DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE"

Transcript

1 DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g., 0 e 1). insieme discreto: un insieme che contiene un numero finito oppure numera-bilmente infinito di elementi. variabile casuale discreta: variabile casuale i cui possibili valori costituiscono un insieme discreto. La funzione di distribuzione di probabilità (pmf o pdf) di una rv discreta è data x da p(x) = P (X = x) = P ( s S : X(s) = x) con: p(x) 0, p(x) = 1

2 Esempio P somma Il grafico mostra la distribuzone delle probabilità che nel lancio di due dadi (non truccati) la somma delle facce superiori assuma uno dei valori possibili, cioè un intero nell intervallo [2,12].

3 Variabili di Bernoulli La pmf di una qualunque rv di Bernoulli può essere messa nella forma p(1) = α e p(0) = 1 α, con 0 < α < 1. Per indicare ciò, scriviamo p(x; α). Questo costituisce un esempio particolare del caso generale: Se p(x) dipende da una quantità che può assumere più valori, ciascuno dei quali determina una diversa distribuzione di probabilità, si dice che la pmf dipende da un parametro, e la collezione di tutte le pmf per i diversi valori del parametro si dice una famiglia di distribuzioni di probabilità. p(x; α) = 1 α se x = 0 α se x = 1 0 altrimenti definisce la famiglia di distribuzioni di Bernoulli

4 Funzione di distribuzione cumulativa pmf cdf Funzione di distribuzione cumulativa (cdf ) di una rv discreta X con pmf p(x): F (x) = P (X x) = p(y) y:y x Per ogni x, F (x) è la probabilità che il valore osservato di X sia al più x cdf pmf Per ogni coppia di numeri a e b con a b, P (a X b) = F (b) F (a ) dove a è il massimo valore di X strettamente minore di a. Se i valori di X, a e b sono interi, P (a X b) = F (b) F (a 1) In particolare: P (X = a) = F (a) F (a 1)

5 Funzione di distribuzione cumulativa/2 Si osservino a partire da un certo istante le nascite in un ospedale. Sia p = P (M) la probabilità che nasca un maschio (M), e X la rv del numero di nascite osservate perchè nasca il primo maschio. Allora, p(1) = P (X = 1) = P (M) = p p(2) = P (X = 2) = P (F M) = P (F ) P (M) = (1 p)p In generale, p(3) = P (X = 3) = P (F F M) p(x; p) = = P (F ) P (F ) P (M) = (1 p) 2 p { (1 p) x 1 p se x = 1, 2, 3,... 0 altrimenti che appartiene alla famiglia delle distribuzioni di Bernoulli ed ha parametro p, dal quale dipendono i valori di p(x).

6 Funzione di distribuzione cumulativa/3 La cdf di questa pmf è: F (x) = x (1 p) y 1 p = p y=1 x 1 y=0 (1 p) y Poiché k a y = (1 a) y=o k y=o ay 1 a = 1 + a ak a a 2... a k+1 1 a = 1 ak+1 1 a ponendo a = 1 p e k = x 1 si ottiene F (x) = 1 (1 p) x. Siccome F = cost tra interi positivi { 0 se x < 1 F (x) = 1 (1 p) [x] se x 1 dove [x] è il più grande intero x (es., [2.8] = 2. F (x) indica la probabilità di dover attendere al più x nascite per vedere il primo maschio.

7 Valore di aspettazione Sia X una rv discreta che può assumere l insieme D di valori ed ha pmf p(x). Si dice valore di aspettazione o valor medio di X, denotato con E(X) o µ x, E(X) µ x = xp(x) x D E(X): media (dei valori x) pesata (con i pesi p(x)). In generale E(X) (µ x ) non assume uno dei valori di X Se X è una rv di Bernoulli, E(X) = 0 p(0) + 1 p(1) = 0(1 p) + 1p = p Se X è quella dell esempio, E(X) = 1/p. La definizione si estende ad una funzione h(x): E(h(X)) = x D h(x)p(x)

8 Dalla definizione, Valore di aspettazione/2 E(aX + b) = a E(X) + b E(aX) = ae(x): cambiamento di scala E(X + b) = E(X) + b: offset dello zero V (X) σ 2 X = x D Varianza (x µ) 2 p(x) = E [ (X µ) 2] Dalla definizione: Deviazione standard σ X = σx 2 V (X) = E(X 2 ) [E(X)] 2, σ 2 ax = a 2 σ 2 X, V (ax + b) σ 2 ax+b = a2 σ 2 X σ 2 X+b = σ2 X

9 DISTRIBUZIONE BINOMIALE Condizioni dell esperimento binomiale: 1. n (prefissato) prove 2. prove identiche, a due uscite (S o F ) 3. prove indipendenti 4. P (S) p costante Spesso il campionamento senza rimpiazzamento su una popolazione N rende l esperimento non binomiale (punto 3), ma l errore è trascurabile se n/n 5% (regola pratica). Dato un esperimento binomiale con n prove, la variabile binomiale casuale X associata all esperimento è definita come: X = numero di successi S nelle n prove La pmf di X dipende da 2 parametri: b(x; n, p)

10 DISTRIBUZIONE BINOMIALE/2 La forma esplicita della distribuzione binomiale è: ( ) n p b(x; n, p) = x x (1 p) n x x = 1, 2, 3,..., n 0 altrimenti Per n = 1 la distribuzine binomiale diventa la distribuzione di Bernoulli. Valore di aspettazione E(X) = np Varianza V (X) = np(1 p) npq Deviazione standard σ X = npq

11 DISTRIBUZIONE BINOMIALE /3 dbinom(x, 20, 0.5) dbinom(x, 20, 0.25) successi successi Distribuzione di probabilità che esca testa (o croce) in 20 lanci di una moneta (non truccata). Distribuzione di probabilità di pescare carta di cuori in 20 tentativi (rimettettendo ogni volta nel mazzo la carta estratta).

12 DISTRIBUZIONE BINOMIALE /4 Skewness γ 1 = 1 2p np(1 p) Kurtosis Funzione Caratteristica γ 2 = 1 6p(1 p) np(1 p) [ pe it + (1 p) ] n Se f(x, y) = b(x; n x, p)b(y; n y, p) = PROPRIETÀ RIPRODUTTIVA ( nx x ) p x (1 p) n x x ( ny y ) p y (1 p) n y x allora g(x + y) = b(x + y; n x + n y, p)

13 DISTRIBUZIONE MULTINOMIALE È la generalizzazione della pdf binomiale al caso di m uscite possibili ciascuna con probabilità p i : M(k 1, k 2,..., k m ; p 1, p 2,..., p m, n) = con le condizioni m p i = 1 i=1 n! k 1!k 2!... k m! pk 1 1 pk pkm m m k i = n i=1 Valore di aspettazione E[k i ] = µ i = np 1 Varianza V [k i ] = np(1 p) np i (1 p i ) Funzione Caratteristica ( φ(t 2, t 3,..., t m ) = p 1 + p it p it p it m m ) n

14 DISTRIBUZIONE MULTINOMIALE /2 Come esempio di applicazione di questa pdf si consideri un istogramma costituito da m classi e sia p i la probabilità che un evento venga a cadere nella i ma classe. Allora, per n eventi la probabilità che la frequenza degli eventi nelle classi si verifichi con i valori dati dalle k i è data dalla pdf multinomiale. Si dimostra che cov(k i, k j ) = np i p j i j e cioè che le k i non sono indipendenti, come era intuibile dalle condizioni imposte nella definizione della pdf.

15 DISTRIBUZIONE DI POISSON Se n e p 0 in modo tale che np = λ = cost > 0, allora b(x; n, p) p(x; λ) = e λ λ x x! La pdf di Poisson dà la probabilità che si verifichino x eventi se il valore atteso (valor medio) vale λ. Valore di aspettazione E[X] = λ Varianza V [X] = λ Funzione Caratteristica φ(t) = exp[µ(e it 1)] Proprietà Riproduttiva g(x + y) = (λ x + λ y ) x+y e (λ x+λ y ) (x + y)!

16 DISTRIBUZIONE DI POISSON /2 Esempio di applicazione della pdf di Poisson. Decadimento radioattivo: n = numero di atomi (molto grande), p t probabilità che nell intervallo di tempo t decada un atomo (molto piccola), np λ = αt. Ipotesi: il numero di decadimenti nell intervallo t è indipendente dal numero di decadimenti negli intervalli precedenti, e la velocità media dei decadimenti α = λ/ t è costante. La trascrizione della pdf di Poisson con queste variabili ànche nota come Statistica di conteggio di un contatore Geiger: P k (t) = e αt (αt) k k! Si osservi che le ipotesi non sono rispettate, e quindi la distribuzione dei decadimenti non è poissoniana, se si considera il decadimento in un intervallo di tempo significativo rispetto alla vita media della sorgente, o se si considera il decadimento di una quantità molto piccola di materiale radioattivo.

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Distribuzioni discrete

Distribuzioni discrete Distribuzioni discrete Esercitazione 4 novembre 003 Distribuzione binomiale Si fa un esperimento (o prova): può manifestarsi un certo evento A con probabilità p oppure no (con probabilità q = p). La distribuzione

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Luca Mari, versione 2.3.15 Contenuti La generazione combinatoria di campioni...1 L algebra dei campioni...4 Il calcolo delle frequenze relative dei campioni...5 Indipendenza

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

SCHEDA DIDATTICA N 1

SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Scienza della Produzione e Trasformazione del Latte Note di Calcolo delle Probabilità e Statistica STEFANO FERRARI Analisi Statistica dei Dati Note di Calcolo

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00)

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Richiami di matematica pag. 2 Definizione (moderatamente) formale di variabile aleatoria

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

Corso di Probabilità e Statistica

Corso di Probabilità e Statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe sara.poffe@stat.unipd.it A.A.

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2013/14

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2013/14 APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2013/14 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizione

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Valori caratteristici di distribuzioni

Valori caratteristici di distribuzioni Capitolo 3 Valori caratteristici di distribuzioni 3. Valori attesi di variabili e vettori aleatori In molti casi è possibile descrivere adeguatamente una distribuzione di probabilità con pochi valori di

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

1 Breve introduzione alla probabilità elementare: approccio intuitivo

1 Breve introduzione alla probabilità elementare: approccio intuitivo Breve introduzione alla probabilità elementare: approccio intuitivo. È usuale che in molte situazioni che si presentano concretamente ci sia a priori incertezza su ciò che accadrà nel futuro: il calcolo

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 16 luglio 2006 V.a. discrete e distribuzioni discrete Esercizio 1 Dimostrare la proprietà della mancanza di memoria della legge geometrica, ovvero

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Dati statistici e scale di misura

Dati statistici e scale di misura Capitolo aggiuntivo 12 Dati statistici e scale di misura La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno (ad esempio i risultati di un esperimento di laboratorio)

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1

Dettagli

Esercizi di probabilità discreta

Esercizi di probabilità discreta Di seguito, potete trovare i testi (con risposta) degli esercizi svolti (o proposti) nel corso di esercitazioni dell insegnamento di Matematica applicata. 1 Esercizi di probabilità discreta Algebra degli

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Inferenza Statistica a.a. 2010/2011. Docente Dott.a Daniela Nappo daniela.nappo@unina.it

Inferenza Statistica a.a. 2010/2011. Docente Dott.a Daniela Nappo daniela.nappo@unina.it Inferenza Statistica a.a. 2010/2011 Docente Dott.a Daniela Nappo daniela.nappo@unina.it Programma del corso Richiami delle variabili casuali Richiami di inferenza (stima e stimatore, stima puntuale ed

Dettagli

Coppie di variabili aleatorie. In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia.

Coppie di variabili aleatorie. In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia. Capitolo 6 Coppie di variabili aleatorie In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia di variabili aleatorie: si mostra in particolare che in questo caso

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Introduzione alla scienza della comunicazione (E. T. Jaynes)

Introduzione alla scienza della comunicazione (E. T. Jaynes) Introduzione alla scienza della comunicazione (E T Jaynes) S Bonaccorsi Department of Mathematics University of Trento Corso di Mathematical model for the Physical, Natural and Social Sciences Outline

Dettagli

Teoria delle scorte. Ricerca operativa Met. e mod. per le decisioni (Informatica Matematica) Pierluigi Amodio

Teoria delle scorte. Ricerca operativa Met. e mod. per le decisioni (Informatica Matematica) Pierluigi Amodio Teoria delle scorte Ricerca operativa Met. e mod. per le decisioni (Informatica Matematica) Pierluigi Amodio Dipartimento di Matematica Università di Bari Teoria delle scorte p.1/26 definizione del problema

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Metodi Statistici per la Biologia

Metodi Statistici per la Biologia Metodi Statistici per la Biologia Paolo Dai Pra Università di Padova A.A. 2006/07 1 1 Introduzione Qualche informazione di carattere organizzativo Docenti: Paolo Dai Pra e Francesco Caravenna Orari di

Dettagli

Appunti di Analisi Statistica dei Dati

Appunti di Analisi Statistica dei Dati 1 Nota Statistica, Versione 1 Appunti di Analisi Statistica dei Dati Fernando Palombo Dipartimento di Fisica dell Università and INFN, Milano 2 Chapter 1 Nozioni Introduttive Misure Sperimentali Estrarre

Dettagli

Tabella iniziale con i dati. Malattia Malati Non malati Totale Test Positivo 183 Negativo 280 Totale 199 512. Calcolo i valori mancanti per differenza

Tabella iniziale con i dati. Malattia Malati Non malati Totale Test Positivo 183 Negativo 280 Totale 199 512. Calcolo i valori mancanti per differenza ESERCIZIO DI STATISTICA D.U. / simulazione di esame Esercizio 1: Per una malattia particolarmente grave viene sperimentato l utilizzo di una nuova tecnica radiologica allo scopo di identificare correttamente

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525.

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525. UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 15 dicembre 2014 7 LEZIONE PROBABILITA L incertezza Nella misura di una qualsiasi

Dettagli

Il lavoro non è impegnativo di per sé, ma, poiché andrà suddiviso tra 2-3 studenti, dovrebbe essere leggero. Ho conteggiato 17 pagine.

Il lavoro non è impegnativo di per sé, ma, poiché andrà suddiviso tra 2-3 studenti, dovrebbe essere leggero. Ho conteggiato 17 pagine. PREMESSA Vi dovete riunire una o più volte per stabilire il da farsi e su come suddividere il lavoro e poi rimanere in contatto, possibilmente via internet o telefono.. Il lavoro non è impegnativo di per

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

1. la probabilità che siano tutte state uccise con pistole; 2. la probabilità che nessuna sia stata uccisa con pistole;

1. la probabilità che siano tutte state uccise con pistole; 2. la probabilità che nessuna sia stata uccisa con pistole; Esercizi di Statistica della 5 a settimana (Corso di Laurea in Biotecnologie, Università degli Studi di Padova). Esercizio 1. L FBI ha dichiarato in un rapporto che il 44% delle vittime di un omicidio

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Lezioni di CPS. Fabrizio Caselli

Lezioni di CPS. Fabrizio Caselli Lezioni di CPS Fabrizio Caselli Contents Chapter. Statistica descrittiva 5. Popolazione, campione e caratteri 5 2. Classi e istogrammi 6 3. Indici di posizione o centralità e di dispersione 6 4. Correlazione

Dettagli

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Ilenia Epifani 1 Il contenuto di queste dispense è protetto dalle leggi

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010 Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 200 Esercizio. Dati due eventi A e B, scrivete, in termini di operazioni booleane, l espressione dell evento: {si verifica esattamente un solo evento

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Scienze M.F.N. Corso di Laurea in Fisica. Prof. Roberto Falciani. Prof.

UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Scienze M.F.N. Corso di Laurea in Fisica. Prof. Roberto Falciani. Prof. UIVERSITA DEGLI STUDI DI FIREZE Facoltà di Scienze M.F.. Corso di Laurea in Fisica Prof. Roberto Falciani Prof. Andrea Stefanini Appunti aggiuntivi al corso di ESPERIMETAZIOI I Analisi statistica degli

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA?

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Crenca & Associati CORPORATE CONSULTING SERVICES RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Ufficio Studi Milano, 3 aprile 2008 Introduzione al Risk Management

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale ESERCIZIO nr. 1 I Presidi delle scuole medie superiori di una certa cittá italiana hanno indetto tra gli studenti dell ultimo anno una

Dettagli

COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica

COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica COMPITO DI SCIENZE NATURALI 23 gennaio 2012 Modulo di probabilità e statistica 1. In Svizzera, al primo gennaio di ogni anno, tutti i cittadini vengono sottoposti a vaccinazione contro l influenza annuale.

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 8 luglio, 2010 CP110 Probabilità: Esame del 3 giugno 2010 Testo e soluzione 1. (6 pts 12 monete da 1 euro vengono distribuite tra

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Funzioni a 2 variabili

Funzioni a 2 variabili Funzioni a 2 variabili z = f(x, y) Relazione che associa ad ogni coppia di valori x,y (variabili indipendenti) uno ed un solo valore di z (variabile dipendente). Esempi: z = x 2y + 4 z = x 2 y 2 2x z =

Dettagli