Elettronica Circuiti nel dominio del tempo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettronica Circuiti nel dominio del tempo"

Transcript

1 Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano Elettronica Circuiti nel dominio del tempo 14 aprile 211 Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Contenuto 1 Segnali nel dominio del tempo 2 Segnali analogici e segnali digitali 3 Segnali periodici: periodo e frequenza 4 Valor medio e valore efficace 5 Energia interna di un bipolo 6 Potenza istantanea 7 Capacità 8 Induttanza Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 1

2 Programma parte 3 3 Analisi di circuiti nel dominio del tempo. a. Segnali analogici e segnali digitali. b. Segnali continui e segnali campionati. c. Segnali periodici; periodo e frequenza. d. Condensatore. e. Induttore. f. Energia immagazzinata. g. Potenza istantanea e potenza media. h. Analisi nel dominio del tempo. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Segnali nel dominio del tempo Una grandezza elettrica che varia nel tempo secondo una legge determinata costituisce un segnale. I segnali possono essere di tensione oppure di corrente, a seconda che la grandezza elettrica che ci interessa sia una tensione o una corrente. Per esprimere in modo esplicito la dipendenza dal tempo, scriviamo: v(t) per un segnale di tensione i(t) per un segnale di corrente Talvolta la dipendenza dal tempo viene sottintesa; il carattere minuscolo indica comunque che si tratta di una grandezza variabile nel tempo. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 2

3 Convenzioni tipografiche tipo di carattere significato esempio Maiuscolo, Valore in continua pedice Maiuscolo (punto di lavoro) V B, I C minuscolo, Valore istantaneo pedice Maiuscolo (funzione del tempo) v B, i C minuscolo, Segnale pedice minuscolo (valore istantaneo continua) v b, i c v V B v b (t) v B (t) t v B (t) = V B + v b (t) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Segnali analogici e segnali digitali Un segnale è analogico quando il suo contenuto di informazione varia con continuità, potendo assumere un infinità di valori possibili (entro un certo intervallo). Un segnale è digitale quando il suo contenuto di informazione varia in modo discreto (cioè a passi), potendo assumere soltanto un numero finito di valori possibili. Il segnale digitale più semplice è il segnale binario, che può assumerre solo i valori (zero) e 1 (uno), che in genere corrispondono ai valori bassi e alti di una grandezza fisica variabile con continuità. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 3

4 Segnali continui e segnali campionati Un segnale è continuo nel tempo quando il suo valore può cambiare in qualsiasi istante. Un segnale è campionato quando il suo valore cambia solo in istanti prestabiliti, in sincronia con un segnale di temporizzazione ( clock ), e il valore viene mantenuto costante fino al successivo evento di temporizzazione. v segnale continuo segnale campionato T s t Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Segnali periodici Un segnale è periodico quando si ripete identicamente dopo un intervallo di tempo T, detto periodo: x(t + T ) = x(t), t L inverso del periodo è la frequenza: f = 1 T Dimensionalmente, la frequenza è l inverso di un tempo e si misura in hertz (Hz). Per un moto rotatorio, la frequenza f è legata alla velocità angolare ω dalla relazione: ω = 2πf. La velocità angolare si misura in radianti al secondo (rad/s). Poiché l angolo giro è pari a 2π rad, risulta: 1 Hz = 1 giro/s = 2π rad/s. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 4

5 Esempi di segnali periodici (1/3) v V A V A 2V A T t Una sinusoide analiticamente può essere espressa come: v(t) = V A sin 2πft con f = 1 T Il valore di picco dell ampiezza è V A ; il valore picco-picco, cioè la differenza tra il massimo e il minimo, è 2V A. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Esempi di segnali periodici (2/3) v V A T t Un esempio di onda quadra è costituito dal segnale di clock di un sistema digitale sincrono. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 5

6 Esempi di segnali periodici (3/3) v V A t r t f T t Nella realtà l onda quadra ideale non esiste; un approssimazione più adeguata del segnale di clock di un sistema digitale sincrono è costituito dall onda trapezoidale, avente tempi di salita (t r, rise time ) e di discesa (t f, fall time ) diversi da zero. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Valor medio e valore efficace Il valor medio V m di un segnale periodico è: V m = 1 T T v(t) Il valore efficace o valore quadratico medio o valore rms ( root-mean-square ) V rms di un segnale periodico è: 1 T V rms = (v(t)) T 2 Il valore efficace ha questo nome perchè, se viene applicata una continua con questo valore ai capi di una resistenza, si produce IN MEDIA la stessa dissipazione di potenza del segnale variabile v(t) applicato alla stessa resistenza. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 6

7 Esercizi (I) 1. Calcolare il valore efficace di un segnale di tensione sinusoidale avente valore di picco V A. Soluzione: Applicando la definizione, si ha: 1 T V rms = (v(t)) T 2 1 = T 1 T ( 1 = VA 2 T 2 1 ) 4πt cos 2 T = V A 1 T T 2 = V A 2 T ( V A sin 2πt ) 2 = T 1 T 1 = V A T 2 = Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Esercizi (II) 2. Calcolare il valore di picco della tensione della rete elettrica, che ha un valore efficace V rms = 23 V. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 7

8 Leggi per grandezze variabili nel tempo R + - i(t) v(t) La legge di Ohm per grandezze variabili nel tempo è: v(t) = Ri(t) La corrente è legata alla carica elettrica dalla relazione: i(t) = dq(t) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Energia interna di un bipolo Esistono elementi circuitali il cui comportamento non dipende solo dal valore istantaneo delle grandezze elettriche, ma anche dai valori assunti in precedenza. Questi elementi circuitali hanno memoria, cioè mantengono al loro interno un informazione legata al loro funzionamento passato. L informazione è fisicamente immagazzinata sotto forma di energia variabile nel tempo w(t). L energia assorbita da un bipolo all istante t è: w(t) = = t t p(t) = p(t) + w() Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 8

9 Potenza istantanea L espressione della potenza assorbita da un bipolo qualsiasi è data dal prodotto della tensione per la corrente. Esplicitando la dipendenza dal tempo: p(t) = v(t)i(t) Quando la potenza varia nel tempo, si parla di potenza istantanea. La potenza istantanea p(t) può essere positiva o negativa: è positiva quando aumenta l energia immagazzinata nel bipolo, è negativa quando l energia immagazzinata diminuisce. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Condensatore (1/6) i(t) + C v(t) Il condensatore (in inglese: capacitor ) è costituito da due superfici metalliche parallele separate da un isolante. La carica immagazzinata è proporzionale alla tensione applicata: q(t) = Cv(t). La costante C è la capacità del condensatore, che si misura in farad (F): 1 F = 1 C / 1 V Il farad è un unità di misura molto grande; di solito si usano i suoi sottomultipli: µf, nf, pf e ff. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 9

10 Capacità (2/6) S d Per un condensatore a facce piane e parallele, aventi area S e distanza d, fra le quali è interposto un materiale isolante con costante dielettrica ε, la capacità C è: C = εs d Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Condensatore (3/6) i(t) + C v(t) Dalle due equazioni q(t) = Cv(t) e i(t) = dq(t) si ottiene: i(t) = C dv(t) Nel condensatore la corrente è proporzionale alla derivata della tensione. Se la tensione è costante, la derivata è nulla e non passa corrente per la continua il condensatore si comporta come un circuito aperto. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 1

11 Condensatore (4/6) Invertendo l equazione i(t) = C dv(t) si ricava che in un condensatore la tensione è proporzionale all integrale della corrente: v(t) = 1 C t i(t) + v() La tensione v() (che matematicamente rappresenta la costante di integrazione) è la condizione iniziale: v() = v(t = ) In SPICE la condizione iniziale è specificata con il parametro IC ( initial condition ). Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Condensatore (5/6) L energia immagazzinata in un condensatore è: w(t) = 1 2 C(v(t))2 Per semplicità, sottintendendo t, possiamo scrivere: w = 1 2 Cv 2 Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 11

12 Condensatore (6/6) Si vede facilmente che derivando l energia si ottiene la potenza istantanea: p(t) = dw(t) = Cv(t) dv(t) L energia aumenta (e quindi la potenza viene assorbita) quando il valore assoluto della tensione ai capi del condensatore aumenta; l energia diminuisce (e quindi la potenza viene erogata) quando il valore assoluto della tensione ai capi del condensatore diminuisce. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Esercizio (III) Un generatore di tensione sinusoidale di ampiezza V A = 1 V e frequenza f = 1 khz è collegato ad un condensatore di capacità C = 1 nf. Calcolare la corrente nel condensatore. Soluzione: L espressione della tensione del generatore è: v(t) = V A sin 2πft La stessa tensione è applicata ai capi del consensatore. La corrente è data da: i(t) = C dv(t) = 2πfCV A cos 2πft La corrente ha un andamento cosinusoidale, con ampiezza I A = 2πfCV A = 6.28 µa e frequenza f = 1 khz. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 12

13 Dispositivo: accelerometro (1/5) L accelerometro è un sensore che fornisce in uscita una tensione che dipende dall accelerazione a cui è sottoposto. Appartiene alla categoria dei MEMS (= Micro-ElectroMechanichal Systems), che sono dispositivi utilizzati per convertire grandezze fisiche in grandezze elettriche e viceversa. I MEMS possono essere costruiti su silicio, con processo di fabbricazione CMOS + micromachining per creare cavità o strutture sospese. Dispositivo: accelerometro (2/5) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Vista 3D; in arancione la massa sospesa Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 13

14 Dispositivo: accelerometro (3/5) a senza accelerazione con accelerazione a Elettrodi fissi in azzurro: A = {1, 3, 5, 7}; B = {2, 4, 6, 8} La massa inerziale sospesa, sottoposta ad accelerazione, deforma gli anelli e si sposta. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Dispositivo: accelerometro (4/5) A A d C A d+x C A d C B B d-x C B B senza accelerazione a = C A = C B = εs d con accelerazione a ma = kx C A = εs d+x C B = εs d x Elettrodi fissi: A = {1, 3, 5, 7}; B = {2, 4, 6, 8} k è la costante elastica della molla costituita dai due anelli. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 14

15 Dispositivo: accelerometro (5/5) V A V A buffer demod. V B Si applicano due tensioni alternate opposte ai terminali fissi e si demodula (con un moltiplicatore) la tensione letta alla massa sospesa. Si ottiene una tensione che dipende dallo spostamento x (e quindi dall accelerazione a). Per misurare un accelerazione con direzione qualsiasi, occorrono tre accelerometri disposti perpendicolarmente lungo le direzioni dei tre assi cartesiani ortogonali. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Induttanza (1/6) i(t) + L v(t) L induttore (in inglese: inductor ) è costituito da un filo avvolto a spirale (solenoide). All interno dell avvolgimento si ha un flusso magnetico Φ proporzionale alla corrente nel filo: Φ(t) = Li(t). Il flusso magnetico Φ si misura in weber (Wb): 1 Wb = 1 m2 kg A s. 2 La costante L è l induttanza dell induttore, che si misura in henry (H): 1 H = 1 Wb / 1 A Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 15

16 Induttanza (2/6) i(t) + L v(t) Una variazione nel tempo del flusso magnetico produce una differenza di potenziale ai capi dell induttore (legge di Faraday-Henry): v(t) = dφ(t) Combinando le due equazioni: Φ(t) = Li(t) e v(t) = dφ(t) si ottiene: v(t) = L di(t) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Induttanza (3/6) i(t) + L v(t) v(t) = L di(t) La tensione è proporzionale alla derivata della corrente. Se la corrente è costante, la derivata è nulla e non c è tensione ai capi del bipolo per la continua l induttore si comporta come un cortocircuito. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 16

17 Induttanza (4/6) Invertendo l equazione v(t) = L di(t) si ricava che in un induttore la corrente è proporzionale all integrale della tensione: i(t) = 1 L t v(t) + i() La corrente i() (che matematicamente rappresenta la costante di integrazione) è la condizione iniziale: i() = i(t = ) In SPICE la condizione iniziale è specificata con il parametro IC ( initial condition ) anche per l induttanza. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Induttanza (5/6) L energia immagazzinata in un induttore è: w(t) = 1 2 L(i(t))2 Per semplicità, sottintendendo t, possiamo scrivere: w = 1 2 Li 2 Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 17

18 Induttanza (6/6) Derivando l energia, si ottiene la potenza istantanea: p(t) = dw(t) = Li(t) di(t) L energia aumenta (e quindi la potenza viene assorbita) quando il valore assoluto della corrente nell induttanza aumenta; l energia diminuisce (e quindi la potenza viene erogata) quando il valore assoluto della corrente nell induttanza diminuisce. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 18

Elettronica I Circuiti nel dominio del tempo

Elettronica I Circuiti nel dominio del tempo Elettronica I Circuiti nel dominio del tempo Valentino Liberali Dipartimento di ecnologie dell Informazione Università di Milano, 2613 Crema e-mail: liberali@i.unimi.it http://www.i.unimi.it/ liberali

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Componenti elettronici. Condensatori

Componenti elettronici. Condensatori Componenti elettronici Condensatori Condensatori DIELETTRICO La proprietà fondamentale del condensatore, di accogliere e di conservare cariche elettriche, prende il nome di capacità. d S C = Q V Q è la

Dettagli

Potenza elettrica nei circuiti in regime sinusoidale

Potenza elettrica nei circuiti in regime sinusoidale Per gli Istituti Tecnici Industriali e Professionali Potenza elettrica nei circuiti in regime sinusoidale A cura del Prof. Chirizzi Marco www.elettrone.altervista.org 2010/2011 POTENZA ELETTRICA NEI CIRCUITI

Dettagli

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI T3 CICUITI ISONANTI E AMPLIFICATOI SELETTIVI T3. Il fattore di merito di una bobina è misurato in: [a] henry. [b] ohm... [c] è adimensionale.. T3. Il fattore di perdita di un condensatore è misurato in:

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte b Bipoli elettrici - potenza entrante Tensione e corrente su di un bipolo si possono misurare secondo la convenzione

Dettagli

Teoria dei Segnali Modulazione di frequenza e modulazione di fase

Teoria dei Segnali Modulazione di frequenza e modulazione di fase Teoria dei Segnali Modulazione di frequenza e modulazione di fase Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Modulazione di

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Funzioni trigonometriche e modulazione dei segnali

Funzioni trigonometriche e modulazione dei segnali Funzioni trigonometriche e modulazione dei segnali Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 263 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/~liberali

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito Energia e potenza nei circuiti monofase in regime sinusoidale 1. Analisi degli scambi di energia nel circuito I fenomeni energetici connessi al passaggio della corrente in un circuito, possono essere distinti

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA NOME SIMBOLO ELETTRICO E FOTO CATEGORIA GRANDEZZA ELETTRICA [simbolo della grandezza elettrica] UNITA DI MISURA Accumulatore, batteria, pila E un in tempo; per specificare questa categoria si parla comunque

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Anno di corso: 1) Una carica puntiforme q=-8.5 10-6 C è posta a distanza R=12 cm da un piano uniformemente carico condensità di carica superficiale

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Lezione 16. Motori elettrici: introduzione

Lezione 16. Motori elettrici: introduzione Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,

Dettagli

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email:

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version www.pdffactory.com

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version www.pdffactory.com Grandezze elettriche Prof. Mario Angelo GIORDANO Intensità della corrente elettrica La corrente elettrica che fluisce lungo un mezzo conduttore è costituita da cariche elettriche; a seconda del tipo di

Dettagli

Tensioni variabili nel tempo e Oscilloscopio

Tensioni variabili nel tempo e Oscilloscopio ensioni variabili nel tempo e Oscilloscopio RIASSUNO: ensioni variabili e periodiche Ampiezza, valor medio, ed RMS Generatori di forme d onda ensioni sinusoidali Potenza : valore medio e valore efficace

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Classe 35 A Anno Accademico 2005-06

Classe 35 A Anno Accademico 2005-06 Classe 35 A Anno Accademico 2005-06 1) In un bipolo C, in regime sinusoidale, la tensione ai suoi capi e la corrente che l attraversa sono: A) in fase; B) in opposizione di fase; C) il fasore della corrente

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Le macchine elettriche

Le macchine elettriche Le macchine elettriche Cosa sono le macchine elettriche? Le macchine elettriche sono dispositivi atti a: convertire energia elettrica in energia meccanica; convertire energia meccanica in energia elettrica;

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

approfondimento Corrente elettrica e circuiti in corrente continua

approfondimento Corrente elettrica e circuiti in corrente continua approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

Circuiti elettrici lineari

Circuiti elettrici lineari Circuiti elettrici lineari Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Elenco delle misurazioni. Circuito resistivo in corrente

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali Sistemi Elettrici ALTAIR http://metropolis.sci.univr.it Argomenti Osservazioni generali Argomenti Argomenti Osservazioni generali Componenti di base: resistori, sorgenti elettriche, capacitori, induttori

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Corrente elettrica. La disputa Galvani - Volta

Corrente elettrica. La disputa Galvani - Volta Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

E l e t t r o m a g n e t i s m o. Saggio Finale

E l e t t r o m a g n e t i s m o. Saggio Finale Corso abilitante IX ciclo Classe di concorso A038 ( Fisica ) Anno Accademico 2007 / 2008 (1 anno ) Specializzando: ( matr. 3801/SS ) E l e t t r o m a g n e t i s m o prof. Saggio Finale 1. Presentazione

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

Esercizi svolti di Elettrotecnica

Esercizi svolti di Elettrotecnica Marco Gilli Dipartimento di Elettronica Politecnico di Torino Esercizi svolti di Elettrotecnica Politecnico di Torino TOINO Maggio 2003 Indice Leggi di Kirchhoff 5 2 Legge di Ohm e partitori 5 3 esistenze

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

APPUNTI SUL CAMPO MAGNETICO ROTANTE

APPUNTI SUL CAMPO MAGNETICO ROTANTE APPUTI UL CAPO AGETICO ROTATE Campo agnetico Rotante ad una coppia polare Consideriamo la struttura in figura che rappresenta la vista, in sezione trasversale, di un cilindro cavo, costituito da un materiale

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

Fondamenti di macchine elettriche Corso SSIS 2006/07

Fondamenti di macchine elettriche Corso SSIS 2006/07 9.13 Caratteristica meccanica del motore asincrono trifase Essa è un grafico cartesiano che rappresenta l andamento della coppia C sviluppata dal motore in funzione della sua velocità n. La coppia è legata

Dettagli

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P39 10. Serie P42 12. Serie P57 14. Serie P60 16. Serie P85 18.

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P39 10. Serie P42 12. Serie P57 14. Serie P60 16. Serie P85 18. INDICE Introduzione 2 Serie P20 4 Serie P28 6 Serie P35 8 Serie P39 10 Serie P42 12 Serie P57 14 Serie P60 16 Serie P85 18 Serie P110 20 Schemi di connessione 22 Codifica 23 Note 24 Motori Passo Passo

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA APPUNTI DL CORSO DI SISTMI IMPIANTISTICI SICURZZA RGIMI DI FUNZIONAMNTO DI CIRCUITI LTTRICI: CORRNT CONTINUA SOLO ALCUNI SMPI DI ANALISI DI UN CIRCUITO LTTRICO FUNZIONANTI IN CORRNT CONTINUA APPUNTI DL

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto Serie 34: Elettrodinamica IX FAM C. Ferrari Esercizio 1 Legge di Faraday e legge di Lenz Considera una spira come nella figura qui sotto n C S 1. Disegna la corrente indotta nella spira se il campo magnetico

Dettagli

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira un campo magnetico variabile genera una corrente INDUZIONE ELETTROMAGNETICA - ESPERIENZA 1 magnete N S µ-amperometro

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE

NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE Strumenti indicatori Strumento che indica in modo continuo il valore efficace, medio o di cresta della grandezza misurata

Dettagli

Generatore radiologico

Generatore radiologico Generatore radiologico Radiazioni artificiali alimentazione: corrente elettrica www.med.unipg.it/ac/rad/ www.etsrm.it oscar fiorucci. laurea.tecn.radiol@ospedale.perugia.it Impianto radiologico trasformatore

Dettagli

Nome e Cognome. 2 Calcolare il valore efficace di una tensione sinusoidale con Vmax = 18 V

Nome e Cognome. 2 Calcolare il valore efficace di una tensione sinusoidale con Vmax = 18 V VERIFICA SCRITTA DI ELETTRONICA Classe IVME A. S. 2013/2014 27 ottobre 2013 [1,5 punti per gli esercizi 1-5-7-8; 1 punto per gli esercizio (2, 3, 4, 6)] Nome e Cognome. 1 Calcolare il valore di Vx nel

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

OSCILLATORI AL QUARZO: CONTASECONDI

OSCILLATORI AL QUARZO: CONTASECONDI ... OSCILLATORI AL QUARZO: CONTASECONDI di Maurizio Del Corso m.delcorso@farelettronica.com Come può un cristallo di quarzo oscillare ad una determinata frequenza? Quale spiegazione fisica c è dietro a

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

Campi elettrici, magnetici ed elettromagnetici

Campi elettrici, magnetici ed elettromagnetici Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo Generatori di segnale Generatore sinusoidale BF Generatori di funzione Generatori sinusoidali a RF Generatori a battimenti Generatori di segnale sintetizzati Generatori per sintesi indiretta 2 2006 Politecnico

Dettagli

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche PREMESSA In questa lezione verranno illustrate la classificazione delle diverse tipologie di trasduttori utilizzati nei sistemi di controllo industriali ed i loro parametri caratteristici. CLASSIFICAZIONE

Dettagli

Sistema Internazionale (SI)

Sistema Internazionale (SI) Unità di misura Necessità di un linguaggio comune Definizione di uno standard: Sistema Internazionale (SI) definito dalla Conferenza Generale dei Pesi e delle Misure nel 1960 Teoria dei Circuiti Prof.

Dettagli

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE Ing. ENRICO BIAGI Docente di Tecnologie elettrice, Disegno, Progettazione ITIS A. Volta - Perugia ETODO PER LA DESCRIZIONE DEL CAPO AGNETICO ROTANTE Viene illustrato un metodo analitico-grafico per descrivere

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli