esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento"

Transcript

1 ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura a lato è disegnato il grafico G di g( ) = f ( t) dt con f funzione definita sull intervallo [, w] e ivi continua e derivabile. G è tangente all asse nell origine O del sistema di riferimento e presenta un flesso e un massimo rispettivamente per = h e = k. y h k w. Si determinino f () e f (k); si dica se il grafico della funzione presenta punti di massimo o di minimo e se ne tracci il possibile andamento.. Si supponga, anche nei punti successivi e 4, che g() sia, sull intervallo considerato, esprimibile come funzione polinomiale di terzo grado. Si provi che, in tal caso, i numeri h e k dividono l intervallo [, w] in tre parti uguali.. Si determini l espressione di g() nel caso w = e g( ) = e si scrivano le equazioni delle normali a G nei punti in cui esso è tagliato dalla retta y =. 4. Si denoti con R la regione che G delimita con l asse e sia W il solido che essa descrive nella rotazione completa attorno all asse y. Si spieghi perché il volume di W si può ottenere calcolando: ( π) g( ) d Supposte fissate in decimetri le unità di misura del sistema monometrico Oy, si dia la capacità in litri di W. 8 4ARCH4_4_Garagnani.indd 8 5//4 4:9

2 4 4 Archimede problema ARTICOLO A lato è disegnato il grafico G della funzione f ( ) = 4. Si calcolino il massimo e il minimo assoluti di f ().. Si dica se l origine O è centro di simmetria per G e si calcoli, in gradi e primi sessagesimali, l angolo che la tangente in O a G forma con la direzione positiva dell asse.. Si disegni la curva di equazione y = (4 ) e si calcoli l area della parte di piano da essa racchiusa. 4. Sia h() = sen (f ()) con. Quanti sono i punti del grafico di h() di ordinata? Il grafico di h() presenta punti di minimo, assoluti o relativi? Per quali valori reali di k l equazione h() = k ha 4 soluzioni distinte? Questionario. Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di a? 4. Si spieghi perché non esistono poliedri regolari le cui facce siano esagoni. a. Nello sviluppo di (a b ) n compare il termine 8a 4 b 9. Qual è il valore di n? 4. Un solido W ha per base la regione R delimitata dal grafico di f () = e / e dall asse sull intervallo [, ]. In ogni punto di R di ascissa, l altezza del solido è data da h( ) =. Si calcoli il volume del solido. 5. Dei numeri,,,, 6, quanti non sono divisibili né per, né per, né per 5? 6. Un azienda commercializza il suo prodotto in lattine da 5 litri a forma di parallelepipedo a base quadrata. Le lattine hanno dimensioni tali da richiedere la minima quantità di latta per realizzarle. Quali sono le dimensioni, arrotondate ai mm, di una lattina? 7. Il valor medio della funzione f () = sull intervallo chiuso [, k] è 9. Si determini k. 8 4ARCH4_4_Garagnani.indd 8 5//4 4:9

3 ARTICOLO Archimede Del polinomio di quarto grado P() si sa che assume il suo massimo valore per = e = e, ancora, che P() =. Si calcoli P(4). 9. Si determini il dominio della funzione: f ( ) = log ( + 5). Si determinino i valori reali di per cui: 6+ ( + 6) 5 = Durata massima della prova: 6 ore. È consentito l uso della calcolatrice non programmabile. È consentito l uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. Non è consentito lasciare l Istituto prima che siano trascorse ore dalla dettatura del tema. risoluzione del problema. Per il teorema fondamentale del calcolo integrale, nell intervallo [, w], la funzione g è derivabile e per ogni vale la relazione f () = g'(). Dunque, essendo e h punti stazionari per g, si ha f () = f (k) =. Per determinare il grafico qualitativo di f osserviamo che, laddove g cresce, f è positiva, mentre laddove g decresce f è negativa; nel punto di flesso h si annulla la derivata seconda di g, quindi f presenta un punto stazionario che, osservando la concavità della funzione g intorno a tale flesso, non può che rappresentare un punto di massimo per f. Il grafico avrà quindi l andamento proposto in figura. La funzione f raggiunge il punto di minimo assoluto h k w in w. Figura 8 4ARCH4_4_Garagnani.indd 8 5//4 4:9

4 4 4 Archimede. La funzione g ha equazione del tipo g() = a + b + c + d, con a, b, c, d parametri reali, con a non nullo. Poiché in = si annulla sia la funzione sia la sua derivata, si ha che c = d = e quindi ci si riconduce a lavorare con due soli parametri: ARTICOLO g() = a + b. Le condizioni g(w) =, g'(k) =, g"(h) =, supponendo h, k, w non nulli, si traducono algebricamente nelle seguenti relazioni: b b h = k a = ; a ; b w = a dove risulta evidente la divisione dell intervallo [, w] in tre parti uguali.. Per determinare a e b nel caso specifico proposto, poniamo b = a a + b = a + b = a + b = b = = a a = è accettabile perché non nullo; inoltre a e b sono discordi, come la b positività di w = richiede. Quindi g( ) = +, nel dominio [; ]. a I punti di intersezione tra G e la retta di equazione y = risolvendo l equazione: + = + = ( )( ) = = = ± si determinano Le soluzioni accettabili nell intervallo [, ] sono = = +. I coefficienti angolari delle rette richieste passanti rispettivamente per i punti A(; g()) e B + ; g + sono ( ( )) m = = g'( ) m = g' + ( ) = = 8 4ARCH4_4_Garagnani.indd 8 5//4 4:9

5 ARTICOLO Archimede 4 4 Inoltre g( ) g + = (per ipotesi), mentre ( ) = ( + ) + ( + ) = ( + ) ( )( ) = = +. La retta per A ; e coefficiente angolare m = ha equazione y = + 5, mentre quella per B + ; e coefficiente angolare m = ha equazione y = Applichiamo il cosiddetto metodo dei gusci concentrici. La regione delimitata da G, ruotata attorno all asse y, genera un solido il cui volume può essere approssimato come somma di volumi di cilindretti cavi (detti gusci cilindrici) di spessore D, raggio interno, raggio esterno + D e altezza g(). Ogni singolo guscio cilindrico è ciò che si ottiene ruotando un rettangolino di base D e altezza g() lungo una circonferenza di raggio, come suggerisce la figura. Il suo volume è quindi approssimabile moltiplicando l area di tale rettangolino con la lunghezza della circonferenza di rotazione. Sommando i volumi di tutti i gusci si ottiene una stima del volume richiesto: V π g( ) Facendo tendere all infinito il numero dei gusci concentrici, si ottiene il valore esatto del volume espresso tramite l integrale: y Figura g() d Tale volume vale: V = π g ( ) d V = π + d = π + = 5 4 π 84 4ARCH4_4_Garagnani.indd 84 5//4 4:9

6 4 4 Archimede Poiché l unità di riferimento è il decimetro, il volume è già espresso in litri. ARTICOLO V = 8 π dm 5, 45 litri. risoluzione del problema. La funzione f è continua nel suo dominio limitato e chiuso [ ; ]. Per il teorema di Weierstrass, f ammette massimo e minimo assoluti. Osserviamo che la funzione è dispari e, quindi, restringiamola per comodità in un primo momento all intervallo [; ], dove risulta non negativa: Ne segue che, per ]; [, 4 f ( ) = 4 = 4 per [ ; ]. 8 4 f '( ) = 4 4 ( ) =. 4 La funzione ammette il massimo assoluto in = ed esso vale f ( ) =. La disparità della funzione permette di concludere che il minimo assoluto vale ed è assunto nel punto =.. La funzione f è dispari. Dunque il suo grafico è simmetrico rispetto all origine. Dal punto precedente sappiamo che f '() =. Dunque l angolo cercato è arctan 6 6'.. La curva assegnata è l unione dei grafici delle due funzioni continue y f ( ) = 4 e g( ) = 4 ed è rappresentata in figura. Per le simmetrie presenti: ( 4 ) / A = 4 d = 4 = /. Figura 85 4ARCH4_4_Garagnani.indd 85 5//4 4:9

7 ARTICOLO Archimede La funzione h() = sin (f ()) nel dominio [; ] assume il valore π quando f ( ) = + kπ, con k. Risolvendo graficamente quest ultima equazione si osserva che i punti richiesti sono due, le cui ascisse a e a sono tali che α < < α (si veda figura 4). La funzione h è composizione di funzioni continue e dunque è anch essa continua nell intervallo limitato e chiuso [; ]. Il teorema di Weierstrass garantisce, quindi, l esistenza di punti di massimo e di minimo assoluti. a a Figura 4 Rimane da determinare l eventuale esistenza di massimi e minimi relativi non assoluti che andranno cercati tra i suoi punti stazionari e tra gli estremi del dominio (la funzione f non è derivabile in = ). Si ha: y h() = h() = h'() = f '() cos f (). Dunque i punti stazionari di h sono tali che f '() = (cioè = ) o cos f () =, (cioè = a e = a ). Tenendo presente il segno della derivata prima, si conclude che il minimo assoluto di h vale ed è raggiunto agli estremi del dominio. Vi è però anche un minimo relativo in = e tale minimo relativo vale sin. Esistono invece due punti di massimo assoluti ( = a e = a ) e il massimo vale h(a ) = h(a ) =, ma non esistono altri massimi relativi. sin Dal grafico qualitativo di h riportato in figura 5, possiamo affermare che l equazione h() = k ha 4 soluzioni distinte se e solo se a a sin < k <. Figura ARCH4_4_Garagnani.indd 86 5//4 4:9

8 4 4 Archimede risposte al questionario ARTICOLO. Per determinare la misura dell angolo a in figura 6 applichiamo il teorema dei seni: C 4 e quindi 4 sin = sin α A a H Figura 6 B sin a = 4 sin. Si poteva direttamente pervenire a quest ultima relazione osservando che AC sin α = CH = BC sin. Ne segue: 4 sin α = sin =. Poiché il testo del quesito fa esplicito riferimento alla figura, nella quale l angolo a è rappresentato acuto, possiamo concludere che: α = arcsin 4 49'.. In generale in ogni vertice di un poliedro concorrono almeno facce; inoltre la somma delle ampiezze degli angoli che concorrono in quel vertice deve essere minore di 6. Ne segue che non può esistere un poliedro regolare con le facce a forma di esagono regolare perché in ogni vertice in cui convergessero un minimo di tre esagoni regolari si avrebbe come somma delle ampiezze degli angoli almeno = 6 (figura 7), mentre la somma delle facce di un angoloide è minore di 6.. Lo sviluppo della potenza n-esima del binomio dato è n n n n k k ( a b ) = ( a ) ( b ) k. k= Figura ARCH4_4_Garagnani.indd 87 5//4 4:9

9 ARTICOLO Archimede 4 4 Con riferimento agli esponenti, si trova subito che (n k) = 4 e k = 9, da cui k = ed n = 5. In effetti, si ha 4 9 = 5 8 a b ( a ) ( b ). 4. Il volume richiesto può essere pensato come somma degli infiniti volumi infinitesimi dei solidi di altezza h() e area di base e / d (figura 8). Il volume del solido W si determina quindi calcolando l integrale: V e / d e / = = [ ] =. ee f () = e d Figura 8 5. Il minimo comune multiplo tra, e 5 è. Dunque le proprietà di divisibilità per questi numeri si ripetono ciclicamente ogni numeri consecutivi. Nei 6 numeri considerati, si susseguono gruppi di numeri. Tra i primi numeri, quelli che non sono divisibili né per, né per, né per 5 sono solo 8 (e sono:, 7,,, 7, 9,, 9). Dunque, tra tutti i numeri naturali tra e 6 vi sono 8 = 6 numeri che soddisfano la richiesta. Un altro modo di ragionare è pensare che tra tutti i numeri considerati, vi sono 6/, cioè, multipli di ; ma anche multipli di dei quali 6/6, cioè, sono divisibili anche per (e quindi già contati nel gruppo precedente); inoltre vi sono multipli di 5, dei quali / = 6 sono divisibili anche per (e quindi già contati), 4 anche per (già contati); ma, eliminando dai multipli di 5 i numeri divisibili per e quelli divisibili per stiamo escludendo due volte quelli divisibili per entrambi che occorre aggiungere una volta: essi sono. In conclusione, i numeri da escludere perché multipli di almeno uno tra, e 5 sono: + ( ) + ( ) = 44. Dunque i numeri cercati sono 6 44 = Dimostriamo che tra tutti i parallelepipedi di base quadrata di volume fissato, quello che minimizza la superficie è il cubo. Indichiamo con ( > ) la misura in dm del lato del quadrato di base della lattina. L altezza di tale lattina vale V h( ) = = 5 A. base 88 4ARCH4_4_Garagnani.indd 88 5//4 4:9

10 La superficie si può esprimere come 4 4 Archimede ARTICOLO S( ) = 4h( ) + = +. Determiniamo l eventuale minimo nel dominio ]; + [, studiando il segno della sua derivata. 4 S'( ) = + ( ) = 5. 5 Il minimo si ottiene, quindi, per = 5 dm e altezza h( 5) = = 5 dm. 5 La lattina che minimizza la superficie laterale è, in conclusione, quella cubica di spigolo lungo 5 dm 7 mm. 7. La funzione f () = è definita e continua su ogni intervallo chiuso [, k], supponendo k >. Il valor medio integrale della funzione in tale intervallo vale k f ( ) d k d k k k k = = = k che risulta uguale a 9 solo se k = 6, accettabile in quanto positivo. 8. Il fatto che una funzione polinomiale di quarto grado assuma il 4 massimo in due punti distinti del = 5 dominio permette di affermare che il grafico della funzione presenta una simmetria assiale con asse verticale. Nel nostro caso vi è una simmetria assiale rispetto alla retta = 5 (figura 9). Sfruttando tale simmetria è facile concludere che p(4) = p() =. 4 5 Figura 9 Vediamo più in dettaglio la giustificazione di quanto affermato. Poiché p() = p() =, il polinomio p() rispetto alla divisione per il prodotto ( )( ) ha resto (infatti il polinomio p() ha resto nullo). 89 4ARCH4_4_Garagnani.indd 89 5//4 4:9

11 ARTICOLO Archimede 4 4 Esiste dunque un polinomio di secondo grado q() tale che p() = ( )( )q() +. Ma, essendo sia che punti di massimo, ponendo l annullarsi della derivata p'() in tali punti si ottiene q() = e q() =, e dunque q() è della forma q() = a( )( ), con a reale non nullo. In conclusione, p() = a( ) ( ) +. Quest ultima espressione mostra la simmetria assiale sopra descritta. Si può anche determinare il valore di a dall ipotesi p() =, ottenendo a = 4. Quindi p( ) = ( ) 4 ( ) + e ciò dimostra che p(4) =. 9. Il dominio della funzione si determina risolvendo il sistema: log ( + 5) + 5 > equivalente, essendo log una funzione crescente, a > Dunque il dominio della funzione è l intervallo ] 5; ].. Osserviamo innanzitutto che la base della potenza è positiva per ogni valore reale di, infatti + 6 = ( 5) +. Ne segue che l espressione a primo membro è ben definita per ogni reale. Poiché la base non si annulla mai, le soluzioni dell equazione sono sia gli zeri dell esponente sia i valori che rendono la base uguale a. Dunque: 6 + = ( + 6) = 5 I valori cercati sono dunque 4: = ± = = 7. Esercizi analoghi sono stati talora assegnati in altri contesti (gare, ecc.). In generale, va considerato anche il caso in cui la base è e l esponente è un intero pari. commenti Il tema proposto era, complessivamente, alla portata degli studenti del Liceo Scientifico di Ordinamento. 9 4ARCH4_4_Garagnani.indd 9 5//4 4:9

12 4 Archimede La prova era basata non solo sulle conoscenze di analisi, ma anche sulle competenze acquisite in tutto il corso degli studi. Infatti la maggior parte dei quesiti, in particolare i n.,,, 5, 9,, poteva essere affrontata da uno studente al termine del quarto anno, perché si tratta di classici esercizi di trigonometria, geometria solida, domini di funzione ecc. 4 ARTICOLO A completamento di tali quesiti non ne sono mancati altri di analisi: dal calcolo di un valor medio di funzione, a problemi di minimo. Il quesito 8, invece, si presentava apparentemente come standard ma, senza sfruttare la simmetria della situazione, i calcoli risultavano davvero lunghi e dispersivi. D altra parte, come mostrato nello svolgimento, l argomentazione della simmetria era tutt altro che banale, soprattutto per uno studente abituato nel biennio a manipolazioni tecniche piuttosto che a riflessioni profonde sulla divisione nell anello dei polinomi. Rimane una scelta discutibile anche per questo tema la diffusa richiesta (sia nell ultimo punto del primo problema sia nel quesito 4) di determinare volumi mediante procedimenti integrali che non sono esplicitamente in programma. Tuttavia ormai tali procedimenti sono entrati nella prassi didattica proprio al fine di risolvere questi esercizi che vengono assegnati ogni anno, a conferma dell influenza dell Esame di Stato sulla programmazione. I primi punti del problema richiedevano invece capacità di osservazione di grafici, di applicazione di teoremi e concetti cardine del quinto anno, in particolare del teorema fondamentale del calcolo integrale. Per quanto riguarda i problemi è venuto a mancare il classico studio di funzione. Scelta poco rassicurante per gli studenti, ma utile a mettere in luce il ruolo dell analisi, che non si deve ridurre solamente a questo. Addirittura nel problema è stata assegnata per la prima volta sia l equazione della funzione sia il suo grafico, nonostante questo potesse essere ricavato dall equazione con i procedimenti classici. In ogni caso, i primi tre punti del problema erano affrontabili senza troppa fatica, mentre l ultimo punto era sicuramente più impegnativo e semplificabile solo passando a una risoluzione grafica. Sottolineiamo infine che, nonostante il tema di quest anno sia risultato non difficile, nonostante non siano mancati sia quesiti interessanti sia quesiti classici, si avverte un clima di incertezza e di ansia tra docenti e futuri maturandi nel pensare che la presente è l ultima traccia a conclusione di un vecchio ciclo pre-riforma e lascia un enorme interrogativo sulle inevitabili novità del prossimo anno. Elisa Garagnani Liceo Scientifico Archimede San Giovanni in Persiceto (BO) 9 4ARCH4_4_Garagnani.indd 9 5//4 4:9

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli