Introduzione alla Meccanica: Cinematica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione alla Meccanica: Cinematica"

Transcript

1 Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con le sue cause: perchè e come gli oggetti si muovono. Nel seguito ci occuperemo di fenomeni classici, ovvero: che avvengono a velocità << velocità della luce ( m/s) che avvengono su scale di lunghezza d >> dimensioni atomiche, per corpi di massa m >> massa delle particelle elementari; in tal caso si può parlare di una traiettoria ben definita per un corpo.

2 Cinematica: moto rettilineo Per localizzare un oggetto che si muove su di una retta, è sufficiente conoscere la sua posizione, x(t), rispetto ad un sistema di riferimento: Spostamento: x = x(t 2 ) x(t 1 )[m]. E la distanza percorsa in un tempo t = t 2 t 1 [s]. Velocità media: v = x t [m/s] Velocità istantanea: v = lim t 0 x t [m/s] Attenzione ai segni! La velocità può essere positiva o negativa, ma spesso si intende la velocità scalare, v o v, che è sempre positiva.

3 Moto rettilineo: rappresentazione grafica Diagramma orario, x(t): v: velocità media, è la pendenza della retta che congiunge i punti x(t 1 ) e x(t 2 )

4 Un altro esempio

5 Velocità media e istantanea x(t + t) x(t) v(t) = lim = dx(t) t 0 t dt La velocità istantanea è la derivata di x(t) rispetto al tempo (notazione alternativa: v(t) = ẋ(t)), e la pendenza della tangente alla curva x(t).

6 Accelerazione media e istantanea Accelerazione media: a = v t [m/s2 ] Accelerazione istantanea: a = lim t 0 v t L accelerazione istantanea è la derivata di v(t) rispetto al tempo, ovvero la derivata seconda di x(t) rispetto al tempo: a(t) = dv(t) dt = d2 x(t) dt 2 (notazione alternativa: a(t) = ẍ(t)), ovvero la pendenza della tangente alla curva v(t).

7 Richiamo: calcolo di derivate Derivata della somma di funzioni: d df dg (f(x) + g(x)) = (x) + dx dx dx (x) Se α è costante, d (αf)(x) = αdf dx dx (x) Derivata del prodotto di due funzioni: d (f(x)g(x)) = g(x)df (x) + f(x)dg dx dx dx (x) Derivata di funzione di funzione: d df (f(g(x)) = dx dg (g(x))dg dx (x) funzione derivata y = α y = 0 y = x α y = αx α 1 y = sin x y = cos x y = cos x y = sin x y = tan x y = 1/ cos 2 x y = log x y = 1/x y = e x y = e x

8 Quiz rapido Quanto vale la velocità media nei primi 4 secondi? E la velocità istantanea nell istante t = 4 s? Qual è l accoppiamento corretto fra grafici di velocità e di accelerazione qui accanto?

9 Riassunto Se conosciamo la posizione x(t) in funzione del tempo, possiamo determinare velocità e acelerazione in funzione del tempo come: x = x(t) v = dx dt a = dv dt = d2 x dt 2 Esempio: La posizione di una particella sull asse x è data dalla funzione: x = 8t 2 6t + 4, dove le unità di misura sono m per x, s per t. Trovare le funzioni v(t) e a(t) della particella.

10 Moto uniforme e uniformemente accelerato Moto rettilineo uniforme: Moto uniformemente accelerato: x = x 0 + vt v = costante a = 0 x = x 0 + v 0 t at2 v = v 0 + at a = costante Grafici di posizione, velocità, accelerazione in funzione del tempo per il moto uniformemente accelerato:

11 Moto uniformemente accelerato, relazioni utili Da v = v 0 + at, risolvendo rispetto a t: t = v v 0 a Da x = x 0 + vt at2, sostituendo l espressione per t prima trovata: x = x 0 + v 0 v v 0 a + 1 ( ) 2 v 2 a v0 a ovvero x x 0 = ( v av v ) ( ) 0 v v0 a a = ( ) ( ) v + v0 v v0 2 a da cui un espressione che lega velocità e spazio percorso: v 2 v 2 0 = 2a(x x 0 )

12 Accelerazione di gravità Un oggetto lasciato libero cade verso terra per effetto della forza di gravità. L accelerazione causata dalla gravità è la stessa per qualunque oggetto: in assenza di altre forze (per esempio, resistenza dell aria) tutti gli oggetti cadono con la stessa accelerazione. L accelerazione di gravità si indica per convenzione con la lettera g. Alle nostre latitudini, alla superficie terrestre: g = 9.81m/s 2 All equatore, g = 9.78m/s 2 Al polo nord, g = 9.83m/s 2

13 Caduta libera dei gravi Nell esempio a lato, y 0 = y(t = 0) = 0 v 0 = v(t = 0) = 0 y(t) = 1 2 at2 = 1 2 gt2 Il segno dell accelerazione è dovuto alla scelta del verso dell asse y (positivo verso l alto)

14 Caduta libera dei gravi Un altro esempio

15 Esempio 1 In un cantiere una chiave inglese viene lasciata cadere da ferma da una certa altezza h e arriva al suolo con velocità v = 24 m/s. 1. Quanto tempo ha impiegato a cadere? 2. Da che altezza è caduta? (si trascuri l effetto dell attrito con l aria)

16 Esempio 1 In un cantiere una chiave inglese viene lasciata cadere da ferma da una certa altezza h e arriva al suolo con velocità v = 24 m/s. 1. Quanto tempo ha impiegato a cadere? 2. Da che altezza è caduta? (si trascuri l effetto dell attrito con l aria) 1) v = gt, da cui t = v/g = 2.45 s 2) h = gt 2 /2 = v 2 /(2g) = 29.4 m. Notare che quest ultima relazione è uguale all espressione trovata in precedenza: v 2 v 2 0 = 2a(x x 0 ) con v 0 = 0, x 0 = 0, x = h, a = g

17 Come impostare la risoluzione di un problema Qualche consiglio utile: a) Leggere attentamente il testo b) Fare un disegno scegliendo il sistema di riferimento c) Analizzare il problema: quali relazioni cinematiche si possono usare? d) Risolvere il problema simbolicamente e) Verificare se la risposta è dimensionalmente corretta f) Risolvere il problema numericamente.

18 Esempio 2 Una palla viene lanciata lungo la verticale ascendente con velocità iniziale v 0 = 20 m/s. a) Per quanto tempo rimane in aria? b) Qual è il valore della massima quota raggiunta? c) In quale istante si trova a 15 m sopra il suolo?

19 Soluzioni: a) y(t) = v 0 t gt 2 /2; cerchiamo il tempo t 1 tale per cui y(t 1 ) = 0. Otteniamo: v 0 t 1 gt 2 1/2 = 0, ovvero t 1 = 0 (soluzione banale) e t 1 = 2v 0 /g = 4.08 s. b) La quota massima è raggiunta quando v(t) = v 0 gt = 0, ovvero dopo t 2 = v 0 /g = 2.04 s. Notate che t 1 = 2t 2 : la salita dura lo stesso tempo della discesa. La quota raggiunta è quindi y(t 2 ) = v 0 t 2 gt 2 2/2 = v0/2g 2 = 20.4 m. c) Dobbiamo cercare il tempo t 3 tale per cui y(t 3 ) = y 1 con y 1 = 15 m, ovvero v 0 t 3 gt 2 3/2 = y 1. Questa è un equazione di secondo grado in t che ha come soluzioni t 3 = v 0± v 2 0 2gy 1 g. Le due soluzioni sono t 3 = 0.99 s (in salita) e t 3 = 3.09 s (in discesa). Notare che se y 1 > v 2 0/2g non ci sono soluzioni: il termine sotto radice diventa negativo. In effetti la pallina non sale mai oltre tale livello.

20 Esercizi 1. Si lascia cadere una pietra da un dirupo alto 100 m. Quanto tempo impiega per cadere a) per i primi 50 m, b) per i restanti 50m? 2. Dalla cima di un edificio si lancia verticalmente verso l alto un sasso. Esso raggiunge la massima altezza 1.60 s dopo il lancio. Ricade in strada dove giunge 6.00 s dopo il lancio. Determinare: a) La velocità di partenza del sasso; b) l altezza massima raggiunta sopra l edificio; c) l altezza dell edificio.

21 Esercizi 3. Un camion rallenta da una certa velocità iniziale fino ad una velocità finale di 2.80 m/s. La frenata dura 8.5 s e in questo tempo il camion percorre 40.0 m. Trovare a) la velocità iniziale del camion, b) la sua accelerazione.

22 Soluzioni 1.a) Per percorrere i primi h 1 = 50 m, serve un tempo t 1 tale per cui h 1 = gt 2 1/2 (il corpo cade da fermo), da cui t 1 = 2h 1 /g = 3.2 s. b) Per percorrere h 2 = 100 m, il calcolo analogo dà t 2 = 2h 2 /g = 4.5 s, da cui il tempo necessario per percorrere i secondi 50 m è t 2 t 1 = 1.3 s. 2.a) Il sasso ha velocità v(t) = v 0 gt che diventa nulla dopo t 1 = 1.60 s, da cui v 0 gt 1 = 0 ovvero v 0 = 15.7 m/s. b) In tale tempo il sasso raggiunge l altezza massima h(t 1 ) = v 0 t 1 gt 2 1/2 = m (notare che t 1 = v 0 /g da cui h(t 1 ) = v 2 0/(2g). c) Dopo t 2 = 6 s il sasso si trova ad una quota h(t 2 ) = v 0 t 2 gt 2 2/2 = 82.4 m. Dato che abbiamo assunto quota 0 in cima all edificio, ne consegue che l edificio è alto 82.4 m.

23 3. La velocità finale v f = 2.8 m/s è data da v f = v i at, dove t = 8.5 s, a è l accelerazione (in modulo: notare il segno), v 1 la velocità iniziale. Entrambe sono sconosciute, ma sappiamo che lo spazio percorso è s = v i t at 2 /2 = 40 m. Possiamo impostare un sistema con variabili v i e a, oppure ricavare v i = v f + at dalla prima relazione, portarla nella seconda per ricavare s = v f t + at 2 /2 da cui a = 2s/t 2 2v f /t = 0.45 m/s 2, e poi v i = 6.6 m/s.

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Fisica Generale Modulo I

Fisica Generale Modulo I Fisica Generale Modulo I Docente: Paolo Giannozzi Stanza L1-1-BE ai Rizzi, Tel.: 0432-558216 e-mail: paolo.giannozzi@uniud.it Ricevimento ufficiale Venerdì 10:30-12:30 Orario: Mercoledì 10:30-12:30 Aula

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana Fisica per Medicina Lezione - Matematica e Cinematica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 ottobre 17 Indice Richiami di matematica

Dettagli

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie Problema n. 1: Un velocista corre i 100 m piani in 10 s. Si approssimi il suo moto ipotizzando che egli abbia un accelerazione costante nei primi 16 m e poi un velocità costante nei rimanenti 84 m. Si

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Esercizi in preparazione all esonero

Esercizi in preparazione all esonero Esercizi in preparazione all esonero Andrea Susa Esercizio Un sasso viene lanciato verso l'alto a partire dall'altezza h = 50 rispetto al suolo con una velocità iniziale di modulo = 8,5/. Supponendo il

Dettagli

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione;

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; FISICA Serie 6: Cinematica del punto materiale V I liceo Esercizio 1 Alcuni esempi Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; b)...un corpo

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Moto Rettilineo Uniformemente Accelerato

Moto Rettilineo Uniformemente Accelerato Moto Rettilineo Uniformemente Accelerato E il moto rettilineo con accelerazione costante. Per definizione: a(t) a Velocità e legge oraria sono: v(t)at+v 0 s(t)½at +v 0 t+s 0 (v 0 è la velocità iniziale

Dettagli

Lezione 2 - Lo studio del moto

Lezione 2 - Lo studio del moto Lezione 2 - Lo studio del moto Tradizionalmente lo studio del moto viene diviso in cinematica e dinamica Cinematica pura descrizione del moto Dinamica investigazione sulle cause del moto con l applicazione

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Cap 1 - Cinematica (Mazzoldi)

Cap 1 - Cinematica (Mazzoldi) 1 DEFINIZIONI COMUNI NELLA MECCANICA Cap 1 - Cinematica (Mazzoldi) Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://cms.pg.infn.it/santocchia/

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Nozioni di meccanica classica

Nozioni di meccanica classica Nozioni di meccanica classica CORSO DI LAUREA IN TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA - Prof. Marco Maggiora Jacopo Pellegrino - jacopo.pellegrino@infn.it Introduzione Introduzione

Dettagli

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia

Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia Esercitazioni di Corso di Laurea in Biotecnologie e Geologia Ninfa Radicella Università del Sannio 6 Aprile 2016 Moto in due dimensioni Cinematica delle particelle in moto su un piano Cosa ci serve: Vettore

Dettagli

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento L accelerazione Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento si può realizzare anche

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006 CORSO A 13 OTTOBRE 2006 Esercizio 1 - Ad una valigia di massa 6 Kg appoggiata su un piano xy privo di attrito vengono applicate contemporaneamente due forze costanti parallele al piano. La prima ha modulo

Dettagli

Esercitazione 1. Soluzione

Esercitazione 1. Soluzione Esercitazione 1 Esercizio 1 - Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE... 3 MOTO DEL PROIETTILE... 3 MOTO CIRCOLARE UNIFORME... 5 MODULO DELL

Dettagli

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Animalium, forse il primo trattato di Biomeccanica. Questo

Dettagli

Lezione 1 Vettori e cinematica

Lezione 1 Vettori e cinematica Lezione 1 Vettori e cinematica 1.1 Vettori Componenti dati modulo e direzione: A x = A cos θ A y = A sin θ Modulo e direzione date le componenti: A = Ax + A y θ = arctan A y A x Serway, Cap 1 I.41 1 Una

Dettagli

GRANDEZZA SCALARE e GRANDEZZA VETTORIALE

GRANDEZZA SCALARE e GRANDEZZA VETTORIALE GRANDEZZA SCALARE e GRANDEZZA VETTORIALE In fisica, una grandezza scalare è una grandezza fisica che viene descritta, dal punto di vista matematico, da uno scalare, cioè da un numero reale associato ad

Dettagli

Scheda I a. [a] = Facoltà di FARMACIA. v= x = barrare!

Scheda I a. [a] = Facoltà di FARMACIA. v= x = barrare! Facoltà di FARMACIA Scheda I a a.a. 2009 2010 ESE del FISICA Cognome nome matricola a.a. di immatricolazione firma N Quanto vale la accelerazione di gravità? Si scriva l espressione della velocità e dello

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Dispense del corso di Fisica per Farmacia del Prof. Claudio Luci

Dispense del corso di Fisica per Farmacia del Prof. Claudio Luci Anno Accademico 2003-2004 Dispense del corso di Fisica per Farmacia del Prof. Claudio Luci http://www.roma1.infn.it/people/luci/corso_farmacia.html Parte I Meccanica del punto Meccanica dei fluidi LIBRI

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

GRANDEZZA FISICA. EQUAZIONI DIMENSIONALI controllo omogeneità relazioni COSTANTI FONDAMENTALI

GRANDEZZA FISICA. EQUAZIONI DIMENSIONALI controllo omogeneità relazioni COSTANTI FONDAMENTALI MECCANICA parte I a - GRANDEZZE FISICHE E DIMENSIONI - SISTEMI DI UNITA DI MISURA - SCALARI E VETTORI - SPOSTAMENTO, VELOCITA, ACCELERAZIONE - PRINCIPI DELLA DINAMICA - FORZA GRAVITAZIONALE - MASSA, PESO,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccardo mail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

3)QUAL È LA LEGGE ORARIA DEL MOTO RETTILINEO UNIFORME? (PUNTI=1) 6)DESCRIVERE GLI STRUMENTI CON LE CARATTERISTICHE USATE NELL ESPERIENZA.

3)QUAL È LA LEGGE ORARIA DEL MOTO RETTILINEO UNIFORME? (PUNTI=1) 6)DESCRIVERE GLI STRUMENTI CON LE CARATTERISTICHE USATE NELL ESPERIENZA. Alunno Classe. UNA LEGGE CHE LEGA VARIE GRANDEZZE FISICHE AL TEMPO NEI MOTI. E UNA LEGGE SUL TEMPO E LO SPAZIO. E UNA LEGGE CHE VALE SOLO NEL CASO DEL TEMPO POSITIVO. E UNA LEGGE CHE VALE QUANDO IL MOTO

Dettagli

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta: Esercizi su analisi dimensionale: 1. La legge oraria del moto di una particella e` x(t)=a t 2 +b t 4, dove x e` la posizione della particella e t il tempo. Si determini le dimensioni delle costanti a e

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli

STATICA = studia le condizioni di equilibrio dei corpi

STATICA = studia le condizioni di equilibrio dei corpi IL MOTO MECCANICA = parte della fisica che studia il movimento dei corpi CINEMATICA = descrive il moto dei corpi senza indagare le cause che lo hanno prodotto DINAMICA = studia il moto dei corpi in relazione

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2008/2009, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2008/2009, Fisica 1 Dr. Adrian MANESCU Tel. 071-0 4603, a.manescu@alisf1.univpm.it http://www.isf.univpm.it/isf/manescu/manescu.html http://www.isf.univpm.it/isf/students.htm Dipartimento SAIFET Sezione di Scienze Fisiche

Dettagli

L accelerazione. Quando la velocità cambia.

L accelerazione. Quando la velocità cambia. L accelerazione Quando la velocità cambia. Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò 1 ESERCIZI CINEMATICA UNIDIMENSIONALE Dott.ssa Silvia Rainò CALCOLO DIMENSIONALE 2 Una grandezza G in fisica dimensionalmente si scrive [G] = [M a L b T g K d ] Ove a,b,g,d sono opportuni esponenti. Ad

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizi di Cinematica Esercizio 1 3 La posizione di un punto materiale in moto è data dall equazione vettoriale r(t) = 6ti 3t 2 2 j + t k. Determinare la velocità e l accelerazione del punto. Esercizio

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale E ` la parte piu` elementare della meccanica: studia il moto dei corpi senza riferimento alle sue cause Il moto e` determinato se e` nota la posizione del corpo in funzione

Dettagli

<> TEST N 2 Quale delle seguenti grandezze non è una grandezza vettoriale? ( più di una risposta) A) velocità B) forza C) tempo D) accelerazione

<> TEST N 2 Quale delle seguenti grandezze non è una grandezza vettoriale? ( più di una risposta) A) velocità B) forza C) tempo D) accelerazione ESERCIZI E TEST SUI VETTORI (10) TEST N 1 Due vettori della stessa intensità devono essere sommati: un vettore è diretto ad est, un altro ad ovest. L intensità del vettore risultante è: A) 0 B) 1 C) -4

Dettagli

Esercizi di Cinematica Unidimensionale. Fisica con Elementi di Matematica 1

Esercizi di Cinematica Unidimensionale. Fisica con Elementi di Matematica 1 Esercizi di Cinematica Unidimensionale 1 MOTO UNIFORME a = 0, v = cost,, x = x1 x +vt 2 Moto Uniformemente Moto Uniformemente Accelerato Accelerato a = cost. v = v 0 +at x = x 0 +v 0 t+at 2 /2 v 2 - v0

Dettagli

Prof. Roberto Fantini 2003

Prof. Roberto Fantini 2003 3 www.robertofantini.it Nota: Questa dispensa, non è protetta da copyright. La metto a disposizione di chiunque senza restrizioni eccetto quelle imposte dalla vostra onestà. Distribuitela e duplicatela

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

IL MOTO DEI PROIETTILI

IL MOTO DEI PROIETTILI IL MOTO PARABOLICO PROF. DANIELE COPPOLA Indice 1 IL MOTO DEI PROIETTILI ------------------------------------------------------------------------------------------------ 3 2 MOTO DI UN PROIETTILE SPARATO

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Fisica 1 Anno Accademico 2011/2011

Fisica 1 Anno Accademico 2011/2011 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO 1 VELOCITÀ 1. (Da Veterinaria 2010) In auto percorriamo un primo tratto in leggera discesa di 100 km alla velocità costante di 100 km/h, e un secondo tratto in salita di 100 km alla velocità costante di

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

Domande ed esercizi sul moto rettilineo uniformemente accelerato

Domande ed esercizi sul moto rettilineo uniformemente accelerato 1. Come si definisce la grandezza fisica accelerazione e qual è l unità di misura nel SI? 2. Come si definisce l accelerazione istantanea? 3. Come si definisce il moto rettilineo uniformemente accelerato?

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

Meccanica: Introduzione. Lo Studio del moto degli oggetti

Meccanica: Introduzione. Lo Studio del moto degli oggetti Meccanica: Introduzione Lo Studio del moto degli oggetti 1 Grandezze fisiche n Scalari : esprimibili mediante singoli numeri (es. massa,temperatura, energia, carica elettrica ecc.) n Vettoriali : per essere

Dettagli

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4 Funzioni lineari Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente

Dettagli

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro Energia e Lavoro Energia, Energia potenziale, Energia cineca Definizione di lavoro Conce7o di Energia Nella meccanica classica l energia è definita come quella grandezza fisica che può venire "consumata"

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Il moto Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Traiettoria: è il luogo dei punti occupati dall oggetto nel suo movimento Spazio percorso:

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi SINTESI E APPUNTI Prof.ssa Elena Spera 1 SISTEMI DI RIFERIMENTO Il moto è relatio Ogni moto a studiato dopo aere fissato un sistema di riferimento,

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo.

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Il Mot Le caratteristiche del moto Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Le caratteristiche del moto Immagina di stare seduto in treno

Dettagli

Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a +

Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a + Funzioni. Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente essendo

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli