Ammortamento americano. Ammortamento americano

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ammortamento americano. Ammortamento americano"

Transcript

1 mmortameto amercao La cora lezoe abbamo vto che ell'ammortameto amercao l rmboro del debto zale avvee medate u uco verameto a cadeza, otteuto attravero ua operazoe d cottuzoe d u captale al tao attvo j; per queto parla ache d ammortameto a due ta. Vedamo u eempo umerco. S vuole determare l'eboro complevo auo ecearo a rpagare co ammortameto amercao u debto d Euro, apedo che 10% e j5%. Dato che ell'ammortameto amercao o ha etzoe progreva del debto reduo, la quota tere è cotate ed è par a Euro au. La quota d cottuzoe del fodo d ammortameto è data da Q C,, dove, u Q 7950 Euro. L' eboro totale è qud R , da cu mmortameto amercao Quado j<, l eboro complevo dell ammortameto amercao è empre uperore alla corrpodete rata dell ammortameto fracee; abbamo: R R C a,, dove , Euro. Se vece j ha geerale R C, a u 1 C ( ) C ( u 1 1 v ) C C + C C ( u 1 u C a, 6.145, da coè l eboro dell ammortameto amercao cocde co la rata dello ammortameto fracee. cu 1 + ) C( + 1) 1 u 1

2 mmortameto tedeco Nell'ammortameto tedeco o a tere atcpat, gl tere vegoo pagat atcpatamete, coè all'zo del perodo d competeza. Coderamo u debto zale d 5000 Euro, da ammortzzare 5 a, co quote captale cotat e tere atcpat. S ha: tempo rata q. cap. q. t d. re. tao ,00% partà d tao pavo ovvamete l metodo tedeco è meo coveete per l debtore; vedremo che queto corrpode a u tao tero d coto maggore. Uufrutto e uda propretà Coderamo u geerco pao d ammortameto; chama uufrutto l valore attuale delle quote teree che devoo acora eere corrpote, uda propretà l valore attuale delle retat quote captale. Oervamo che quet valor attual oo calcolat utlzzado u tao d valutazoe * che geerale è dtto dal tao pavo, e che dpede dalle codzo d mercato alla data cu fa la valutazoe. I formule ha U Evdetemete I e P + 1 ( 1+ *) + 1 (1 + *) + P + + (1 + *) + 1 (1 + *) + 1 I C R U V 1 (1 + *) coè la omma d uufrutto e uda propretà cocde co l valore attuale al tempo delle rate ucceve, al tao d valutazoe *. C.

3 Uufrutto e uda propretà Come eempo, coderamo l olto ammortameto talao d u debto zale d 5000 Euro 5 rate aual al tao 10%: ao rata q.cap. q.t. deb. Re. tao % Calcolamo uufrutto e uda propretà al tempo, utlzzado u tao d valutazoe *5%: U Euro, P Euro. Teorema d Maeham Tra uufrutto e uda propretà ute ua mportate relazoe ota come Teorema d Maeham: P D * U dove D dca l debto reduo al tempo., No vedamo la dmotrazoe del teorema d Maeham. Verfchamo la te ell eempo precedete: * 0.05 D U P 0.1.

4 Progett fazar Co l terme "progetto fazaro" o "operazoe fazara" tedamo tutta geeraltà u fluo fazaro d mport C dpobl alle cadeze t. Nel cao delle redte, gl mport C oo tutt potv; el cao d u geerco progetto fazaro gl mport pooo eere a d ego potvo che d ego egatvo. S parla d operazoe d vetmeto eo tretto, e l vettore de flu C preeta u'uca veroe d ego, paado dal ego egatvo al potvo, ad eempo [-,-,+,+,+]. S parla d operazoe d fazameto eo tretto, e l vettore de flu C preeta u'uca veroe d ego, paado dal ego potvo a quello egatvo, ad eempo [+,-] oppure [+,+,-]. Se c oo pù camb d ego, ad eempo [-,+,-] oppure [+,-,+,-], l carattere della operazoe è meo etto. Valore attuale etto Il crtero d celta tra progett fazar pù emplce è quello del valore attuale, che queto coteto prede l ome d valore attuale etto (VN), o ache rultato ecoomco attualzzato (RE), et preet value (NPV), dcouted cah flow (DCF). bbamo gà vto le ue propretà. Il prcpale puto debole d queto crtero è che rchede la pecfcazoe del tao che vee uato per la attualzzazoe; dvere celte del tao pooo dare dver rultat. Vedamo u eempo. Suppoamo d dover ceglere tra le eguet due operazo d vetmeto eo tretto: [-1000, +800, + 00, +100] e [-1000, +00, + 400, +700], etrambe co eme delle cadeze [0, 1,, ]. Quale preferco? Se applco l crtero del VN co 5%, ottego V ( ) V ( )

5 Valore attuale etto qud preferco, dato che V()>V(). Se vece ave coderato u tao 10%, allora V ( ) V ( ) , 1.10 e qud avre preferto, dato che queta volta V()>V(). Neu mtero: «paga» d pù (700) al tempo, qud ta pù alt la pealzzao rpetto ad che «paga» d pù al tempo 1 (800). Il crtero del VN ha qud l prego della emplctà d applcazoe ma l dfetto dell elemeto d oggettvtà dato dalla celta del tao d valutazoe, che può modfcare l rultato del cofroto. Il tao tero d redmeto U crtero puramete oggettvo per la celta tra progett fazar (che però, come vedremo, preeta altr problem) è quello del tao tero d redmeto o TIR, glee IRR (teral rate of retur), che el cao delle operazo d fazameto prede ache l ome d tao tero d coto (TIC). La defzoe è la eguete: l TIR è quel tao * che rede uguale a zero l valore attuale etto della operazoe. Il TIR * è qud la oluzoe della equazoe 1 C (1 + *) 0. bbamo gà cotrato queta equazoe el cao delle redte, el problema della rcerca del tao che rede l valore attuale uguale a u valore prefato. Il TIR è u crtero molto effcace per cofrotare operazo d vetmeto o fazameto eo tretto; vedamo alcu eemp.

6 Il tao tero d redmeto Izamo da u eempo emplcmo. Voglamo cofrotare l acquto d u CTZ d cadeza beale che cota 95 co l acquto d u OT auale che cota 98. S tratta d due emplcme operazo d vetmeto eo tretto: [-95, l00 ; 0, ] e [-98, 100; 0, 1]. I TIR d e d oo le oluzo delle equazo (1 + ) , coè 0 da cu (1 +,04% 100 da cu 95,60% Charamete, ecodo l crtero del TIR preferco, quato ha u TIR maggore. Pù geerale, tra pù progett d vetmeto, preferamo quello co l TIR maggore, quato queto cao l TIR aume l gfcato d redmeto della operazoe d vetmeto. ) Il tao tero d redmeto Rpredamo ora le due operazo d vetmeto gà cofrotate co l crtero del VN: [-1000, +800, + 00, +100] e [-1000, +00, + 400, +700], etrambe co eme delle cadeze [0, 1,, ]. Per calcolare l TIR d e d, dobbamo rolvere le equazo e 1+ (1 + ) (1 + ) (1 + ) v v + 00v + 400v (1 + ) + 100v + 700v 0, 0. 0, o equvaletemete Come abbamo gà vto, quete equazo pooo eere rolte olo umercamete. Utlzzado Excel (vedremo tra u attmo come) trovamo 14.01%, 11.79%; trattado d vetmet, preferamo.

7 Tao tero d coto Coderamo ora l cao del cofroto tra due fazamet: [1000, -500, -100, -600] e [1000, -90, -90, -1090]. Sappamo dre ubto qual è l tao tero d coto d? Per calcolare ta ter d coto, dobbamo rolvere le equazo e 1 + (1 + ) (1 + ) %, 90 (1 + ) 9.00% 1090 (1 + ) 0, da cu L operazoe corrpode a u ammortameto al tao del 9% co rmboro del debto zale u uca quota a cadeza, pertato ache eza fare calcol vedamo che 9%. Tra due operazo d fazameto, ceglamo quella co l tao d coto more, pertato arà preferble. Tao tero d coto Come ecodo eempo, coderamo l cofroto tra pa d ammortameto co metodo talao e metodo tedeco d u debto zale d 5000 Euro 5 rate aue, al tao del 10%. bbamo pertato [5000, -7500, -7000, -6500, , -5500] e [500, -7000, -6500, -6000, -5500, -5000]. Dalla codzoe d chuura fazara, l tao d coto d deve eere par al 10%. Il tao d coto rolve la equazoe (1 + ) (1 + ) (1 + ) (1 + ) da cu rcava umercamete 11,11%. Ovvamete, la correpooe atcpata degl tere del metodo tedeco è meo coveete per l debtore, e traduce u tao d coto uperore. 5

8 TN e TEG Nell ambto del credto al coumo, la ormatva europea mpoe la pubblczzazoe d u dce tetco d coto del fazameto. Il TN (tao auo omale) vee calcolato utlzzao oltato l debto zale e le rate dell ammortameto; l TEG (tao auo effettvo globale) tee coto d tutte le evetual pee acceore ed è pertato l parametro pù corretto (ovvamete, l TEG è empre maggore del TN). Molt fazamet «a tere zero» preetao u TN ullo, ma u TEG o tracurable, come coegueza de umero cot acceor. Calcolo del TIR o del TIC Excel I aaloga a quato vto per l valore attuale, ache per ltir (o TIC, a ecoda de ca) etoo vare fuzo Excel. Le pù emplc oo TIR.COST e TIR.X. La fuzoe TIR.COST ha come put u fluo fazaro corrpodete a cadeze perodche; l corrpodete TIR è quello relatvo al perodo. La fuzoe TIR.X ha vece put ache le cadeze, formato data. Nell' eempo, precedete uamo TIR.COST:

9 Calcolo del TIR o del TIC Excel Calcolo del TIR o del TIC Excel

10 Problem ell uo del TIR Il TIR fuzoa bee quado tratta d cofrotare operazo d vetmeto o d fazameto eo tretto. Nel cao d operazo pù geeral, che preetao pù camb d ego, pooo eerc dver problem: - può o etere u TIR potvo (el eo che la equazoe che defce l TIR o ha oluzo potve) - può etere pù d u TIR potvo (el eo che la equazoe che defce l TIR ha pù oluzo potve). Problem ell uo del TIR Coderamo ad eempo l'operazoe [-100, 10, -40; 0, 1, ]. L' equazoe v 40v o ha radc real, poché < 0. Se vece coderamo l'operazoe [-48, 140, -100; 0, 1, ], otteamo v 100v che ha due oluzo real, che corrpodoo a due TIR: 1 5% e 66,66%. E evdete che queto cao l cocetto d TIR perde d eo. Occorre pertato dagare qual tp d operazo fazare preetao u uco TIR potvo; queto è l'oggetto de teorem d Lev e d Nordtrom. 0 0,

11 Scadeza meda artmetca Defamo aztutto la cadeza meda artmetca d u fluo fazaro come C t t 1 1 C, coè la meda poderata delle cadeze t co pe par alle rate C. Per cofroto, vedremo ella proma lezoe che la cadeza meda fazara o durato è data dalla tea meda ma co pe par a valor attual delle rate: D 1 1 C (1 + ) t C (1 + ) t t, Ivetmet eo lato Poamo oervare che la cadeza meda artmetca o dpede dal tao, metre la durato dpede dal tao. Se 0 la durato cocde co la cadeza meda artmetca, e >0 vedremo che la durato è ferore alla cadeza meda artmetca, quato è ua fuzoe decreecte del tao. Ua operazoe fazara prede l ome d vetmeto eo lato e la cadeza meda artmetca de cot è ferore alla cadeza del prmo rcavo. I u vetmeto eo tretto, tutt cot devoo precedere l prmo rcavo (e d coegueza tutt rcav). I u vetmeto eo lato amo pù tollerat: la cadeza meda artmetca de cot deve precedere l prmo rcavo.

12 Ivetmet eo lato Cofrotamo ad eempo ua operazoe del tpo [-,+,+,+,+] co ua del tpo [-,+,+,+,+,-]. d eempo veto Euro TP co cadeza tra due a e +vado a feteggare alla cadeza. E charo che e l mporto dell ultmo fluo egatvo d è pccolo, l operazoe comuque cofgura come u vetmeto. Se l mporto dell ultmo fluo d è pccolo, la cadeza meda artmetca (che è ua meda poderata) è molto vca alla cadeza del prmo fluo, e qud è atecedete alla data del prmo rcavo. I modo del tutto aalogo, ua operazoe fazara prede l ome d fazameto eo lato, e la cadeza meda artmetca de rcav è atecedete alla cadeza del prmo coto. Eempo ttolo d eempo, coderamo la operazoe [-000, 600, -1000, 000, 600]. No tratta é d u vetmeto é d u fazameto eo tretto, quato abbamo pù camb d ego. No può emmeo eere u fazameto eo lato, quato l prmo fluo è egatvo. La cadeza meda artmetca de cot è par a t C < 1, 000 ed è ferore alla cadeza del prmo rcavo, pertato tratta d u vetmeto eo lato.

13 Ivetmet e fazamet pur U approcco alteratvo è baato u flu d caa cumulat. Data u'operazoe fazara quala, l vettore de ald cotabl è dato dalle omme parzal de flu d caa: S ( t ) C j. j 1 Ua operazoe fazara per cu l vettore S camba ego ua ola volta paado dal ego egatvo a quello potvo prede l ome d vetmeto puro; e vece camba ego ua ola volta paado dal ego potvo a quello egatvo, prede l ome d fazameto puro. Ovvamete, u vetmeto o fazameto eo tretto è ache u vetmeto o fazameto puro. Ivetmet e fazamet pur d eempo, coderamo la operazoe [-000, 600, 1000, 000, -400, 6000; 0, 1,,, 7, 8]. No tratta d u vetmeto eo tretto; o tratta d u vetmeto eo lato quato la cadeza meda artmetca de cot è data da t C > 1; verfchamo che tratta d u vetmeto puro calcolado l vettore de ald cotabl, che camba d ego ua ola volta paado dal ego egatvo a quello potvo: S[-000, + 600, +1600, +4600, +400, +1000].

14 pplcabltà del TIR e del TIC bbamo vto che l crtero del TIR applca molto bee a vetmet e fazamet eo tretto. I teorem d Lev e Nordtrom che eucamo elle lde ucceve motrao che queto crtero può eere applcato ache a fazamet eo lato e a fazamet pur, quato e hao u uco tr potvo, otto mme pote aggutve. l d fuor d quete cla l crtero del TIR o è be defto e può portare a rultat paradoal. Teorema d Lev U vetmeto eo lato che abba alla cadeza u aldo cotable potvo ammette u uco TIR potvo. U fazameto eo lato che abba alla cadeza u aldo cotable egatvo ammette u uco TIC potvo. Oervamo che l aldo cotable a cadeza o è altro che la omma d tutt flu. d eempo, poamo rcoderare la operazoe [-000, 600, -1000, 000, 600]. bbamo gà vto che tratta d u vetmeto eo lato; l aldo cotable a cadeza è par a 00, pertato ete u uco TIR potvo; co la fuzoe TIR d Excel verfchamo che *6,8%.

15 Teorema d Nordtrom U vetmeto puro ha empre u uco TIR potvo. U fazameto puro ha empre u uco TIC potvo. Oervamo che per defzoe u vetmeto puro l vettore de ald cotabl camba ego ua volta ola paado da egatvo a potvo, pertato ache queto cao l aldo cotable a cadeza è potvo. d eempo, poamo rcoderare la operazoe [-000, 600, 1000, 000, -400, 6000; 0, 1,,, 7, 8]. bbamo gà vto che tratta d u vetmeto eo puro; l vettore de ald d caa camba ego ua ola volta, paado da egatvo a potvo. Co Excel verfchamo che *104,8%.

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

Avvertenza. Rendite frazionate

Avvertenza. Rendite frazionate Avverteza Quest lucd soo pesat solo come u auslo per l ascolto della lezoe. No sosttuscoo l lbro d testo Possoo coteere error e svste, che gl studet soo vtat a segalare Redte frazoate L tervallo tra ua

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha:

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha: RENDITE. Pagamet rateal S defsce redta ua sere qualsas d somme rscuotbl (o pagabl a scadeze dverse, o, pù esattamete, u seme d captal co dspobltà scagloata el tempo. Tal captal soo dett rate della redta

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

Analisi economica e valutazione delle alternative

Analisi economica e valutazione delle alternative Aals ecoomca e valutazoe delle alteratve Ig. Lug Cucca (Ph.D.) Producto Egeerg Research WorkGROUP Dpartmeto d Tecologa Meccaca, Produzoe e Igegera Gestoale Uverstà d Palermo Ageda Elemet d calcolo ecoomco

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Rendite a rate costanti posticipate in regime di interessi composti

Rendite a rate costanti posticipate in regime di interessi composti Redte rte cott regme d tere compot Redte rte cott potcpte regme d tere compot /32 Redte rte cott potcpte regme d tere compot 2/32 Redte rte cott potcpte regme d tere compot VALORE ATTUALE DI UNA RENDITA

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati Capitolo 5 Il comportameto dei itemi i regime traitorio 5.1 Geeralità ulla ripota dei itemi el domiio del tempo 5. Ripota al gradio di u itema del primo ordie. 5.3 Eercizi - Ripota al gradio dei itemi

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

CALCOLO ECONOMICO E FINANZIARIO

CALCOLO ECONOMICO E FINANZIARIO CALCOLO ECONOMICO E FINANZIARIO 1. Iteresse e scoto La postcpazoe d ua dspobltà fazara rchede ua certa rcompesa (teresse), vceversa la sua atcpazoe comporta ua dmuzoe dell'mporto orgaro (scoto). Il rsparmatore,

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIAIA Prof. Adrea Berard 999 4. MUTUI E PIANI I AMMOTAMENTO Corso d Maeaca Fazara 999 d Adrea Berard Sezoe 4 0 CONTATTO I MUTUO Il corao d uuo è u operazoe fazara corrspodee ad ua parcolare

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

1. Il principio di non arbitraggio e prime applicazioni

1. Il principio di non arbitraggio e prime applicazioni . Il rco o arbtraggo e rme alcazo. Itrouzoe. Il rco o arbtraggo è l rco u cu baao qua tutt moell valutazoe Faza Matematca. Oortutà arbtraggo è la obltà realzzare u guaago certo eza alcu mego fo. L'ea equlbro

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Indici di Posizione: Medie Algebriche

Indici di Posizione: Medie Algebriche ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a Appareh d sollavameto A moto otuo: Nastr trasportator Sollevator a tazze Forze d erza lmtate; trastor d avvameto e arresto poo rlevat A moto dsotuo: Gru a torre Forze d erza rlevat Classfazoe appareh d

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Lezione 14. Polinomi a coefficienti interi

Lezione 14. Polinomi a coefficienti interi Peequt: Nume m Lezo - Lezoe 4 Polom a coeffcet te I queta lezoe tudamo le fattozzazo d olom a coeffcet azoal Cacuo d quet uò eee tafomato u olomo a coeffcet te tamte la moltlcazoe e u umeo teo o ullo Qud

Dettagli

Problema della Ricerca

Problema della Ricerca Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Moe e Stem Prouzoe Moe e Agortm ea Logtca 21-11 Job-Sop Sceug: appcazoe a cotroo e traffco ferrovaro CARLO MANNINO Sapeza Uvertà Roma partmeto Iformatca e Stemtca Probem ceug I probem ob op ceug geerazzao

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 5 SETTEMBRE 009 C.d.L. ECONOMIA AZIENDALE ESERCIZIO a) Il Sg. Ross ogg (t0) uole acqustare u furgoe del alore d 7000 per la sua atttà commercale. A tal fe egl ersa

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Premessa... 1. Equazioni i differenziali lineari

Premessa... 1. Equazioni i differenziali lineari Apput d Cotroll Autoatc Captolo 3 parte I Sste dac lear Preessa... Equazo dfferezal lear... Evoluzoe lbera ed evoluzoe forzata... Uso della trasforazoe d Laplace... 3 Esepo... 7 Osservazo sulla rsposta

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato.

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato. La valutazoe de credt dervatves ed ua sua applcazoe a dat d mercato. a cura d Alessadro Matta. La valutazoe d credt dervatves..... Ipotes d base.....2 Strumet sgle-ame....2.3 Strumet mult-ame....4.4 Idc

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

1 Laser Doppler Velocimetry

1 Laser Doppler Velocimetry Laer oppler Velocmetry 1 Laer oppler Velocmetry 1.1 Introduzone L anemometra laer (LV) è applcata nel campo dell aerodnamca permentale a partre da prm ann ettanta, ann n cu le apparecchature laer dvennero

Dettagli

COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO

COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO PER LA COSTITUZIONE E LA RIPARTIZIONE DEL FONDO INTERNO DEL 2,00% DELL IMPORTO POSTO A BASE DI GARA DELLE OPERE E DEI LAVORI E DEL 30% DELLA TARIFFA PROFESSIONALE

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Regime di capitalizzazione composta

Regime di capitalizzazione composta Regme d capalzzazoe composa Se s deposa baca, all zo dell ao, ua somma d 000 ad u asso auale uaro =0,05 oppure r=5%, dopo ao ale somma frua u eresse par a I = = 000 0,05 = 50 che aggugedos al capale zale

Dettagli

Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi Copyright 2004 The McGraw-Hill Companies srl

Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi Copyright 2004 The McGraw-Hill Companies srl Mauale d Estmo ttoro Gallera, Gacomo Za, Davde agg Copyrght 24 The McGraw-Hll Compaes srl Caso 5 Stma d u agrumeto d 3 ha ubcato ella paa d Cataa. 1. Cofermeto dell carco e uesto d stma... 2 2. Descrzoe

Dettagli

Criteri di scelta degli investimenti. Materiale didattico per il corso di matematica finanziaria II modulo

Criteri di scelta degli investimenti. Materiale didattico per il corso di matematica finanziaria II modulo Crter d scelta degl estmet Materale ddattco per l corso d matematca azara II modulo Itroduzoe La presete trattazoe s poe come obetto d aalzzare due prcpal crter d scelta degl estmet e de azamet per alutare

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

NOZIONI DI STATISTICA APPLICATE ALLA CHIMICA ANALITICA

NOZIONI DI STATISTICA APPLICATE ALLA CHIMICA ANALITICA NOZIONI DI STTISTIC PPLICTE LL CHIMIC NLITIC NOZIONI GENERLI Il rultto d u determzoe ltc è l egle trumetle o l vlore ttruto d u lt, rultto d u oervzoe drett o pù peo otteuto come tm tttc,, u volt rultto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Variazione approssimata del valore attuale

Variazione approssimata del valore attuale arazoe approssmaa del valore auale Fabo Bell 0 Abbamo vso le prcpal propreà della durao e dvers mod d calcolarla var esemp, ra cu ol a cedola fssa. Roramo alla relazoe che lega la durao alla sesvà del

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

«MANLIO ROSSI-DORIA»

«MANLIO ROSSI-DORIA» «MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL Programmazoe No Leare: Algortm Evolutv Ig. Valero Lacaga Programmazoe o leare: metodche rsolutve METODI d PNL INDIRETTI DIRETTI Codzo ecessare Sstema d vcol Algortm I metod drett forscoo soltato codzo

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

PROPOSTA DI FINANZIAMENTO ESTINGUIBILE MEDIANTE "DELEGAZIONE DI PAGAMENTO" - Mod. DEL 01/10

PROPOSTA DI FINANZIAMENTO ESTINGUIBILE MEDIANTE DELEGAZIONE DI PAGAMENTO - Mod. DEL 01/10 . I 1 76931 T r b. d Bella.. 1 3478/2000 Iscrtta ell'eleco Geerale art. 1 06 T. U.. 3 2042 e ell'eleco Specale ar t. 1 07 T. U.. 32494 Imposta d bollo: eu ro 14,62 (Dec r. M. 24/05/2005), assolta modo

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Approssimazioni di curve

Approssimazioni di curve Approssmazo d curve e superfc Approssmazo d curve Il terme Computer Grafca comprede ua larga varetà d applcazo che rguardao umerevol aspett della ostra vta. U eleco esemplfcatvo d alcu de camp cu essa

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Capitolo 5: Fattorizzazione di interi

Capitolo 5: Fattorizzazione di interi Captolo 5: Fattorzzazoe d ter Trovare fattor d u umero tero grade è ua mpresa assa ardua, e può essere mpossble co le rsorse ogg dspobl. No s cooscoo metod polomal per la fattorzzazoe, come vece accade

Dettagli