2 e - 8 Numeri opposti: hanno segno diverso e stesso valore assoluto. Es. + 3 e -3

2 CONFRONTO DI NUMERI RELATIVI. Sulla retta dei numeri i negativi sono tutti a sinistra dello 0 e i positivi tutti a destra dello 0. I numeri opposti sono da parti opposte rispetto allo Per confrontare tra di loro i numeri relativi devo ricordare che i numeri crescono da sinistra verso destra: il numero minore è quello che sta più a sinistra. Di conseguenza: ogni numero negativo è minore dello 0 e di tutti i numeri positivi: -20 < 0 < 7 tra due numeri positivi è maggiore quello che ha valore assoluto maggiore: 76 > 22 tra due numeri negativi è maggiore quello che ha valore assoluto minore: - 2 > LE QUATTRO OPERAZIONI FONDAMENTALI Addizione e Sottrazione (Somma algebrica). Numeri concordi: i valori assoluti si SOMMANO e il segno resta lo stesso = - ; in pratica si calcola e il segno resta = + 6 ; in pratica si calcola e il segno resta + 2. Numeri discordi: i valori assoluti si SOTTRAGGONO e il segno è quello del numero con il valore assoluto maggiore = + 5 ; in pratica si calcola 8-3 e il segno è + perchè il valore assoluto maggiore è del numero positivo = - 8; in pratica si calcola 2-4 e il segno è - perchè il valore assoluto maggiore è del numero negativo - 2. tutte le eventuali proprietà delle operazioni (commutativa, associativa, dissociativa, invariantiva) restano immutate. 2. le regole di sopra si applicano identiche per i numeri razionali. es = 3+2 = 4 4

3 Moltiplicazione e Divisione Il prodotto (o il quoziente) di due numeri relativi è un numero che ha: valore assoluto dato dal prodotto (o dal quoziente) dei valori assoluti segno + sei i due numeri sono concordi oppure segno se i numeri sono discordi Esempi: concordi positivi: (+ 5) x (+ 3) = + 5 (+ 5) : (+ 3) = + 5 concordi negativi: (- 5) x (- 3) = + 5 (- 5) : (- 3) = + 5 discordi: (- 5) x (+ 3) = (+ 3) x (- 5) = - 5 (- 5) : (+3) = (+5) : (-3)= - 5 Tabella riassuntiva: x ( : ) tutte le eventuali proprietà delle operazioni (commutativa, associativa, dissociativa, distributiva, invariantiva) restano immutate 2. le regole di sopra si applicano identiche per i numeri razionali. Esempi: = = 3 8 ; 3 4 : 2 = 3 4 2= = PROPRIETA DISTRIBUTIVA DELLA MOLTIPLICAZIONE. RACCOGLIMENTO A FATTOR COMUNE Da sinistra a destra Proprietà distributiva - 3 ( ) = ( -3 ) 5 + (- 3) (- 7) + (-3) 2 = = 0 Da destra a sinistra Raccoglimento a fattor comune esempio : = (- 4 5) + (3 5) + (-6 5 ) = 5 ( ) esempio 2: = ( - 7) Nessun fattore comune ai tre numeri. Non si può raccogliere.

4 2. USO DEI SEGNI E PARENTESI Il + NON cambia i segni: quando ho il + davanti alle parentesi, posso eliminare le parentesi e i segni dei numeri all'interno delle parentesi NON cambiano. è una conseguenza della proprietà distributiva e delle regole della moltiplicazione: davanti alla parentesi c'è il numero + che moltiplica i numeri nella parentesi 3 + ( ) = 3 + x ( ) = 3 + x (+ 4) + x (- 2) + x (+4) = = = + 2 Il - CAMBIA i segni: quando ho il davanti alle parentesi, posso eliminare le parentesi e i segni dei numeri all'interno delle parentesi SI INVERTONO. è una conseguenza della proprietà distributiva e delle regole della moltiplicazione: davanti alla parentesi c'è il numero - che moltiplica i numeri nella parentesi 3 ( ) = 3 x ( ) = 3 + (-) x (+ 4) + (-) x (- 2) + (-) x (+4) = = = 5 4. POTENZA ESPONENTE POSITIVO Come conseguenza delle regole della moltiplicazione si ha che: base positiva potenza sempre positiva esempi: (+3) 2 = (+ 3) (+ 3) = + 9 ; (+2) 3 = (+2) (+ 2) (+ 2) = (+4) (+ 2) = + 8 base negativa potenza positiva con esponente pari potenza negativa con esponente dispari esponente pari: (- 3) 2 = (-3) (- 3) = + 9 ; (- 2) 4 = (-2) (- 2) (- 2) (- 2) = (+4) (+ 4) = + 6 esponente dispari: (-3) 3 = (-3) (- 3) (- 3)= (+9) (- 3) = le proprietà delle potenze restano invariate. 2. le regole di sopra si applicano identiche per i numeri razionali. es. ( 3 4 ) 2 = ( 3 4 ) ( 3 4 ) = 9 6

5 es. ( 3 4 ) 3 = ( 3 4 ) ( 3 4 ) ( 3 4 ) = 9 6 ( 3 4 ) 27 = La radice quadrata di un numero positivo ammette due risultati opposti: es. 25=+5 o 5 perchè 5 5=25 e ( 5) ( 5 )=25 ESPONENTE NEGATIVO e NOTAZIONE SCIENTIFICA Una potenza con base diversa da 0 e con esponente negativo si trasforma in una potenza con base inversa ed esponente positivo. Esempi: ( 3 4 ) 2 = ( 4 3 ) 2 = 6 9 ; ( 2) 3 =( 2) 3 = 8 ; (2) 4 = ( 2) 4 = = ( 0) 3 = 000 =0,00 Con l'ultimo esempio possiamo capire che la notazione scientifica può essere usata non solo con potenze positive del 0 ma anche con potenze negative: Esempi: = 3 x = 3 x = 7,5 x = 7,5 x 0 5 0, = 3 x 0,00000 = = 3 x 0-6 0, = 7,5 x 0,0000= = 3 x 0-5 ricorda che nella notazione scientifica il numero che moltiplica la potenza del 0 deve essere maggiore di uno e minore di 0! le proprietà delle potenze restano valide anche con esponenti negativi la notazione scientifica serve a fare i conti più velocemente: 0,00003 x 0,002 =,3 x 0-5 x 2 x 0-3 =,3 x 2 x 0-5 x 0-3 = 2,6 x ( - 3) = = 2,6 x = 2,6 x 0-8

6 TABELLA RIASSUNTIVA OPERAZIONI OPERAZIONE REGOLA ESEMPI ADDIZIONE e SOTTRAZIONE NUMERI CONCORDI Segno: resta lo stesso Valori assoluti: si sommano ) = + 0 2) 4 = 5 3) = =+ 5 4) = = ADDIZIONE e SOTTRAZIONE NUMERI DISCORDI Segno: è quello del numero con il valore assoluto maggiore Valori assoluti: si sottraggono ) = 4 2) = + 7 3) = =+7 2 4) = = 0 MOLTIPLICAZIONE E DIVISIONE USO DEI SEGNI Segno: positivo se numeri concordi + + = + ; + : + = = + ; - : - = + negativo se numeri discordi + - = - ; + : - = + Valori assoluti: si moltiplicano o dividono Il + NON cambia i segni dei numeri nelle parentesi Il - INVERTE i segni dei numeri nelle parentesi ) + 3 (+ 7) = + 2 ; + 5 : (+ 3) = + 5 2) 2 ( 5) = + 0 ; 40 : ( 5) = + 8 3) 0 (+ 3) = 30 ; + 20 : ( 2) = 0 4) + 3 : ( ) =+ 3 ( =+ 4) 3 4 = ) 4 5 : ( 3 2) = 4 5 ( =+ 3) 5 3 = ) 2 3 : ( + 5 ) = (+5)= 3 3 = 2 5 ) 3 + ( ) = = 2) 3 ( ) = = + 5

7 POTENZA ESPONENTE POSITIVO base positiva potenza positiva base negativa : 2 casi. esponente pari: potenza positiva 2. esponente dispari: potenza negativa ) (+2) +3 =(+2) (+2) (+2 )=+8 2) ( + 3 ) +2 = ( + 3 ) ( + 3 ) =+ 9 3) ( 2 ) +2 =( 2) ( 2)=+4 4) ( 2) +3 =( 2 ) ( 2 ) ( 2)= 8 POTENZA ESPONENTE NEGATIVO Si trasforma in potenza con: base INVERSA esponente OPPOSTO ) (+2) 3 = ( + 2 ) +3 = + 8 2) ( 3 2) = ( 2 3) + = 2 3 3) ( 5) 2 =( 5 ) +2 =+25

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

L insieme dei numeri Relativi

L insieme dei numeri Relativi L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze) Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è

Dettagli

L INSIEME DEI NUMERI RELATIVI

L INSIEME DEI NUMERI RELATIVI L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri

Dettagli

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra due numeri naturali ci ha portati a vedere la frazione

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Conclusione? Verifica la proprietà commutativa per le altre operazioni.

Conclusione? Verifica la proprietà commutativa per le altre operazioni. Le proprietà delle operazioni.( teoria / esercizi pag. 15 24) Proprietà: Sono delle regole che permettono di svolgere dei calcoli più semplicemente. Operazioni: Tu conosci le operazioni numeriche:, 1)

Dettagli

MONOMI. In ogni monomio si distingue il coefficiente numerico e la parte letterale

MONOMI. In ogni monomio si distingue il coefficiente numerico e la parte letterale CALCOLO LETTERALE MONOMI E POLINOMI MONOMI In ogni monomio si distingue il coefficiente numerico e la parte letterale Il coefficiente numerico è il numero che è davanti al monomio e può essere 1 o anche

Dettagli

CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI

CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI CAPITOLO I NUMERI RELATIVI E GLI INSIEMI NUMERICI VIDEO SETTIMANA DA CASSIERE PRIMA DI COMINCIARE GUARDA! IL VIDEO Robert lavora alla cassa di un negozio e a fine giornata deve vedere dagli scontrini quanto

Dettagli

I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI

I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI ALGEBRA I NUMERI RELATIVI PREREQUISITI l conoscere le proprietaá delle quattro operazioni con i numeri naturali e saperle applicare l svolgere calcoli con le frazioni CONOSCENZE gli insiemi Z, Q, R la

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

SEGNO DIVERSO - VALORE ASSOLUTO DIVERSO SEGNO DIVERSO - STESSO VALORE ASSOLUTO

SEGNO DIVERSO - VALORE ASSOLUTO DIVERSO SEGNO DIVERSO - STESSO VALORE ASSOLUTO SCHEDA DI LAVORO: I NUMERI RELATIVI CARATTERISTICHE DEI NUMERI RELATIVI I NUMERI RELATIVI COMPRENDONO TUTTI I NUMERI POSITIVI, TUTTI I NUMERI NEGATIVI E LO ZERO OGNI NUMERO INTERO RELATIVO È FORMATO DA

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

Progetto Matematica in Rete - Numeri interi - I numeri interi

Progetto Matematica in Rete - Numeri interi - I numeri interi I numeri interi Con i numeri naturali non sempre è possibile eseguire l'operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per esempio non

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni

GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

I numeri reali sulla retta e nei calcoli. Daniela Valenti, Treccani scuola

I numeri reali sulla retta e nei calcoli. Daniela Valenti, Treccani scuola I numeri reali sulla retta e nei calcoli Daniela Valenti, Treccani scuola 1 Un video per esplorare il tema Dove si trovano i numeri reali? Guardiamo un breve video per trovare le prime risposte I numeri

Dettagli

ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA

ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ANNO SCOLASTICO 2016/2017 MATEMATICA CLASSE I SEZ. Az PROGRAMMA SVOLTO DALL INSEGNANTE Prof. Alessandro Di Marco Testo adottato: MATEMATICA.VERDE 1 LD 1.

Dettagli

I numeri relativi e gli insiemi numerici

I numeri relativi e gli insiemi numerici Capitolo algebra I numeri relativi e gli insiemi numerici E nella tua lingua? Italiano Inglese Francese Tedesco Spagnolo Insieme Z dei numeri interi N Z Set Z of integers Ensemble Z des nombres entiers

Dettagli

Rappresentazione numeri reali

Rappresentazione numeri reali Rappresentazione numeri reali I numeri reali rappresentabili in un calcolatore sono in realtà numeri razionali che approssimano i numeri reali con un certo grado di precisione Per rappresentare un numero

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

I Numeri Interi Relativi

I Numeri Interi Relativi I Numeri Interi Relativi Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

5 + 8 = 13 5,2 + 8,4 = 13,6

5 + 8 = 13 5,2 + 8,4 = 13,6 concetto di addizione i termini dell addizione sono gli addendi il risultato è la somma addendo addendo 5 + 8 = 13 somma 5,2 + 8,4 = 13,6 proprietà commutativa se cambio l ordine degli addendi il risultato

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali} GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

La tabella è completa perché l'addizione è un'operazione sempre possibile.

La tabella è completa perché l'addizione è un'operazione sempre possibile. Operazioni aritmetiche fondamentali in N Addizione Operazione che a due numeri (addendi) ne associa un terzo (somma) ottenuto contando di seguito al primo tante unità quante ne rappresenta il secondo.

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

Gli insiemi numerici. Operazioni e loro proprietà

Gli insiemi numerici. Operazioni e loro proprietà Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.

ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016. B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy;

I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; I POLINOMI Si chiama POLINOMIO la somma algebrica di più monomi interi Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; 8x 2 +11x+4 a 2 b 2 +4 b 3 I POLINOMI Ogni monomio che compone il polinomio

Dettagli

LE OPERAZIONI CON I NUMERI

LE OPERAZIONI CON I NUMERI ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá

Dettagli

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

1.2f: Operazioni Binarie

1.2f: Operazioni Binarie 1.2f: Operazioni Binarie 2 18 ott 2011 Bibliografia Questi lucidi 3 18 ott 2011 Operazioni binarie Per effettuare operazioni è necessario conoscere la definizione del comportamento per ogni coppia di simboli

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Numeri interi relativi

Numeri interi relativi 1 Numeri interi relativi Introduciamo dei numeri "dotati di segno" per risolvere dei problemi della vita quotidiana in cui una stessa grandezza può variare in due direzioni (meglio dire "due versi di percorrenza")

Dettagli

Scheda per il recupero 1

Scheda per il recupero 1 A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa

Dettagli

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3. UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..

Dettagli

Codifica di informazioni numeriche

Codifica di informazioni numeriche Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Codifica di informazioni numeriche Fondamenti di Informatica - Ingegneria Elettronica Leonardo Querzoni querzoni@dis.uniroma1.it

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base AREE QUADRATO Area = lato * lato lato = Area Area = diagonale * diagonale diagonale = Area : 2 2 RETTANGOLO Area = base * altezza base = area : altezza altezza = area : base TRIANGOLO Area = base * altezza

Dettagli

Per esempio se doveste scrivere 2 moltiplicato per se stesso 5 volte, sarebbe scomodissimo scrivere ogni volta

Per esempio se doveste scrivere 2 moltiplicato per se stesso 5 volte, sarebbe scomodissimo scrivere ogni volta POTENZE Le potenze sono moltiplicazioni ripetute, individuate da due numeri detti base ed esponente. Scriverean, ossia elevare il numero a (la base) a potenza con esponente n, significa moltiplicare la

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza e quando si calcola non si dice fare la radice, ma si dice estrarre la radice. Le particolarità della radice sono: l esponente

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

è impossibile (*) per x = -25 e per x = -5

è impossibile (*) per x = -25 e per x = -5 Calcolo letterale Calcolo letterale (UbiMath) - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto a un restrittivo esempio numerico

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

2. NUMERI INTERI RELATIVI

2. NUMERI INTERI RELATIVI 2. NUMERI INTERI RELATIVI 1. I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l'operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO. CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Codifica. Rappresentazione di numeri in memoria

Codifica. Rappresentazione di numeri in memoria Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per

Dettagli

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale?

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale? ) I Numeri Irrazionali. I BM pag. 6. Es. pag. 7-7 Un numero è detto irrazionale quando è non possibile definirlo sotto forma di frazione, non ammette dunque una rappresentazione decimale finita o periodica.

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

PROGRAMMA a.s CLASSE 1 O

PROGRAMMA a.s CLASSE 1 O N. ORE SVOLTE : 123 CLASSE 1 O 1) MATEMATICA.VERDE A- I NUMERI di M. Bergamini, A. Trifone, G. Bororzzi. 2) MATEMATICA.VERDE C-IL CALCOLO LETTERALE di M. Bergamini, A. Trifone, G. Bororzzi. GLI INSIEMI

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli