Compito A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Compito A"

Transcript

1 Compito A 1. Data l iperbole Γ di equazione y = (2x-1)/(3x+6), individua i punti A e B di intersezione della bisettrice del secondo e quarto quadrante con Γ (risolvi il problema sia graficamente che analiticamente). Successivamente, detto C il centro dell iperbole, calcola l area del triangolo ABC. 2. Determina i punti di intersezione tra la curva di equazione x^2+y^2-6y=0 e la curva di equazione y=1/3*x^2. Successivamente individua i punti di intersezione tra la curva x^2+y^2-6y=0 e la curva di equazione 36x^2+y^2-36=0 (risolvi i problemi sia graficamente che analiticamente). 3. I punti A e B sono comuni a una parabola e a un iperbole. Trova le loro equazioni sapendo che: - il punto A ha coordinate (3,1); - la parabola ha vertice nell origine e asse di simmetria x=0; - l iperbole ha asse non trasverso di equazione x=0, ha come vertici i punti A e B e la lunghezza del suo asse non trasverso è 1. Successivamente determina le coordinate dei fuochi dell iperbole e del fuoco della parabola e le equazioni degli asintoti dell iperbole. (rappresenta la parabola, l iperbole, i punti A e B, i fuochi e gli asintoti). 4. Rappresenta graficamente l iperbole di equazione 9x^2-16y^2+36x+128y-364=0 e determina analiticamente le coordinate dei suoi punti di intersezione con l asse delle ascisse. 5. Considera la circonferenza di equazione x^2+y^2=9 e l iperbole di equazione y=k/x. Quanto deve valere k affinché l iperbole sia tangente alla circonferenza? Motiva la risposta. Che cosa accade se k è maggiore di quel valore? Ripartizione percentuale del lavoro da svolgere 1=15%+10% 2=10%+15% 3=10%+10% 4=10%+5% 5=15%

2 Risoluzione 1. L intersezione tra la retta e l iperbole si trova risolvendo un sistema che conduce alla seguente equazione: che ha le seguenti soluzioni: sostituendo nella retta y=-x si trovano le y corrispondenti (punti B e A sul grafico). Per calcolare l area del triangolo, prima calcoliamo la distanza AB: si trova (applicando la formula della distanza tra due punti, permettendo alla calcolatrice di aiutarci per le semplificazioni)

3 cioè circa poi calcoliamo l altezza CD applicando la formula della distanza punto-retta tra il punto C e la retta y=-x. Per applicare la formula scriviamo la retta in forma implicita: x+y=0 (cioè a=1, b=1, c=0). Si trova (dopo avere razionalizzato il denominatore): che è all incirca uguale a 0,94. L area del triangolo è pari a (base*altezza)/2 cioè: che è all incirca 1, La prima equazione si può scrivere come x^2=-y^2+6y; sostituendo nella y=1/3*x^2 si giunge alla seguente eq.: y=1/3*(-y^2+6y) cioè 1/3y^2-2y+y=0 cioè 1/3y^2-y=0 che è un equazione spuria. Mettendo in evidenza y si trovano immediatamente le soluzioni y1=0 e y2=3. Dovendo essere y=1/3x^2, sostituiamo i valori di y1 e di y2 per trovare le x corrispondenti. Si ottengono in definitiva tre punti di intersezione: P1: y1=0 x1=0 (soluzione doppia) P2: y2=3 x2=3 P3: y3=3 x3=-3 La soluzione grafica è facilissima da ottenere ed è di grande aiuto per interpretare i risultati analitici. In meno di un minuto osserviamo dalle rispettive equazioni che la circonferenza ha centro (0,3) e raggio 3 mentre la parabola ha vertice (0,0) e passa per il punto (3,3):

4 Come si vede nel punto (0,0) il contatto è doppio: parabola e circonferenza hanno la stessa retta tangente. Per quanto riguarda l intersezione tra circonferenza ed ellisse, di nuovo dall equazione della circonferenza ricaveremo x^2=-y^2+6y che inseriremo nell equazione dell ellisse. Otteniamo: 36*(-y^2+6y)+y^2-36=0 che è un equazione di secondo grado che ammette le seguenti soluzioni: y1=6 e y2=6/35 Inserendo questi valori nella x^2=-y^2+6y troveremo le corrispondenti x: con y1=6 si ottiene x1=0 (soluzione doppia) con y2=6/35 si ottiene x^2=1224/1225 che dà luogo a due soluzioni. Quindi abbiamo in tutto tre punti di intersezione: y1=6 x1=0 (punto doppio) y2=6/35 (circa 0,17) x2=-6sqrt(34)/35 (circa -1) y3=6/35 x3= 6sqrt(34)/35 (circa 1) Graficamente (dopo aver scritto l eq. dell ellisse nella forma canonica x^2+y^2/36=1) si ha: 3. Una parabola che ha vertice nell origine e asse x=0 ha equazione del tipo y=ax^2 (infatti sia b che c devono essere nulli). Per passare per il punto (3,1) è necessario che 1=a*3^2 cioè che a=1/9 Quindi la parabola ha equazione y=1/9x^2 Per le informazioni date sulla parabola e sull iperbole, il punto B è il simmetrico di A rispetto all asse y. Cioè B ha coordinate (-3,1). La lunghezza dell asse trasverso dell iperbole coincide con la distanza AB che è 6 quindi a=3. Il centro ha coordinate (0,1). Sapendo che la lunghezza dell asse non trasverso è 1 possiamo scrivere l equazione dell iperbole:

5 x^2/9-(y-1)^2=1 a=3 b=1 quindi c=sqrt(10) ; i fuochi sono F1(-c,1) e F2(c,1). Gli asintoti (diagonali del rettangolo) hanno coefficiente angolare +/- b/a e passano per il centro della conica quindi hanno equazione y-1= +/- b/a * ( x-0) cioè y=-1/3 x+1 e y=1/3 x L esercizio si risolve con il metodo del completamento dei quadrati: 9(x^2+4x)-16(y^2-8y)=364 9[(x+2)^2-4]-16[(y-4)^2-16]=364 9(x+2)^2-16(y-4)^ =364 9(x+2)^2-16(y-4)^2=144 (x+2)^2/16 (y-4)^2/9 =1 Il centro è dunque (-2,4) e i semiassi sono 4 e 3.

6 Le intersezioni con l asse x si trovano risolvendo l equazione 9x^2+36x-364=0 Si trova: 5. Mettendo a sistema circonferenza e iperbole si trova: x^2+(k/x)^2-9=0 Moltiplicando per x^2 si ottiene: x^4+k^2-9x^2=0 Cioè x^4-9x^2+k^2=0 Ponendo t=x^2, si ha: t^2-9t+k^2=0 Delta=81-4k^2 La condizione di tangenza è delta=0 cioè k^2=81/4 cioè k=+/- 9/2 Graficamente si ha: Se k è maggiore di 9/2 (o minore di -9/2) l iperbole è esterna; se k è compreso tra -9/2 e 9/2 (pur essendo diverso da 0), l iperbole è secante.

7 Compito B 1. Data l iperbole Γ di equazione y = (-2x-1)/(-3x+6), individua i punti A e B di intersezione della bisettrice del primo e del terzo quadrante con Γ (risolvi il problema sia graficamente che analiticamente). Successivamente, detto C il centro dell iperbole, calcola l area del triangolo ABC. 2. Determina i punti di intersezione tra la curva di equazione x^2+y^2+6y=0 e la curva di equazione y = - 1/3*x^2. Successivamente individua i punti di intersezione tra la curva x^2+y^2+6y=0 e la curva di equazione 36x^2+y^2-36=0 (risolvi i problemi sia graficamente che analiticamente). 3. I punti A e B sono comuni a una parabola e a un iperbole. Trova le loro equazioni sapendo che: - il punto A ha coordinate (3,-1); - la parabola ha vertice nell origine e asse di simmetria x=0; - l iperbole ha asse non trasverso di equazione x=0, ha come vertici i punti A e B e la lunghezza del suo asse non trasverso è 1. Successivamente determina le coordinate dei fuochi dell iperbole e del fuoco della parabola e le equazioni degli asintoti dell iperbole. (rappresenta la parabola, l iperbole, i punti A e B, i fuochi e gli asintoti). 4. Rappresenta graficamente l iperbole di equazione 9x^2-16y^2-36x+128y-364=0 e determina analiticamente le coordinate dei suoi punti di intersezione con l asse delle ascisse. 5. Considera la circonferenza di equazione x^2+y^2=16 e l iperbole di equazione y=k/x. Quanto deve valere k affinché l iperbole sia tangente alla circonferenza? Motiva la risposta. Che cosa accade se k è minore di quel valore? Ripartizione percentuale del lavoro da svolgere 1=15%+10% 2=10%+15% 3=10%+10% 4=10%+5% 5=15%

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Problemi sull ellisse

Problemi sull ellisse 1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Problemi sull iperbole

Problemi sull iperbole 1 ricerca dell equazione dell iperbole Scrivere l equazione, riferita agli assi, dell iperbole che ha l asse delle ascisse come asse traverso, le rette xx yy = 0, xx + yy = 0 come asintoti e passa per

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

CLASSE 3^ C LICEO SCIENTIFICO 7 Aprile 2017 Geometria analitica Statistica

CLASSE 3^ C LICEO SCIENTIFICO 7 Aprile 2017 Geometria analitica Statistica CLASSE ^ C LICEO SCIETIFICO 7 Aprile 07 Geometria analitica Statistica Problema L ellisse interseca l asse x nei punti A e B e l ascissa di A è negativa. Detti rispettivamente P e Q i punti del primo e

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Ripasso Formule sulle parabole:

Ripasso Formule sulle parabole: Ripasso Formule sulle parabole: Equazione generica: Y = ax 2 + bx + c a Apertura della parabola: 1/2p c Punto d incontro con l asse delle Y p Distanza focale: Fuoco direttrice (2 FV) Radici: Risoluzione

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Coniche - risposte 1.9

Coniche - risposte 1.9 Coniche - risposte. CAMBI DI COORDINATE ) ) cosπ/) sinπ/). a. Rotazione di π/, la matrice di rotazione è = sinπ/) cosπ/) ) ) ) X = Y X = Quindi le formule sono: cioè: Y = X e inversamente Y = = Y X = b.

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

RECUPERO LA CIRCONFERENZA, L ELLISSE, L IPERBOLE

RECUPERO LA CIRCONFERENZA, L ELLISSE, L IPERBOLE RECUPERO LA CIRCONFERENZA, L ELLISSE, L IPERBOLE Il grafico di una circonferenza Rappresenta graficamente la circonferenza di equazione 0 dopo aver determinato le coordinate del centro e la misura del

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti)

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti) CLASSE ^ A LICEO SCIENTIFICO 5 Febbraio 05 Geometria analitica: la parabola (recupero per assenti). Dopo aver determinato l equazione della parabola, con asse parallelo all asse y, passante per i punti

Dettagli

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4). . Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

PIANO CARTESIANO E RETTA

PIANO CARTESIANO E RETTA PIANO CATESIANO E ETTA Distanza tra due punti: d(a, B) = (x A x B ) + (y A y B ) Distanza tra due punti su una retta di coefficiente angolare m: d(a, B) = x A x B + m Punto medio di un segmento: M = (

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

LE CONICHE. CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia. Con materiale liberamente scaricabile da Internet.

LE CONICHE. CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia. Con materiale liberamente scaricabile da Internet. LE CONICHE CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia Con materiale liberamente scaricabile da Internet www.domenicoperrone.net 1 Prima di iniziare lo studio delle coniche facciamo dei richiami

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1 GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico CONICHE in A ~ (C) Punti propri (x P,y P ) hanno coordinate omogenee [(x P,y P, )], Punti impropri hanno coordinate omogenee [(l,m, )]. L equazione di una conica in coordinate non omogenee (x,y) C: a,

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

Esercizi e problemi sulla parabola

Esercizi e problemi sulla parabola Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

PROIEZIONI ORTOGONALI: SEZIONI CONICHE

PROIEZIONI ORTOGONALI: SEZIONI CONICHE www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.

Dettagli

Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico.

Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico. Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Equazioni e disequazioni a) Equazioni e disequazioni di primo e secondo grado.

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

ESERCIZI DI GEOMETRIA ANALITICA

ESERCIZI DI GEOMETRIA ANALITICA ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE. 16 20 20 0 5 5 dovendo essere

SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE. 16 20 20 0 5 5 dovendo essere SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE Problema 1: a) y = 4 x 4 x + x = 0 y = x x 1 x 1 C. E.: 4 x 0 x y = 4 x y = 4 x x + y = 4 semiocirconferenza superiore di centro l'origine e raggio C. C.:

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 014-015 Classe: 3 H Docente: Paola Zanolo Disciplina: Matematica Ripassare tutto il programma preparando un formulario per

Dettagli

7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza

7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza 7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

Geometria analitica piana

Geometria analitica piana Capitolo 4 Geometria analitica piana 4.1 Il riferimento cartesiano Un sistema di riferimento cartesiano del piano è costituito da una coppia di rette orientate, dette asse x o asse delle ascisse e asse

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

GEOMETRIA ANALITICA 2

GEOMETRIA ANALITICA 2 GEOMETRIA ANALITICA CONICHE Dopo le rette, che come abbiamo visto sono rappresentate da equazioni di primo grado nelle variabili x e y (e ogni equazione di primo grado rappresenta una retta), le curve

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9 Macerata 4 marzo 015 classe M COMPITO DI RECUPERO ASSENTI Problema 1 y = k x + 5k x 4 + k E dato il fascio di parabole di equazione ( ) ( ). SI ha quindi la concavità rivolta k = si ha la parabola degenere

Dettagli

D2. Problemi sulla retta - Esercizi

D2. Problemi sulla retta - Esercizi D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Geometria analitica piana

Geometria analitica piana Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Par_CircoRiassunto2.notebook. February 27, Conoscenza e comprensione pag. 20 LA PARABOLA

Par_CircoRiassunto2.notebook. February 27, Conoscenza e comprensione pag. 20 LA PARABOLA LA PARABOLA Conoscenza e comprensione pag. 20 (SCHEDA RIASSUNTIA) 1) Definisci la parabola come luogo di punti e dai una descrizione delle caratteristiche geometriche di questa curva R. pag. 75: Parabola

Dettagli

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a Prova scritta di Geometria 8//26, Soluzioni Ing. Meccanica a.a. 25-6 Esercizio È data la conica γ : 3x2 2xy + 3y 2 + 8x + 3 =. a) Verificare che la conica è un ellisse e determinarne la forma canonica.

Dettagli

~ E 2 (R) si determini l equazione cartesiana del

~ E 2 (R) si determini l equazione cartesiana del In Esercizio 1 ~ E (R) si determini l equazione cartesiana del luogo dei punti equidistanti dal punto F=(1,) e dalla retta y=x. a) Si classifichi la conica così ottenuta; b) Si determini l asse e il vertice;

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio.

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio. LA CIRCONFERENZA Rivedi la teoria L'equazione della circonferenza e le sue caratteristiche La circonferenza eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato centro;

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

Esercitazione per la prova di recupero del debito formativo

Esercitazione per la prova di recupero del debito formativo LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli