ALCUNI ELEMENTI DI TEORIA DELLA STIMA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ALCUNI ELEMENTI DI TEORIA DELLA STIMA"

Transcript

1 ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale, la stma del parametro può essere espressa medate u uo valore stma putuale) desuto dal ampoe osderato oppure da u tervallo d valor stma tervallare) etro u, o u dato lvello d fdua, s rtee ada l valore vero del parametro θ della popolazoe Per Stmatore T d u parametro ϑ s tede ua statsta alolata sul ampoe meda ampoara X, varaza ampoara S, peretuale ampoara P, e) l u valore s hama stma Il valore della stmatore stma) vara orrspodeza del ampoe estratto Stma Putuale Stma putuale d ua meda La stma putuale d ua meda osste el valutare, per mezzo d u ampoe, l valore µ meda) della popolazoe Come stmatore s prede la meda ampoara X quato esso è uo orretto, osstete ed effete Ad X s assoa la sua devazoe stadard σ ello spazo ampoaro, detta errore medo d ampoameto o Errore Stadard ES): ES =, dove σ è la varaza della popolazoe L ES è versamete proporzoale alla rade quadrata della umerostà ampoara, maggore è e more è l'errore d ampoameto Stma putuale della varaza Uo stmatore orretto della varaza σ della popolazoe è: X X) S =, essedo X 1,X,,X ) l ampoe 1 Stma putuale d ua proporzoe Uo stmatore orretto d ua proporzoe π della X popolazoe è la frequeza relatva P = del ampoe, essedo X =1 oppure =0 a seoda se l eveto d u s vuole stmare la proporzoe s è verfato o meo La devazoe stadard della proporzoe ES) rsulta: p1 p) ES = 1) Stma Itervallare Ua volta ote le dstrbuzo d probabltà degl stmator putual de parametr d ua popolazoe, è possble studare la botà della stma ampoara d u parametro ogto Stma tervallare d ua meda S suppoga, ad esempo, d voler stmare l valor medo µ d ua popolazoe he s dstrbuse ormalmete o devazoe stadard σ = S effettua u ampoameto d = 36 osservazo dpedet È oto he questo aso lo stmatore X è ua varable aleatora dstrbuta ormalmete, 1 S rorda he, el aso d ampoameto da popolazoe fta d umerostà N, la formula dell errore stadard va orretta moltplado per l fattore N N 1 1

2 he ha valor medo µ e devazoe stadard σ = 1 3 Estratto u ampoe asuale, s potzz d aver otteuto u valore x = 13 8 per la meda ampoara Come s usa questa formazoe? Ua varable aleatora X dstrbuta seodo la ormale ha ua probabltà ota 1 α d trovars u tervallo etrato attoro al suo valor medo e d ampezza data par ad a: Rsolvedo rspetto a µ, s può ahe srvere: Prob µ a < X < µ a) = 1 α Prob X a < µ < X a) = 1 α *) he esprme l fatto he l tervallo asuale X a, X a) otee al suo tero la meda µ o probabltà par a 1 α S ottee, tal modo, u tervallo d fdua per la meda µ L approo lasso al problema è duque l seguete: fssato u valore d probabltà, ad esempo 1 α =095, s determa l valore a = a 095 modo he sa soddsfatta la *) Così faedo possamo affermare he l vero medo µ s trova, o probabltà 1 α = 95, ell tervallo X a, X a ) 0 95 Ua volta effettuato l ampoameto e alolato x = 13 8, l tervallo d ofdeza assoato a tale ampoe è 138 a, 138 a ) : ma o è orretto dre he la probabltà he µ ada tale tervallo è I realtà, vsto he la probabltà he la meda appartega a X a, X a ) è 095, s ha fdua 0 95 he l tervallo otteuto della meda ampoara x = 13 8 otega l valore vero e ogto della meda µ I term operatv ò sgfa he estraedo potetamete 100 ampo della stessa umerostà, s aspetta he per 95 d ess la meda µ appartega all tervallo x a 0 95, x a ) della meda x otteuta asu ampoe Il grado d fdua he s attrbuse alla stma è espresso dal lvello d probabltà 1 α, detto lvello d fdua Resta da alolare l valore d a 095 Per fare questo basta rordare l proedmeto d Z = X µ ) σ s dstrbuse seodo la stadardzzazoe d ua varable ormale La varable ) ormale stadard e la dsuguaglaza X a 095 < µ < X a è equvalete alla a 0 95 σ < z < a σ Qud s ha: a 095 = z σ, essedo z l valore della varable ormale stadard per u Prob-z < z < z ) = 095 I realtà l valore z detto valore rto) è tale he le due ode rspettvamete a destra d z e a sstra d z abbamo etrambe probabltà uguale a 1 095) / = 0 05, ossa del 5% Utlzzado la tabella della dstrbuzoe ormale stadard Appede Dspesa Dstrbuzoe Normale) s ottee he z 196 S può allora oludere o dat del ostro esempo he: l vero valore del valor medo µ s trova, o u lvello d ofdeza del 95%, ell tervallo / 9, / 9 ) 1315, 1445) S osserv he per og estrazoe d ampoe s ottee u tervallo d ofìdeza dverso Oguo d ess è u tervallo d ofdeza leto C è u modo u pò dverso d terpretare lo stesso alolo Seodo questo puto d vsta dremo he l valor medo µ appartee all tervallo appea ostruto al lvello d errore del 5% Questo sgfìa he se s assume he l valor medo appartee all tervallo s può ommettere u errore oè µ può ahe o apparteere all tervallo), ma la probabltà d sbaglare è solo del 5% Esempo1 S vuole stmare l vero valore medo µ dell urema ua popolazoe mashle; è oto he tale popolazoe la dspersoe dell urema è σ = 11 mg/dl S assume u lvello d ofdeza del 95%

3 S suppoga d estrarre u ampoe asuale d 40 soggett dalla popolazoe mashle, d determare l valore d urema per oguo de 40 soggett e d otteere u valore della meda par a 555 mg/dl L tervallo d ofdeza della meda al 95% è par a: *11/ 40, *11/ 40 ) 51, 589) Pertato l parametro ogto µ è ompero tra 51 e 589 e s ha quas la ertezza ofdeza del 95%) he ò è vero Naturalmete l affermazoe potrebbe ahe essere falsa fatt è ua probabltà del 5% he l tervallo o luda l parametro), ma s rtee he tale depreable evetualtà sa osì poo probable da o aptare Esempo S vuole stmare la pressoe arterosa PAS) d mash d età S è msurata la PAS a 36 uom ella fasa d età d teresse selezoat a aso a partre dalla lsta de pazet d u medo d base S è trovato he la PAS meda sul ampoe è par a 144 mmhg S potzz d oosere he σ = 40 mmhg S tede alolare l tervallo d ofdeza al 95% della PAS e stablre se la PAS meda de mash d età possa essere par a 150 mmhg L tervallo d ofdeza della meda al 95% è par a: *4/ 36, *4/ 36 ) 13616, 15184) Pertato la PAS meda è ompresa o u lvello d fdua del 95%) tra e 15164; pohé l valore 150 è ompreso ell tervallo esso è uo de valor plausble per la pressoe sstola Esempo3 I u ampoe d 11 uom estratt a aso da ua data popolazoe soo stat rlevat seguet valor d olesterolo mg/100ml): 65, 08, 361, 143, 310, 5, 39, 5, 184, 0, 33 Assumedo he l lvello d olesterolo abba dstrbuzoe ormale o σ = 65 mg/100ml, s vuole determare l tervallo d ofdeza al 99% per l valor medo del olesterolo ella popolazoe d rfermeto Utlzzado la tabella della dstrbuzoe ormale stadard Appede) s ottee he l valore z della varable ormale stadard per u Prob-z < z < z ) = 099 è par a 58 Osservato he l valore medo ampoaro è par a 49, u tervallo d ofdeza per la meda è: 49 ± 58 65/ ,9956 ) Se s effettua u ampoameto a partre da ua popolazoe dstrbuta ormalmete, ma d u s gora sa l valor medo he la devazoe stadard, s può proedere ome sopra semplemete sosttuedo la devazoe stadard ampoara s a quella della popolazoe σ e la dstrbuzoe t d Studet o opportu grad d lbertà) alla dstrbuzoe ormale stadard D osegueza, al posto de valor rt z, s avrao valor rt t, 1, dpedet questa volta o solo dalla probabltà he l tervallo deve avere d oteere l valor medo della popolazoe, ma ahe dalla dmesoe del ampoe S suppoga, ad esempo, d dsporre d u ampoe d 16 valor e d aver otteuto ua meda ampoara x = 3 e ua varaza ampoara s = 4 Per ostrure l tervallo d ofdeza al 95% per µ s deve sfruttare l fatto he la varable aleatora X µ ) s ) è dstrbuta seodo ua t d Studet o 1 = 15 grad d lbertà e he, qud, al 95% orrspode l valore rto t, 1 è par a t 0 95, 15 = 13 vedere tavola della dstrbuzoe t d Studet Appede alla Dspesa sul Campoameto per α =005) , , ovvero 1935, 4065) L tervallo d ofdeza è qud dato da ) Stma tervallare d ua frequeza o proporzoe Il problema della stma tervallare d ua frequeza relatva d ua modaltà d u arattere osste ell dvduazoe, sulla base d u ampoe, d u tervallo reale etro u l valore della frequeza ella popolazoe d rfermeto o oto) ada o u dato lvello d fdua Come stma putuale della frequeza relatva π della popolazoe s prede la frequeza relatva p del ampoe, quato stma orretta d π Per ostrure l tervallo d ofdeza per π oorre oosere la dstrbuzoe della frequeza relatva F ampoara P = Per ua umerostà ampoara abbastaza grade, P s dstrbuse seodo ua 3

4 π 1 π ) urva ormale o meda π e devazoe stadard DS P) = Pertato, attraverso l utlzzo della dstrbuzoe ormale stadard, può essere determata la probabltà he la frequeza relatva P π stadardzzata: Z = appartega ad u dato tervallo reale: -a, a) Se allora, s rleva ua DSP) frequeza relatva sul ampoe par a p, s può ostrure l tervallo d fdua per la frequeza relatva della popolazoe: s è fduos al 1 α)% he tale frequeza ada ell tervallo: p1 p) p1 p) p z < π < p z essedo z l valore della varable ormale stadard per u Prob-z < z < z ) = 1 α) Esempo I u ampoe asuale semple d 400 dvdu estratto da ua popolazoe d fumator, rsulta he 80 soo fort fumator fumao pù d u pahetto d sgarette al goro) S vuole stmare la proporzoe π d fort fumator ella popolazoe d rfermeto medate u tervallo d ofdeza al 95% Osservato he p = 80/400 = 0, α = 0 05 e z = 1 96, l tervallo d ofdeza è dato da: < π < ovvero: 016; 04) = 16%; 4%) QUESITI 1) I ua popolazoe d uom fartuat al moardo, l lvello d olesterolo medo è par a 40 mg/dl o ua devazoe stadard d 40 mg/dl Estraedo asualmete u ampoe d 100 soggett s è trovata ua meda d 35 mg/dl Qual è la probabltà he l lvello medo d olesterolo sa maggore o uguale a 60 mg/dl? Qual è l tervallo d ofdeza per la meda µ della popolazoe al lvello del 95%? Rsposte: Pr obx > 60) = Pr ob z > = P z > = Pz > 5) = 0 ; 40 / ± / ,484) ) L de d massa orporea BMI kg/m ) msura l grado d soprappeso d u soggetto Per la popolazoe d uom d mezza età he svlupperao dabete mellto, la dstrbuzoe d BMI ha forma approssmatvamete ormale o meda µ o ota è devazoe stadard σ =7 kg/m U ampoe asuale d 58 soggett selezoat da questo gruppo ha fatto regstrare ua meda d 5 kg/m Determare l tervallo d ofdeza al 99% per la meda della popolazoe d dabet Rsposta: 5 ± 58 7 / 58 41,59) 4

5 3) S suppoga d aver alolato l'tervallo d ofdeza al 95% della meda d ua popolazoe L'tervallo al 99% sarà pù grade o pù polo? 4) Il peso medo d u ampoe d 81 adult è rsultato par a 80 kg Sapedo he la devazoe stadard della popolazoe è par a 5, ostrure l'tervallo d ofdeza al 90% e 95% per la meda della popolazoe 5) L età meda d u gruppo d 10 studet he hao appea oseguto u dploma d laurea treale è a Costrure u tervallo d ofdeza al 95% per la meda della popolazoe degl studet srtt al orso d laurea sapedo he tale popolazoe s dstrbuse ormalmete o varaza par a 45 6) I u ampoe d 50 dvdu a u era stato sommstrato u vao at-fluezale, 35 dvdu otraggoo la malatta Calolare l'tervallo d ofdeza della proporzoe d dvdu ammalat 7) U omtato vuole stmare la proporzoe d persoe he utlzzao u persoal omputer Vegoo tervstate 370 persoe e s stablse he 14 d queste utlzzao u PC S determ la stma per tervall o ofdeza al 95% per la frequeza relatva d utlzzator d PC 8) Da ua popolazoe grade d studet è stato estratto u ampoe asuale o rsultat d tabella: Class d peso kg) Frequeza assoluta a) stmare la devazoe stadard de pes degl alu della suola; b) stmare, medate tervall d ofdeza ad u lvello d fdua del 95%, l peso medo degl alu della suola 5

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze Esercz d Statstca per gl studet d Sceze Poltche, Uverstà d Freze Esercz svolt da ua selezoe d compt degl Esam scrtt d Statstca del 999 e del 000 VERSIONE PROVVISORIA APRILE 00 A cura d L. Matroe F.Meall

Dettagli

Parte I (introduzione)

Parte I (introduzione) arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) L ertezza rappreseta geerale dbbo. Il dbbo ra la valdtà del rsltato d a msrazoe vee espresso medate l ertezza d msra. Iertezza d msra arametro,

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a Appareh d sollavameto A moto otuo: Nastr trasportator Sollevator a tazze Forze d erza lmtate; trastor d avvameto e arresto poo rlevat A moto dsotuo: Gru a torre Forze d erza rlevat Classfazoe appareh d

Dettagli

Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb

Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb dage Spermetale d Calrazoe del Metodo Comato Soe Maurzo Lez, Dalo ersar, oerta Zamr 3 Premessa Nell amto delle prove o dstruttve utlzzal per l otrollo opera del alestruzzo trova da tempo mpego l metodo

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

ammontare del carattere posseduto dalle i unità più povere.

ammontare del carattere posseduto dalle i unità più povere. Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Marco Riani - Analisi delle statistiche di vendita 1

Marco Riani - Analisi delle statistiche di vendita 1 ORARIO LEZIONI ANALISI DELLE STATISTICHE DI VENDITA Marco Ra mra@upr.t http://www.ra.t Mercoledì 3 aula Lauree Mercoledì 4 6 aula Lauree Govedì 3 Eserctazoe Semar? LIBRI DI TESTO Teora Ra M., Laur F. 8,

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

DISTRIBUZIONE DI STUDENT

DISTRIBUZIONE DI STUDENT Laboratoro d Fsca ( Meccaca e Termodamca a.a. 007/08 F.Balestra PICCOLI CAMPIONI. TET d TUDENT. INTERVALLI d CONFIDENZA: DITRIBUZIONE DI TUDENT 0.4 0. N N N5 N0 N5 N50 0. - 4-4 Itervall cofdeza P[ - μ

Dettagli

COMPLEMENTI ALLE SERIE

COMPLEMENTI ALLE SERIE COMPLEMENTI ALLE SERIE. Serie a termii i sego efiitivamete ostate Per ompletezza rihiamo il riterio el rapporto e ella raie, seza imostrarli... Teorema (Criterio el rapporto). Sia a ua suessioe a termii

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione Obettv Statstca Itroduzoe Scopo d quest lucd è d forre cocett base d statstca utl azeda per: la raccolta de dat, la progettazoe degl espermet, l terpretazoe de rsultat. Spazo d probabltà Spazo d probabltà:

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Metodi e Modelli di Programmazione Lineare

Metodi e Modelli di Programmazione Lineare Metod e Modell d Programmazoe Leare Massmo Paolu (paolu@dst.uge.t) DIS Uverstà d Geova La Programmazoe Leare (LP) Modello d programmazoe matemata ma f() s.t. X R vettore delle varabl desoal X seme delle

Dettagli

CAPITOLO 4. Struttura e potere di mercato

CAPITOLO 4. Struttura e potere di mercato CAPITOLO 4 Struttura e potere d merato 4.. Moopolo e potere d merato Quado ua mpresa può fluezare l prezzo he reve per l propro prodotto s de he ha u potere d moopolo, o potere d merato. U mpresa he ha

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA RISOLUZIONE ENO 0/005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA L ASSEMBLEA GENERALE, Vsto l artcolo paragrafo v dell

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Il disegno campionario per l indagine sul turismo delle isole Eolie. O. Giambalvo A.M. Milito

Il disegno campionario per l indagine sul turismo delle isole Eolie. O. Giambalvo A.M. Milito Il dsego campoaro per l dage sul tursmo delle sole Eole O. Gambalvo A.M. Mlto Struttura della presetazoe Obettv L dage campoara Le potes d lavoro L dage plota Il dsego campoaro Stratega campoara Alcu Rsultat

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI CORSO DI STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI Idce I PARTE Sezoe I... Probabltà classca. Il problema d Galleo della somma del puteggo d tre dad... 3. Aagramm d parole co lettere rpetute o meo.

Dettagli

Sono misure sintetiche che consentono il passaggio da una pluralità di informazioni a una sola modalità Nella famiglia delle medie si distinguono:

Sono misure sintetiche che consentono il passaggio da una pluralità di informazioni a una sola modalità Nella famiglia delle medie si distinguono: Marlea Pllat - Semar d Statsta (SVIC) "Le mede" Le mede Soo msure stethe he osetoo l passaggo da ua pluraltà d formazo a ua sola modaltà Nella famgla delle mede s dstguoo: mede lashe o d poszoe determate

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

«MANLIO ROSSI-DORIA»

«MANLIO ROSSI-DORIA» «MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

METODOLOGIA SPERIMENTALE IN AGRICOLTURA

METODOLOGIA SPERIMENTALE IN AGRICOLTURA METODOLOGIA SPERIMENTALE IN AGRICOLTURA LABORATORIO DI BIOMETRIA CON R (http://www.r-project.org/) APPUNTI DALLE LEZIONI (bozze Settembre 005) DOCENTE Adrea Oofr Dpartmeto d Sceze Agroambetal e della Produzoe

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia Tabelle Statstche Massmo Alfoso Russo Dpartmeto d Sceze Ecoomche, Matematche e Statstche Uverstà d Fogga STATISTICA I - 2009 - Fogga Cocett d base Serazoe Dat d tpo quattatvo. Sere Dat d tpo qualtatvo;

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

Ciclo di convezione sulle pareti con intecapedine

Ciclo di convezione sulle pareti con intecapedine Clo d ovezoe sulle paret o teapede Dalla tabella delle odubltà terma s ha per l ara l more k, pertato l mglore solameto o la peggore odubltà terma. Putroppo s geerao orret ovettve, he qud trasmetto l alore

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA.

CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA. TE11_st fb - 5/10/007 5/10/007 XI - 1 CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA. 11.1 - Itroduzoe. I geerale, parametr caratterstc d ua v.a. (che per o soo l suo valore medo e la sua varaza

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Problema della Ricerca

Problema della Ricerca Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta

Dettagli

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X Prof.ssa Emauela Baudo Fabrza De Berard VARIABILI ALEATORIE DISCRETE E DISTRIBUZIONI DI PROBABILITA Def. S dce varable aleatora dscreta X ua varable che può assumere valor X, X,... X corrspodet ad evet

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA aratoetta Rugger Dpartmeto d Sceze statstche e matematche S.Vaell Uverstà degl stud d Palermo Prefazoe Questa dspesa è stata creata per gl studet della Facoltà d Ecooma d Palermo

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1 ensor egnal Rumore - ro.. Cova - appello /06/011 1-1 ROBLEM 1 Quadro de dat egnale otto: rettangolare a durata T 00 µs; otenza ; lunghezza d onda λ 1 800 nm oppure λ 60 nm. p--n otododo n lo: oeente d

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli