Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE"

Transcript

1 Nuova Forza La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Come Agisce? Può essere attrattiva Un metallo (la magnetite) attira a sé la limatura di ferro, acciaio e di altri (particolari) metalli Può essere sia attrattiva che repulsiva Gli estremi di due pezzi di magnetite si attraggono o si respingono Può indurre un momento di rotazione Un elemento di magnetite fa cambiare orientamento ad una sottile lamina di magnetite in equilibrio su una punta o sospesa con un filo Elettromagnetismo - Cap. XXIII Cutnell 48

2 Per ottenere due magneti da un magnete è sufficiente spezzarlo in due pezzi. Frantumando, non importa quanto finemente, un magnete ottengo tanti piccoli magneti A tutt oggi non è stato ancora possibile costruire un magnete che sia solo attratto o solo respinto da un altro magnete A tutt oggi non è stato ancora possibile ottenere un polo magnetico (nord o sud) isolato (monopolo magnetico) L elemento piu semplice che genera un campo magnetico è quindi una sbarrettina di dimensione infinitesime (o in prima approssimazione un ago magnetizzato) Dipolo Magnetico Si definisce dipolo magnetico la sorgente più semplice di campo magnetico. Il dipolo magnetico è l equivalente del dipolo elettrico Dipolo Elettrico Dipolo Magnetico Elettromagnetismo - Cap. XXIII Cutnell 49

3 Campo Magnetico In analogia a quello che si è fatto nel caso gravitazionale ed elettrostatico si ipotizza quindi la presenza di un campo di tipo magnetico generato dalla terra o da una calamita responsabile delle forze e/o rotazioni osservate sperimentalmente. Nota: Questa volta, diversamente che nel caso elettrico o gravitazionale, non partiamo neanche più dalla forza, ma direttamente dal campo. A partire dal campo verrà trovata la forza. Per misurare la presenza di un campo magnetico si utilizza un ago magnetizzato (una piccola bussola) con attrito trascurabile. La direzione del campo magnetico sarà quella in cui si orienta la bussola sonda. Ponendo la bussola in punti differenti sono in grado di disegnare le linee di campo magnetico Elettromagnetismo - Cap. XXIII Cutnell 50

4 Magnete Permanente - Dipolo Magnetico - Magnete Permanente curvato ad U Elettromagnetismo - Cap. XXIII Cutnell 51

5 Sperimentalmente si verifica anche che: Il campo magnetico è generato non solo dai magneti ma anche da fili percorsi da corrente Un filo percorso da corrente fa cambiare orientamento ad una sottile lamina di magnetite in equilibrio su una punta o sospesa con un filo Un pezzo di magnetite fa cambiare orientamento ad un circuito percorso di corrente Due fili percorsi da corrente subiscono una forza attrattiva o repulsiva in dipendenza dalla direzione della corrente che vi circola Elettromagnetismo - Cap. XXIII Cutnell 52

6 Circuito percorso da corrente - Dipolo magnetico - Filo rettilineo percorso da corrente Elettromagnetismo - Cap. XXIII Cutnell 53

7 Campo di un dipolo magnetico Il campo creato da una sbarrettina infinitesima o da un circuito di dimensioni infinitesime si dice campo di dipolo magnetico in analogia al campo creato da un dipolo elettrico. Campo di un dipolo elettrico Con il rosso è indicato il campo elettrico, con il giallo il potenziale Elettromagnetismo - Cap. XXIII Cutnell 54

8 Forza Magnetica Per misurare la forza indotta da un campo magnetico uso ancora un ago magnetizzato dove però il filo che sostiene l ago risulta avere una resistenza costante alla torsione. Dalla misura della torsione dell ago posso avere una stima quantitativa della forza indotta da un campo magnetico Sperimentalmente si verifica che: La forza diminuisce con la distanza dall oggetto La forza può essere attrattiva o repulsiva In alcuni casi la forza non è diretta lungo la congiungente i due corpi (p.es. Un filo percorso da corrente ed un ago magnetizzato) La forza dipende dall orientamento della bussola Essa è massima quando l ago è posto perpendicolarmente alle linee di B Essa è nulla quando l ago è posto parallelamente alle linee di B Un ago magnetizzato immerso in un campo magnetico B subisce una forza il cui momento è pari a M =µ B Il vettore µ è un vettore detto momento magnetico, esso è intriseco del materiale che costituisce l ago ed ha la direzione dell ago ed il verso pari alla direzione polo nord-polo sud Ogni calamita ha un suo momento magnetico intrinseco µ Elettromagnetismo - Cap. XXIII Cutnell 55

9 L origine del Campo Magnetico Perché oggetti estremamente diversi come la magnetite, certi metalli e fili percorsi da corrente sono tutti soggetti alla forza magnetica? Un filo percorso da corrente Cariche elettriche in movimento Materia Sistemi costituiti da cariche in moto Il Campo Magnetico è generato da cariche in movimento cariche in movimento sono soggette a forze dovute al Campo Magnetico Nei magneti permanenti la somma di tutte le correnti elettriche dovute al moto degli elettroni non risulta nulla (come invece capita negli altri materiali) così che viene generato un campo magnetico NON Magnete Magnete Elettromagnetismo - Cap. XXIII Cutnell 56

10 - Magnetismo - La forza magnetica si dovrà rappresentare come un vettore (esattamente come per la forza di gravità e la forza di Coulomb) cioè con un modulo che indicherà l intensità della forza una direzione che indicherà la direzione lungo la quale agisce la forza un verso che indicherà il verso lungo il quale agisce la forza Ho definito sperimentalmente il vettore campo magnetico che indico con B Otterrò sperimentalmente Il legame tra B ed la forza magnetica F La direzione di B relativamente a F Il verso di B relativamente ad F L esperimento deve essere il più semplice possibile Una particella di carica Q La particella è in moto rettilineo uniforme La sua velocità è v costante in direzione, verso e modulo Una regione di spazio ove il vettore B è costante Se la particella subisce una forza osserverò (dalle leggi di Newton): Una variazione della velocità (cioè una accelerazione o una decelerazione) Una variazione della direzione di moto (una deflessione) Dalla misura sistematica di questi effetti ricavo una legge generale Elettromagnetismo - Cap. XXIII Cutnell 57

11 Esperimento: v F Cosa osservo? La forza agisce ortogonalmente alla direzione della velocità Se aumento la carica q la forza aumenta linearmente -----> Se B 0 allora anche F > Se v 0 allora anche F 0 linearmente > F Q F B F v A parità di v e B la forza che agisce dipende dalla direzione di moto Esiste una direzione ove F = 0 Esiste una direzione ove F è massima Detto θ l angolo tra la direzione ove F=0 e la direzione attuale F v sen( θ ) L energia cinetica totale della particella non varia La particella non accelera ne decelera in modulo Se la particella devia, il modulo di v rimane però costante Allora la forza magnetica non lavora!!!!! F = q v B Forza di Lorentz Elettromagnetismo - Cap. XXIII Cutnell 58

12 Vettore Induzione magnetica B Data una carica q che si muova con velocità v in un campo magnetico B (orientato di θ rispetto a v) che subisce una forza F. Si definisce il vettore B di induzione magnetica il vettore che ha per direzione quella ortogonale a v ed F, verso quello della regola della mano destra e modulo pari a: B = q v F sin( θ ) Nota: La definizione di direzione e verso è perfettamente coerente con quella precedentemente data con l ago magnetizzato. La direzione è cioè quella determinata dall orientamento di un ago magnetizzato ed il verso quello che va dal polo nord al polo sud del magnete. La regola della mano destra vale nel caso della forza di lorentz e in tutti i casi compare un prodotto vettoriale Elettromagnetismo - Cap. XXIII Cutnell 59

13 Unità di Misura Ovviamente la forza magnetica si misura in Newton (come ogni altra forza) Il campo magnetico si misura in Tesla T una vecchia unità di misura è il Gauss G 1 G = 10-4 T [T] = [N][s]/([C][m]) Un Tesla è il campo magnetico necessario affinchè una carica di 1 coulomb con velocità pari a 1 m/s subisca una forza pari ad 1 Newton Campi Magnetici in Natura Sulla superficie di un nucleo T Sulla superficie di una Pulsar T In un Laboratorio Scientifico (per tempi brevi) T In un Laboratorio Scientifico (costante) T In una macchia solare... 2 T In prossimità di un magnete T In prossimità dell impianto elettrico di casa T Sulla Terra T Nello spazio intergalattico T In una camera antimagnetica schermata T Elettromagnetismo - Cap. XXIII Cutnell 60

14 Moto di una particella carica in un campo magnetico E data una particella di carica Q in moto rettilineo uniforme con velocità v che improvvisamente entra in un campo magnetico costante B ortogonale alla velocità v B v F lorentz Elettromagnetismo - Cap. XXIII Cutnell 61

15 La traiettoria finale della particella sarà di tipo elicoidale o, se la velocità della particella non ha componenti paralleli a B, di tipo circolare: Nel caso più semplice quindi, la forza di Lorentz agirà su questa particella deviandola in una traiettoria circolare v Campo magnetico entrante B v F F F v B Campo magnetico uscente R = raggio dell orbita w = velocità angolare f = frequenza F M r = = qvb mv qb F M f F c = F c ω = 2π v = m r 2 qb = 2πm La frequenza f (detta frequenza di ciclotrone) non dipende dalla velocità iniziale della carica Le particelle veloci si muoveranno in orbite molto larghe le particelle lente in orbite molto strette Tutte però avranno lo stesso periodo di rotazione Elettromagnetismo - Cap. XXIII Cutnell 62

16 La traiettoria di una particella carica in una carica a bolle in un campo magnetico La traiettoria di un fascio di elettroni in un campo magnetico Elettromagnetismo - Cap. XXIII Cutnell 63

17 Filo percorso da corrente Un filo percorso da corrente può essere descritto come un insieme di cariche (gli elettroni) che si muovono (con velocità v costante) lungo il filo conduttore: In presenza di campo magnetico questi elettroni subiranno una forza (e di conseguenza il filo stesso) Ciascun elettrone subirà una forza pari a F = q v B La forza subita dal filo F tot sarà risultante di quella subita dai singoli elettroni F e F tot = i= 1, N F e = i= 1, N q e v e B Che per fili rettilinei di lunghezza l in cui passa una corrente i immersi in un campo magnetico B costante nello spazio diventa F tot = il B Elettromagnetismo - Cap. XXIII Cutnell 64

18 Per fili rettilinei di lunghezza l in cui passa una corrente i immersi in un campo magnetico B costante nello spazio diventa F tot = il B Un campo magnetico quindi tende a far orientare perpendicolarmente al compo magnetico stesso un circuito percorso da corrente Elettromagnetismo - Cap. XXIII Cutnell 65

19 Elettromagnetismo - Cap. XXIII Cutnell 66

20 Proprio come per un circuito, un campo magnetico su un ago magnetizzato induce un rotazione dell ago stesso fino a farlo allineare con B, in altre parole subisce un Momento M M =µ B Dove è µ una costante caratteristica del circuito stesso Principio di Equivalenza di Ampere L azione di un campo magnetico su un ago magnetizzato di momento magnetico µ è identica a quella su una spira piana di superficie S percorsa da un corrente i se M = µ B M = is n B Oppure: is = µ Il campo magnetico generato da una spira percorsa da corrente è identico a quello generato da un magnete di momento magnetico corrispondente Elettromagnetismo - Cap. XXIII Cutnell 67

21 Riassunto: La fenomenologia sperimentale del magnetismo associa oggetti a prima vista sensibilmente diversi (circuiti, magneti, metalli) L ipotesi che cariche in movimento generano un campo magnetico insieme all ipotesi atomica inizia ad unificare lo scenario La forza di Lorentz applicata nelle varie situazione unifica formalmente queste diverse facce del magnetismo Una volta che siamo in grado di calcolare/misurare la forza è possibile p risalire al modulo del vettore Campo Magnetico B (la direzione e verso la ottengo con un ago magnetico) Tuttavia: Sappiamo che le leggi della fisica sono identiche in tutti i sistemi inerziali (cioè in tutti i sistemi il cui moto relativo è rettilineo uniforme) Tuttavia un elettrone in movimento con velocità v (costante) genera un campo magnetico e subisce la forza di Lorentz mentre un elettrone fermo genera solo un campo elettrico. Due sistemi inerziali in moto tra loro osserverebbero l elettrone generare campi magnetici differenti e/o subire forze di Lorentz differenti. Quest assurdo non è risolvibile nell ambito della fisica classica, è necessaria la teoria della relatività ristretta per rimettere tutto a posto. Elettromagnetismo - Cap. XXIII Cutnell 68

22 Fili percorsi da Corrente Legge di Biot-Savart: Un filo rettilineo percorso da una corrente di intensità i produce un campo di induzione magnetica circolare attorno all asse del filo di intensità: B = µ 0 2π i r B µ 0 i r = 2 2 π r Dove µ o = 4π 10-7 = [Volt][sec] / [ampere][metro] r = distanza radiale tra il filo ed il punto ove voglio calcolare B L intensità del campo magnetico decresce con la distanza L intensità del campo magnetico aumenta con l intensità di corrente Prima formula di Laplace Qualsiasi sistema che generi un campo magnetico può quindi essere visto come un insieme di cariche in movimento. Utilizzando il Principio di sovrapposizione è possibile formulare una relazione generale, detta prima formula di Laplace, per il calcolo del vettore Induzione Magnetica B µ 0 dl r db = 3 4 π r i l intensità di corrente che passa sul filo dl rappresenta il segmento infinitesimo di filo percorso da corrente r la distanza tra il segmento dl ed il punto ove voglio calcolare B i i dl r B?? Elettromagnetismo - Cap. XXIII Cutnell 70

23 Solenoide Il solenoide consiste in un avvolgimento cilindrico di filo conduttore ove la lunghezza sia molto maggiore del raggio di base. All interno di un solenoide il campo magnetico è rettilineo e costante, al suo esterno è in pratica nullo. B = nµ o i n numero di avvolgimenti per m µ o = 4π 10-7 = [Volt][sec] / [ampere][metro] Come nel caso del campo elettrico con il condensatore, il solenoide è sperimentalmente molto importante in quanto permette di creare un campo magnetico rettilineo, costante e confinato nello spazio, facilmente regolabile dall esterno. (p.es. Nella NMR si entra all interno di un solenoide) Elettromagnetismo - Cap. XXIII Cutnell 71

24 Esempio alla lavagna: Ordini di grandezza sui magneti Elettromagnetismo - Cap. XXIII Cutnell 72

25 Campo Elettrostatico e Campo magnetostatico L esempio della carica in moto + relatività ristretta indicano che devono essere in qualche modo parenti in quanto si trasformano uno nell altro Campo Elettrostatico Campo Magnetostatico Ho due cariche elettriche fisicamente separabili Ho due poli fisicamente NON separabili Non esiste il Monopolo magnetico Le linee di campo iniziano e finiscono nelle cariche elettriche Le linee di campo sono sempre chiuse Una misura determina E univocamente Posso definire un potenziale U - E un campo conservativo - l E dl = 0 Una misura NON determina univocamente B Difficilmente potrò definire un potenziale - NON è un campo conservativo - Vale il principio di azione e reazione NON Vale il principio di azione e reazione Elettromagnetismo - Cap. XXIII Cutnell 73

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro:

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: Fenomeni magnetici VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: proprietà non uniforme nel materiale; si manifesta in determinate parti. campioni cilindrici (magneti) nei quali tale

Dettagli

Unità 8. Fenomeni magnetici fondamentali

Unità 8. Fenomeni magnetici fondamentali Unità 8 Fenomeni magnetici fondamentali 1. La forza magnetica e le linee del campo magnetico Già ai tempi di Talete (VI sec. a.c.) era noto che la magnetite, un minerale di ferro, attrae piccoli oggetti

Dettagli

DE MAGNETE. 1. Fino al 1820

DE MAGNETE. 1. Fino al 1820 DE MAGNETE 1. Fino al 1820 Che i magneti esistano lo sanno anche i sassi fin dai tempi dei greci. In particolare è assodato che: come accade per l elettricità, esistono anche due tipi di magnetismo; ciò

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Istituto di Istruzione Superiore LICEO SCIENTIFICO TECNOLOGICO L. da Vinci-De Giorgio LANCIANO

Istituto di Istruzione Superiore LICEO SCIENTIFICO TECNOLOGICO L. da Vinci-De Giorgio LANCIANO Istituto di Istruzione Superiore LICEO SCIENTIFICO TECNOLOGICO L. da Vinci-De Giorgio LANCIANO LABORATORIO DI FISICA ELETTROMAGNETISMO ALUNNO: Di Giuseppe Orlando CLASSE: V LSTA DATA: 23/01/2013 Docenti:

Dettagli

L ELETTROMAGNETISMO. Dr. Daniele Di Gioacchino Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

L ELETTROMAGNETISMO. Dr. Daniele Di Gioacchino Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati forza elettrica di Coulomb Campo elettrico L ELETTROMAGNETISMO Dr. Daniele Di Gioacchino Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati Campo magnetico Campo magnetico di un filo

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Interazioni di tipo magnetico

Interazioni di tipo magnetico INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico 1 Il campo magnetico In natura vi sono alcune sostanze, quali la magnetite, in grado di esercitare una forza

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Storia delle scoperte del campo magnetico

Storia delle scoperte del campo magnetico Storia delle scoperte del campo magnetico Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia VI secolo a.c. Talete osserva che la magnetite, un minerale composto al 72% di ferro, estratto

Dettagli

2. L unità di misura della costante k che compare nella legge di Coulomb è:

2. L unità di misura della costante k che compare nella legge di Coulomb è: Fatti sperimentali e loro descrizione fenomenologica 1 Vero o falso 2 Quesiti a risposta multipla 1. Si considerino due cariche elettriche, q 1 = +2 10 4 C e q 2 = 3 10 5 C, poste alla distanza d = 1,

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

FENOMENI MAGNETICI NATURALI

FENOMENI MAGNETICI NATURALI MAGNETISMO l Il magnetismo è una caratteristica di certi corpi, detti magneti, grazie alla quale essi esercitano una forza a distanza su sostanze come il ferro, attirandole. FENOMENI MAGNETICI NATURALI

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Incontriamo la Fisica: l Elettromagnetismo. Stefano Spagocci, GACB

Incontriamo la Fisica: l Elettromagnetismo. Stefano Spagocci, GACB Incontriamo la Fisica: l Elettromagnetismo Stefano Spagocci, GACB Le Prime Osservazioni I fenomeni elettrici e magnetici hanno sempre attirato l uomo. Tuttavia solo nell 800 si è colto il nesso tra le

Dettagli

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE Saper analizzare un fenomeno o un problema riuscendo ad individuare gli elementi significativi e le relazioni coinvolte,

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Misura del campo magnetico terrestre con le bobine di Helmholtz

Misura del campo magnetico terrestre con le bobine di Helmholtz Misura del campo magnetico terrestre con le bobine di Helmholtz Le bobine di Helmholtz sono una coppia di bobine con alcune caratteristiche particolari: hanno entrambe raggio ; hanno una lunghezza L molto

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

ELETTROTECNICA. Il magnetismo. Livello 12. Andrea Ros sdb

ELETTROTECNICA. Il magnetismo. Livello 12. Andrea Ros sdb ELETTROTECNICA Livello 12 Il magnetismo Andrea Ros sdb Livello 12 Il magnetismo Sezione 1 Massa magnetica La magnetite è un minerale di ferro esistente in natura che ha la proprietà di attirare il ferro

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

Magnetismo Interazione magnete-magnete

Magnetismo Interazione magnete-magnete Magnetismo Interazione magnete-magnete Oltre ai fenomeni elettrici, sono noti, fin dall antichità, anche dei fenomeni che coinvolgono prevalentemente il ferro ed i suoi minerali. Infatti molti materiali

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

La parola elettricità deriva da elektron, termine che gli antichi greci chiamavano una resina naturale,l ambra,dalla quale se strofinata con un

La parola elettricità deriva da elektron, termine che gli antichi greci chiamavano una resina naturale,l ambra,dalla quale se strofinata con un INDICE Elettrizzazione Carica elettrica e stato e elettrico Natura dell elettricità Conduttori e isolanti La corrente elettrica Le grandezze elettriche Correnti Volt Le leggi di Ohm Gli effetti della corrente

Dettagli

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

PROGRAMMAZIONE DISCIPLINARE

PROGRAMMAZIONE DISCIPLINARE Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Fenomeni magnetici fondamentali

Fenomeni magnetici fondamentali Fenomeni magnetici fondamentali 1. La forza magnetica e le linee del campo magnetico Già ai tempi di Talete (VI sec. a.c.) era noto che la magnetite, un minerale di ferro, attrae piccoli oggetti di ferro:

Dettagli

GAIALAB:INCONTRIAMO L AMBIENTE IN LABORATORIO

GAIALAB:INCONTRIAMO L AMBIENTE IN LABORATORIO LABORATORIO DI FISICA Le forze che governano la natura La forza ha carattere vettoriale, cioè caratterizzata da un intensità, una direzione e un verso oltre che da un punto di applicazione. Rappresentazione

Dettagli

Lezione 8. Campo e potenziale elettrici

Lezione 8. Campo e potenziale elettrici Lezione 8. Campo e potenziale elettrici Legge di Coulomb: Unitá di misura: F = 1 q 1 q 2 4πɛ 0 r 2 1 4πɛ 0 = 8.99 10 9 Nm 2 /C 2 Campi elettrici E = F/q 1 F = qe Unitá di misura del campo elettrico: [E]

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

campo magnetico Introduzione

campo magnetico Introduzione campo magnetico ntroduzione F i s i c a s p e r i m e n t a l e Si era detto: La forza elettrica è descritta dalla legge di Coulomb Tuttavia: La verifica sperimentale era fatta in condizioni statiche La

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 18 lezioni: 3 blocchi 5+1 Programma: Meccanica (Cinematica Dinamica Energia e lavoro) Termodinamica Elettricità Magnetismo Elettromagnetismo Ottica geometrica

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

INTRODUZIONE 11 INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 19

INTRODUZIONE 11 INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 19 INDICE INTRODUZIONE 11 SUGGERIMENTI PER AFFRONTARE LA PROVA A TEST 13 Bando di concorso e informazioni sulla selezione...13 Regolamento e istruzioni per lo svolgimento della prova...13 Domande a risposta

Dettagli

Programma di Matematica - 5A

Programma di Matematica - 5A Programma di Matematica - 5A U.D.1 U.D.2 U.D.3 U.D.4 Premesse all'analisi infinitesimale: Intervalli numerici limitati e illimitati, massimo e minimo, estremo superiore e inferiore. Punto di accumulazione

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Nome Cognome...Classe Data.. 1

Nome Cognome...Classe Data.. 1 Esercitazione in preparazione al compito di fisica 1 Una spira rettangolare di filo di rame di lati, rispettivamente, di 2,0 cm e 4,0 cm è percorsa da 0,5 ma di corrente e viene immersa in un campo magnetico

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni Elettrostatica I Forza di Coulomb Principio di Sovrapposizione Lineare Campo Elettrico Linee di campo Flusso, teorema di Gauss e sue applicazioni Conduttori Energia potenziale elettrostatica Elettricità

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

GENERATORI MECCANICI DI CORRENTE

GENERATORI MECCANICI DI CORRENTE GENERATORI MECCANICI DI CORRENTE IL MAGNETISMO Il termine deriva da un minerale del ferro: la magnetite (o calamita naturale), che ha la proprietà di attrarre alcuni metalli. Il campo magnetico è lo spazio

Dettagli

Componenti elettronici

Componenti elettronici A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016 Componenti elettronici Carlo Vignali, I4VIL Esempi di grandezze esprimibili con numeri reali esprimibili con numeri complessi

Dettagli

Il campo Magnitico e sue azioni

Il campo Magnitico e sue azioni Il campo Magnitico e sue azioni 1) Definizione operativa del campo magnetico Era nota sin dall antichità l esistenza di alcune sostanze in grado di esercitare delle azioni su piccoli pezzi di materiali

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli