Elettronica Circuiti nel dominio del tempo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettronica Circuiti nel dominio del tempo"

Transcript

1 Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano Elettronica Circuiti nel dominio del tempo 14 aprile 211 Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Contenuto 1 Segnali nel dominio del tempo 2 Segnali analogici e segnali digitali 3 Segnali periodici: periodo e frequenza 4 Valor medio e valore efficace 5 Energia interna di un bipolo 6 Potenza istantanea 7 Capacità 8 Induttanza Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 1

2 Programma parte 3 3 Analisi di circuiti nel dominio del tempo. a. Segnali analogici e segnali digitali. b. Segnali continui e segnali campionati. c. Segnali periodici; periodo e frequenza. d. Condensatore. e. Induttore. f. Energia immagazzinata. g. Potenza istantanea e potenza media. h. Analisi nel dominio del tempo. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Segnali nel dominio del tempo Una grandezza elettrica che varia nel tempo secondo una legge determinata costituisce un segnale. I segnali possono essere di tensione oppure di corrente, a seconda che la grandezza elettrica che ci interessa sia una tensione o una corrente. Per esprimere in modo esplicito la dipendenza dal tempo, scriviamo: v(t) per un segnale di tensione i(t) per un segnale di corrente Talvolta la dipendenza dal tempo viene sottintesa; il carattere minuscolo indica comunque che si tratta di una grandezza variabile nel tempo. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 2

3 Convenzioni tipografiche tipo di carattere significato esempio Maiuscolo, Valore in continua pedice Maiuscolo (punto di lavoro) V B, I C minuscolo, Valore istantaneo pedice Maiuscolo (funzione del tempo) v B, i C minuscolo, Segnale pedice minuscolo (valore istantaneo continua) v b, i c v V B v b (t) v B (t) t v B (t) = V B + v b (t) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Segnali analogici e segnali digitali Un segnale è analogico quando il suo contenuto di informazione varia con continuità, potendo assumere un infinità di valori possibili (entro un certo intervallo). Un segnale è digitale quando il suo contenuto di informazione varia in modo discreto (cioè a passi), potendo assumere soltanto un numero finito di valori possibili. Il segnale digitale più semplice è il segnale binario, che può assumerre solo i valori (zero) e 1 (uno), che in genere corrispondono ai valori bassi e alti di una grandezza fisica variabile con continuità. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 3

4 Segnali continui e segnali campionati Un segnale è continuo nel tempo quando il suo valore può cambiare in qualsiasi istante. Un segnale è campionato quando il suo valore cambia solo in istanti prestabiliti, in sincronia con un segnale di temporizzazione ( clock ), e il valore viene mantenuto costante fino al successivo evento di temporizzazione. v segnale continuo segnale campionato T s t Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Segnali periodici Un segnale è periodico quando si ripete identicamente dopo un intervallo di tempo T, detto periodo: x(t + T ) = x(t), t L inverso del periodo è la frequenza: f = 1 T Dimensionalmente, la frequenza è l inverso di un tempo e si misura in hertz (Hz). Per un moto rotatorio, la frequenza f è legata alla velocità angolare ω dalla relazione: ω = 2πf. La velocità angolare si misura in radianti al secondo (rad/s). Poiché l angolo giro è pari a 2π rad, risulta: 1 Hz = 1 giro/s = 2π rad/s. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 4

5 Esempi di segnali periodici (1/3) v V A V A 2V A T t Una sinusoide analiticamente può essere espressa come: v(t) = V A sin 2πft con f = 1 T Il valore di picco dell ampiezza è V A ; il valore picco-picco, cioè la differenza tra il massimo e il minimo, è 2V A. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Esempi di segnali periodici (2/3) v V A T t Un esempio di onda quadra è costituito dal segnale di clock di un sistema digitale sincrono. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 5

6 Esempi di segnali periodici (3/3) v V A t r t f T t Nella realtà l onda quadra ideale non esiste; un approssimazione più adeguata del segnale di clock di un sistema digitale sincrono è costituito dall onda trapezoidale, avente tempi di salita (t r, rise time ) e di discesa (t f, fall time ) diversi da zero. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Valor medio e valore efficace Il valor medio V m di un segnale periodico è: V m = 1 T T v(t) Il valore efficace o valore quadratico medio o valore rms ( root-mean-square ) V rms di un segnale periodico è: 1 T V rms = (v(t)) T 2 Il valore efficace ha questo nome perchè, se viene applicata una continua con questo valore ai capi di una resistenza, si produce IN MEDIA la stessa dissipazione di potenza del segnale variabile v(t) applicato alla stessa resistenza. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 6

7 Esercizi (I) 1. Calcolare il valore efficace di un segnale di tensione sinusoidale avente valore di picco V A. Soluzione: Applicando la definizione, si ha: 1 T V rms = (v(t)) T 2 1 = T 1 T ( 1 = VA 2 T 2 1 ) 4πt cos 2 T = V A 1 T T 2 = V A 2 T ( V A sin 2πt ) 2 = T 1 T 1 = V A T 2 = Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Esercizi (II) 2. Calcolare il valore di picco della tensione della rete elettrica, che ha un valore efficace V rms = 23 V. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 7

8 Leggi per grandezze variabili nel tempo R + - i(t) v(t) La legge di Ohm per grandezze variabili nel tempo è: v(t) = Ri(t) La corrente è legata alla carica elettrica dalla relazione: i(t) = dq(t) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Energia interna di un bipolo Esistono elementi circuitali il cui comportamento non dipende solo dal valore istantaneo delle grandezze elettriche, ma anche dai valori assunti in precedenza. Questi elementi circuitali hanno memoria, cioè mantengono al loro interno un informazione legata al loro funzionamento passato. L informazione è fisicamente immagazzinata sotto forma di energia variabile nel tempo w(t). L energia assorbita da un bipolo all istante t è: w(t) = = t t p(t) = p(t) + w() Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 8

9 Potenza istantanea L espressione della potenza assorbita da un bipolo qualsiasi è data dal prodotto della tensione per la corrente. Esplicitando la dipendenza dal tempo: p(t) = v(t)i(t) Quando la potenza varia nel tempo, si parla di potenza istantanea. La potenza istantanea p(t) può essere positiva o negativa: è positiva quando aumenta l energia immagazzinata nel bipolo, è negativa quando l energia immagazzinata diminuisce. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Condensatore (1/6) i(t) + C v(t) Il condensatore (in inglese: capacitor ) è costituito da due superfici metalliche parallele separate da un isolante. La carica immagazzinata è proporzionale alla tensione applicata: q(t) = Cv(t). La costante C è la capacità del condensatore, che si misura in farad (F): 1 F = 1 C / 1 V Il farad è un unità di misura molto grande; di solito si usano i suoi sottomultipli: µf, nf, pf e ff. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 9

10 Capacità (2/6) S d Per un condensatore a facce piane e parallele, aventi area S e distanza d, fra le quali è interposto un materiale isolante con costante dielettrica ε, la capacità C è: C = εs d Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Condensatore (3/6) i(t) + C v(t) Dalle due equazioni q(t) = Cv(t) e i(t) = dq(t) si ottiene: i(t) = C dv(t) Nel condensatore la corrente è proporzionale alla derivata della tensione. Se la tensione è costante, la derivata è nulla e non passa corrente per la continua il condensatore si comporta come un circuito aperto. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 1

11 Condensatore (4/6) Invertendo l equazione i(t) = C dv(t) si ricava che in un condensatore la tensione è proporzionale all integrale della corrente: v(t) = 1 C t i(t) + v() La tensione v() (che matematicamente rappresenta la costante di integrazione) è la condizione iniziale: v() = v(t = ) In SPICE la condizione iniziale è specificata con il parametro IC ( initial condition ). Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Condensatore (5/6) L energia immagazzinata in un condensatore è: w(t) = 1 2 C(v(t))2 Per semplicità, sottintendendo t, possiamo scrivere: w = 1 2 Cv 2 Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 11

12 Condensatore (6/6) Si vede facilmente che derivando l energia si ottiene la potenza istantanea: p(t) = dw(t) = Cv(t) dv(t) L energia aumenta (e quindi la potenza viene assorbita) quando il valore assoluto della tensione ai capi del condensatore aumenta; l energia diminuisce (e quindi la potenza viene erogata) quando il valore assoluto della tensione ai capi del condensatore diminuisce. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Esercizio (III) Un generatore di tensione sinusoidale di ampiezza V A = 1 V e frequenza f = 1 khz è collegato ad un condensatore di capacità C = 1 nf. Calcolare la corrente nel condensatore. Soluzione: L espressione della tensione del generatore è: v(t) = V A sin 2πft La stessa tensione è applicata ai capi del consensatore. La corrente è data da: i(t) = C dv(t) = 2πfCV A cos 2πft La corrente ha un andamento cosinusoidale, con ampiezza I A = 2πfCV A = 6.28 µa e frequenza f = 1 khz. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 12

13 Dispositivo: accelerometro (1/5) L accelerometro è un sensore che fornisce in uscita una tensione che dipende dall accelerazione a cui è sottoposto. Appartiene alla categoria dei MEMS (= Micro-ElectroMechanichal Systems), che sono dispositivi utilizzati per convertire grandezze fisiche in grandezze elettriche e viceversa. I MEMS possono essere costruiti su silicio, con processo di fabbricazione CMOS + micromachining per creare cavità o strutture sospese. Dispositivo: accelerometro (2/5) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Vista 3D; in arancione la massa sospesa Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 13

14 Dispositivo: accelerometro (3/5) a senza accelerazione con accelerazione a Elettrodi fissi in azzurro: A = {1, 3, 5, 7}; B = {2, 4, 6, 8} La massa inerziale sospesa, sottoposta ad accelerazione, deforma gli anelli e si sposta. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Dispositivo: accelerometro (4/5) A A d C A d+x C A d C B B d-x C B B senza accelerazione a = C A = C B = εs d con accelerazione a ma = kx C A = εs d+x C B = εs d x Elettrodi fissi: A = {1, 3, 5, 7}; B = {2, 4, 6, 8} k è la costante elastica della molla costituita dai due anelli. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 14

15 Dispositivo: accelerometro (5/5) V A V A buffer demod. V B Si applicano due tensioni alternate opposte ai terminali fissi e si demodula (con un moltiplicatore) la tensione letta alla massa sospesa. Si ottiene una tensione che dipende dallo spostamento x (e quindi dall accelerazione a). Per misurare un accelerazione con direzione qualsiasi, occorrono tre accelerometri disposti perpendicolarmente lungo le direzioni dei tre assi cartesiani ortogonali. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Induttanza (1/6) i(t) + L v(t) L induttore (in inglese: inductor ) è costituito da un filo avvolto a spirale (solenoide). All interno dell avvolgimento si ha un flusso magnetico Φ proporzionale alla corrente nel filo: Φ(t) = Li(t). Il flusso magnetico Φ si misura in weber (Wb): 1 Wb = 1 m2 kg A s. 2 La costante L è l induttanza dell induttore, che si misura in henry (H): 1 H = 1 Wb / 1 A Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 15

16 Induttanza (2/6) i(t) + L v(t) Una variazione nel tempo del flusso magnetico produce una differenza di potenziale ai capi dell induttore (legge di Faraday-Henry): v(t) = dφ(t) Combinando le due equazioni: Φ(t) = Li(t) e v(t) = dφ(t) si ottiene: v(t) = L di(t) Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Induttanza (3/6) i(t) + L v(t) v(t) = L di(t) La tensione è proporzionale alla derivata della corrente. Se la corrente è costante, la derivata è nulla e non c è tensione ai capi del bipolo per la continua l induttore si comporta come un cortocircuito. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 16

17 Induttanza (4/6) Invertendo l equazione v(t) = L di(t) si ricava che in un induttore la corrente è proporzionale all integrale della tensione: i(t) = 1 L t v(t) + i() La corrente i() (che matematicamente rappresenta la costante di integrazione) è la condizione iniziale: i() = i(t = ) In SPICE la condizione iniziale è specificata con il parametro IC ( initial condition ) anche per l induttanza. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 Induttanza (5/6) L energia immagazzinata in un induttore è: w(t) = 1 2 L(i(t))2 Per semplicità, sottintendendo t, possiamo scrivere: w = 1 2 Li 2 Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 17

18 Induttanza (6/6) Derivando l energia, si ottiene la potenza istantanea: p(t) = dw(t) = Li(t) di(t) L energia aumenta (e quindi la potenza viene assorbita) quando il valore assoluto della corrente nell induttanza aumenta; l energia diminuisce (e quindi la potenza viene erogata) quando il valore assoluto della corrente nell induttanza diminuisce. Valentino Liberali (UniMI) Elettronica Circuiti nel dominio del tempo 14 aprile / 35 18

Elettronica I Circuiti nel dominio del tempo

Elettronica I Circuiti nel dominio del tempo Elettronica I Circuiti nel dominio del tempo Valentino Liberali Dipartimento di ecnologie dell Informazione Università di Milano, 2613 Crema e-mail: liberali@i.unimi.it http://www.i.unimi.it/ liberali

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI T3 CICUITI ISONANTI E AMPLIFICATOI SELETTIVI T3. Il fattore di merito di una bobina è misurato in: [a] henry. [b] ohm... [c] è adimensionale.. T3. Il fattore di perdita di un condensatore è misurato in:

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Teoria dei Segnali Modulazione di frequenza e modulazione di fase

Teoria dei Segnali Modulazione di frequenza e modulazione di fase Teoria dei Segnali Modulazione di frequenza e modulazione di fase Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Modulazione di

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Potenza elettrica nei circuiti in regime sinusoidale

Potenza elettrica nei circuiti in regime sinusoidale Per gli Istituti Tecnici Industriali e Professionali Potenza elettrica nei circuiti in regime sinusoidale A cura del Prof. Chirizzi Marco www.elettrone.altervista.org 2010/2011 POTENZA ELETTRICA NEI CIRCUITI

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte b Bipoli elettrici - potenza entrante Tensione e corrente su di un bipolo si possono misurare secondo la convenzione

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Funzioni trigonometriche e modulazione dei segnali

Funzioni trigonometriche e modulazione dei segnali Funzioni trigonometriche e modulazione dei segnali Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 263 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/~liberali

Dettagli

Componenti elettronici. Condensatori

Componenti elettronici. Condensatori Componenti elettronici Condensatori Condensatori DIELETTRICO La proprietà fondamentale del condensatore, di accogliere e di conservare cariche elettriche, prende il nome di capacità. d S C = Q V Q è la

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente CAPITOLO 6 ANALISI IN REGIME PERMANENTE 6.1 Circuiti dinamici in regime permanente I Capitoli 3 e 4 sono stati dedicati, ad eccezione del paragrafo sugli induttori accoppiati, esclusivamente all analisi

Dettagli

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase.

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase. Come nel caso dei convertitori c.c.-c.c., la presenza di un carico attivo non modifica il comportamento del convertitore se questo continua a funzionare con conduzione continua. Nei convertitori trifase

Dettagli

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero di soluzioni circuitali, in dipendenza sia dal livello

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

Lezione 42: l'induzione elettromagnetica

Lezione 42: l'induzione elettromagnetica Lezione 42 - pag.1 Lezione 42: l'induzione elettromagnetica 42.1. Gli esperimenti di Faraday L'esperimento di Oersted del 1820 dimostrò che una corrente elettrica produce un campo magnetico. Subito gli

Dettagli

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito Energia e potenza nei circuiti monofase in regime sinusoidale 1. Analisi degli scambi di energia nel circuito I fenomeni energetici connessi al passaggio della corrente in un circuito, possono essere distinti

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Elettronica Introduzione

Elettronica Introduzione Elettronica Introduzione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Introduzione 4 marzo 2015 Valentino Liberali (UniMI) Elettronica

Dettagli

Corso di Laurea Triennale in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA. Corso Integrato di Misure Elettriche ed Elettroniche

Corso di Laurea Triennale in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA. Corso Integrato di Misure Elettriche ed Elettroniche UNIVERSITÀ DI GENOVA - FACOLTÀ DI MEDICINA E CHIRURGIA Corso di Laurea Triennale in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA Corso Integrato di Misure Elettriche ed Elettroniche Modulo

Dettagli

Sensori di posizione di tipo induttivo

Sensori di posizione di tipo induttivo I sensori induttivi a singolo avvolgimento sono composti da un avvolgimento fisso e da un nucleo ferromagnetico mobile. Il sensore converte la grandezza da misurare in una variazione dell induttanza L

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

ELETTRONICA II. Circuiti misti analogici e digitali 2. Riferimenti al testo. Prof. Dante Del Corso - Politecnico di Torino

ELETTRONICA II. Circuiti misti analogici e digitali 2. Riferimenti al testo. Prof. Dante Del Corso - Politecnico di Torino ELETTRONICA II Circuiti misti analogici e digitali 2 Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 20 - E - 2: Oscillatori e generatori di segnale

Dettagli

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA NOME SIMBOLO ELETTRICO E FOTO CATEGORIA GRANDEZZA ELETTRICA [simbolo della grandezza elettrica] UNITA DI MISURA Accumulatore, batteria, pila E un in tempo; per specificare questa categoria si parla comunque

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 5 Ingegneria Gestionale-Informatica CARICA E SCARICA DEL CONDENSATORE

Fisica Generale - Modulo Fisica II Esercitazione 5 Ingegneria Gestionale-Informatica CARICA E SCARICA DEL CONDENSATORE AIA E SAIA DEL ONDENSATOE a. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t=0 quando porta una carica Q(0) = Q 0. Soluzione. Per la relazione di maglia,

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Trasformatore di corrente (TA)

Trasformatore di corrente (TA) Sensori di corrente Il modo più semplice di eseguire la misura di corrente è il metodo volt-amperometrico, in cui si misura la caduta di tensione su di una resistenza di misura percorsa dalla corrente

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Flusso del campo magnetico

Flusso del campo magnetico Lezione 19 Flusso del campo magnetico Il flusso magnetico o flusso di B attraverso una superficie aperta delimitata da un contorno chiuso e dato da Se il contorno chiuso e un circuito, il flusso in questione

Dettagli

Corso Elettronica Industriale Anno Accademico 2005-2006. Prof Ing Lorenzo Capineri

Corso Elettronica Industriale Anno Accademico 2005-2006. Prof Ing Lorenzo Capineri AMPLIFICATORI IN CLASSE D Corso Elettronica Industriale Anno Accademico 25-26 Prof Ing Lorenzo Capineri Indice 1. Generalità degli amplificatori in Classe D 1.1 Risposta in frequenza 2. Principio di funzionamento

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere:

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere: Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

ELETTROTECNICA. B.Bortelli

ELETTROTECNICA. B.Bortelli ELETTTECNICA B.Bortelli Indice Presentazione del corso 3 2 L alternata 4 2. Grandezze continue e grandezze alternate............... 4 2.. Grandezze continue....................... 4 2..2 Grandezze alternate

Dettagli

Strumentazione Biomedica

Strumentazione Biomedica Sensori induttivi, capacitivi, piezoelettrici Univ. degli studi Federico II di Napoli ing. Paolo Bifulco Sensori induttivi Sensori induttivi di spostamento basati su variazioni di autoinduttanza e mutua

Dettagli

approfondimento Corrente elettrica e circuiti in corrente continua

approfondimento Corrente elettrica e circuiti in corrente continua approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici

Dettagli

Nome e Cognome. 2 Calcolare il valore efficace di una tensione sinusoidale con Vmax = 18 V

Nome e Cognome. 2 Calcolare il valore efficace di una tensione sinusoidale con Vmax = 18 V VERIFICA SCRITTA DI ELETTRONICA Classe IVME A. S. 2013/2014 27 ottobre 2013 [1,5 punti per gli esercizi 1-5-7-8; 1 punto per gli esercizio (2, 3, 4, 6)] Nome e Cognome. 1 Calcolare il valore di Vx nel

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Azionamenti elettronici PWM

Azionamenti elettronici PWM Capitolo 5 Azionamenti elettronici PWM 5.1 Azionamenti elettronici di potenza I motori in corrente continua vengono tipicamente utilizzati per imporre al carico dei cicli di lavoro, nei quali può essere

Dettagli

MISURE DI POTENZA. (a) (b) Fig. 1

MISURE DI POTENZA. (a) (b) Fig. 1 MISUE DI OTENZA. Misure di potenza in circuiti in continua a potenza elettrica () dissipata su di un carico () alimentato da una sorgente in continua (E) è data dal prodotto tra la caduta di tensione sul

Dettagli

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Esercizio T T V V on riferimento al circuito di figura, si assumano i seguenti valori: = = kω, =. µf, = 5 V. Determinare

Dettagli

Elettronica dei Sistemi Digitali Algoritmi di channel routing per standard cells; verifica progettuale

Elettronica dei Sistemi Digitali Algoritmi di channel routing per standard cells; verifica progettuale Elettronica dei Sistemi Digitali Algoritmi di channel routing per standard cells; verifica progettuale Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

SULLA POTENZA ELETTRICA IN REGIME

SULLA POTENZA ELETTRICA IN REGIME Zeno Martini (admin) SULLA POTENZA ELETTRICA IN REGIME PERIODICO QUALSIASI 18 April 2010 Premessa Siamo abbastanza abituati a parlare di potenza attiva, reattiva, apparente, fattore di potenza, ma si tende

Dettagli

Il motore asincrono (4 parte): avviamento, funzionamento da generatore. Lucia FROSINI

Il motore asincrono (4 parte): avviamento, funzionamento da generatore. Lucia FROSINI Il motore asincrono (4 parte): avviamento, funzionamento da generatore Lucia FROSINI Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia E-mail: lucia@unipv.it 1 Avviamento del

Dettagli

Introduzione all Analisi dei Segnali

Introduzione all Analisi dei Segnali Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Introduzione all Analisi dei Segnali Prof. Ing. Felice Carlo PONZO - Ing. Rocco DITOMMASO Scuola di

Dettagli

1. Determinare il numero di elettroni necessari per avere le seguenti cariche:

1. Determinare il numero di elettroni necessari per avere le seguenti cariche: 56 1 Modello circuitale Esercizi 1. Determinare il numero di elettroni necessari per avere le seguenti cariche: a) Q = 1.6 µc. b) Q = 4.8 x 10 15 C. c) Q = 10 pc. 2. Se un filo conduttore è attraversato

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Anno di corso: 1) Una carica puntiforme q=-8.5 10-6 C è posta a distanza R=12 cm da un piano uniformemente carico condensità di carica superficiale

Dettagli

progettare & costruire di NICOLA DE CRESCENZO

progettare & costruire di NICOLA DE CRESCENZO progettare & costruire di NICOLA DE CRESCENZO GENERATORE di funzionilow-cost Vi proponiamo il progetto di un generatore di funzioni semplice ed economico, ideale per coloro che, essendo agli inizi, vogliono

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Nota di Copyright. Leonardo Fanelli Urbino - Ottobre 05

Nota di Copyright. Leonardo Fanelli Urbino - Ottobre 05 Nota di Copyright Questo insieme di trasparenze (detto nel seguito slide) è protetto dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo e i copyright relativi alle slides

Dettagli

Classe 35 A Anno Accademico 2005-06

Classe 35 A Anno Accademico 2005-06 Classe 35 A Anno Accademico 2005-06 1) In un bipolo C, in regime sinusoidale, la tensione ai suoi capi e la corrente che l attraversa sono: A) in fase; B) in opposizione di fase; C) il fasore della corrente

Dettagli

Strumenti Digitali. Corso di Misure Elettriche http://sms.unipv.it/misure/

Strumenti Digitali. Corso di Misure Elettriche http://sms.unipv.it/misure/ Strumenti Digitali Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Trasmissione Dati. Trasmissione Dati. Sistema di Trasmissione Dati. Prestazioni del Sistema

Trasmissione Dati. Trasmissione Dati. Sistema di Trasmissione Dati. Prestazioni del Sistema I semestre 03/04 Trasmissione Dati Trasmissione Dati Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ Ogni tipo di informazione può essere rappresentata come insieme

Dettagli

Capitolo 10 Macchine elettriche speciali

Capitolo 10 Macchine elettriche speciali Capitolo 10 Macchine elettriche speciali Sezione 10.1: Motori DC senza spazzole Problema 10.1 Macchina sincrona bifase a sei poli a magnete permanente. L ampiezza della tensione di fase a circuito aperto

Dettagli

Esami di Stato 2008 - Soluzione della seconda prova scritta. Indirizzo: Elettronica e Telecomunicazioni Tema di ELETTRONICA

Esami di Stato 2008 - Soluzione della seconda prova scritta. Indirizzo: Elettronica e Telecomunicazioni Tema di ELETTRONICA Risposta al quesito a Esami di Stato 2008 - Soluzione della seconda prova scritta Indirizzo: Elettronica e Telecomunicazioni Tema di ELETTRONICA (A CURA DEL PROF. Giuseppe SPALIERNO docente di Elettronica

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Fr = 1 / [ ( 2 * π ) * ( L * C ) ]

Fr = 1 / [ ( 2 * π ) * ( L * C ) ] 1.6 I circuiti risonanti I circuiti risonanti, detti anche circuiti accordati o selettivi, sono strutture fondamentali per la progettazione dell elettronica analogica; con essi si realizzano oscillatori,

Dettagli

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice ITIS J.F. Kennedy prof. Maurilio Bortolussi 1 Indice 1 I SISTEMI LINEARI E CONTINUI NEL DOMINIO DEL TEMPO 2 1.1 Introduzione........................................ 2 1.2 La funzione di trasferimento...............................

Dettagli

10.1 Corrente, densità di corrente e Legge di Ohm

10.1 Corrente, densità di corrente e Legge di Ohm Capitolo 10 Correnti elettriche 10.1 Corrente, densità di corrente e Legge di Ohm Esercizio 10.1.1 Un centro di calcolo è dotato di un UPS (Uninterruptible Power Supply) costituito da un insieme di 20

Dettagli

Una tensione o una corrente si dice sinusoidale quando la sua ampiezza al variare del tempo è pari a:

Una tensione o una corrente si dice sinusoidale quando la sua ampiezza al variare del tempo è pari a: EGE SNUSODAE Una tensione o una corrente si dice sinusoidale quando la sua ampiezza al variare del tempo è pari a: π y YAX sin( ω t YAX sin(πft YAX sin( t T e precedenti rappresentano tre espressioni diverse

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Elementi di Teoria dei Sistemi Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Elementi

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

Le reti elettriche possono contenere i componenti R, C, L collegati fra di loro in modo qualsiasi ed in quantità qualsiasi.

Le reti elettriche possono contenere i componenti R, C, L collegati fra di loro in modo qualsiasi ed in quantità qualsiasi. e reti elettriche in alternata (- ; - ; --) e reti elettriche possono contenere i componenti,, collegati fra di loro in modo qualsiasi ed in quantità qualsiasi. l loro studio in alternata parte dall analisi

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Capitolo 7 Istruzioni

Capitolo 7 Istruzioni Capitolo 7 Istruzioni Il Capitolo 7 affronta tutti gli aspetti importanti della potenza elettrica. Lo studio del capitolo 7 può seguire immediatamente quello del capitolo 4 o come parte di un successivo

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Riferimenti Bibliografici: Paolo Spirito Elettronica digitale, Mc Graw Hill Capitolo 1 Appunti e dispense del corso

Riferimenti Bibliografici: Paolo Spirito Elettronica digitale, Mc Graw Hill Capitolo 1 Appunti e dispense del corso I Circuiti digitali Riferimenti Bibliografici: Paolo Spirito Elettronica digitale, Mc Graw Hill Capitolo 1 Appunti e dispense del corso Caratteristiche dei circuiti digitali pagina 1 Elaborazione dei segnali

Dettagli

Laurea Magistrale in Ingegneria Energetica. Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013. Stefano Bifaretti

Laurea Magistrale in Ingegneria Energetica. Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013. Stefano Bifaretti Laurea Magistrale in Ingegneria Energetica Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013 Stefano Bifaretti Ad ogni commutazione degli interruttori statici di un convertitore è associata una dissipazione

Dettagli

Guida tecnica N. 7. Il dimensionamento di un azionamento

Guida tecnica N. 7. Il dimensionamento di un azionamento Guida tecnica N. 7 Il dimensionamento di un azionamento 2 Guida tecnica N. 7 - Il dimensionamento di un azionamento Indice 1. Introduzione... 5 2. L azionamento... 6 3. Descrizione generale di una procedura

Dettagli

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A)

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) ELABORAZIONE ANALOGICA O DIGITALE DEI SEGNALI ELABORAZIONE ANALOGICA ELABORAZIONE DIGITALE Vantaggi dell elaborazione

Dettagli

Analisi della risposta dinamica

Analisi della risposta dinamica Analisi della risposta dinamica Risposta dinamica del trasduttore: descrive, in termini di un modello matematico basato su equazioni differenziali alle derivate parziali, le relazioni, basate su opportune

Dettagli

Convertitore analogico digitale (ADC) a n bit riceve in ingresso un segnale analogico e lo codifica in un segnale digitale a n bit

Convertitore analogico digitale (ADC) a n bit riceve in ingresso un segnale analogico e lo codifica in un segnale digitale a n bit ingressi analogici Conversione A/D Convertitore analogico digitale (ADC) a n bit riceve in ingresso un segnale analogico e lo codifica in un segnale digitale a n bit Ogni codice binario rappresenta il

Dettagli

Materiali magnetici. B = vettore induzione magnetica H = vettore intensità del campo magnetico. nel vuoto: B = μo H

Materiali magnetici. B = vettore induzione magnetica H = vettore intensità del campo magnetico. nel vuoto: B = μo H Materiali magnetici B = vettore induzione magnetica H = vettore intensità del campo magnetico nel vuoto: B = μo H La costante μo è la permeabilità magnetica del vuoto: μo = 1,26 10-6 H/m In presenza di

Dettagli

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email:

Dettagli

Elettronica Introduzione a SPICE

Elettronica Introduzione a SPICE Elettronica Introduzione a SPICE Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Introduzione a SPICE 4 aprile 2 Valentino Liberali (UniMI)

Dettagli

Circuiti elettrici lineari

Circuiti elettrici lineari Circuiti elettrici lineari Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Elenco delle misurazioni. Circuito resistivo in corrente

Dettagli

Misure Elettroniche, Sensori e Trasduttori 1

Misure Elettroniche, Sensori e Trasduttori 1 Università degli Studi di Genova Corso di Laurea in Ingegneria Elettronica (CL) Misure Elettroniche, Sensori e Trasduttori Docente: Prof. Giacomo Mario Bisio Esempi di domande d esame. Struttura e principi

Dettagli