ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli."

Transcript

1 ITCS LUXEMBURG - BO AS 00\0 Compiti estivi classe prima su parti di programma svolto ALGEBRA Monomi e polinomi: semplificare le espressioni con i prodotti notevoli. 9 A) a + b b a a + b ( ) a ( a + b) b a B) ( ) x y x ( x y ) x y y x x y xy ( ) C) a + b b a + ( b + ) ( b ) ( ) + a + b a + a + b D) a ( a b) a + b + b ( b + a ) + a ( a b ) + ( a b) a ( x x + ) + x ( x + ) ( x ) x ( x ) + x ( x + ) x + a ( + a ) a ( + a ) + a ( a ) ( a + ) + ( ) ( ) E) 0 F) a a + + a a + a + a + 9 DIVISIONI CON VERIFICA DEL RISULTATO: Polinomio/monomio 8 A) a b + a b + a b : a b 6 a ab b B) 9x y + x y + x y : x y x y xy y Polinomio/polinomio ( b b + b b + ) ( b + ) [ Q = b b + R = ] ( a a a a ) ( a + ) [ Q = a a R = a ] A) 8 5 : 5 0 B) : 5 5 ( ) 5 x x + x x 9 Q = x x x R x 7 + = 5 C) x + x x + : x + Q = x + x R = x D) : Compiti estivi classe prima 0 - ALGEBRA - P. \8

2 Polinomio/binomio di primo grado: regola di Ruffini. 5 ( a a + a ) ( a ) [ Q = a + a + R = ] 5 ( x + x x ) ( x ) [ Q = x + x + x + x + R = ] A) 6 : 0 B) 6 5 : 9 5 y y y y Q y y y R = + = 6 5 a a a a + 9 C) 9 9 : D) : Q = a a a R = SCOMPOSIZIONI Scomporre con teorema di Ruffini e verifica dei risultati 5A) x -x -5x-= 5B) a 0a 7 + = 5C) -y y y = 5D) -x 5x + + = Raccoglimento totale a fattore comune con verifica A) x y 6x y + 8 x y 6B) x x x C) 9a b a b + a b 6D) x + x x ( a ) ( a ) ( a ) ( a ) 6E) ( x ) ( x + ) + ( x + ) ( x + ) 6F) ( x + ) ( x + ) ( x + ) ( x + ) 6G) ( a + b ) ( b + ) + ( a + b ) ( b ) 6H) Compiti estivi classe prima 0 - ALGEBRA - P. \8

3 Raccoglimento a fattore comune parziale e poi totale. Scomposizioni con riconoscimento dei prodotti notevoli ( ) 8 A) 6 x y a 8 b x 9 ( ) ( ) ( ) 7 ) + 7B) A ax ab b x x a x y x y b b a ( ) ( + ) + + ( + ) 7 ) + 7D) + C a x ax ax a b a ab 7 E) x x x 6x x [raccoglimenti..] ( ) ( ) 8 B) 9x 6 xy + y a + a + 8 a 8 a + 6 8C) x + 6xy + y 8D) 5a 0ab + 5b 5 8 E) 7xy x + 9x y + 7 y 8F) a + 6a b ab + 8b G) x y 5 a + b H) 8 a b x y 6 9 I) a + 5a 6 x + xy x x + x 8 [somma-prodotto..] Scomposizioni riassuntive con tecniche miste. 0A) 9x y 6x y + 6 xy 0B). z + z x + 0C) 8ab + a b 6b 9 a 0D) x y + x +. 0E) 6 a b a + b 0F) x + y x y 0G) ax 6 a x x xy 0H) xy y 6x + x 0I) a ab + b 0L) 6 x y x 9x +. 0M) ( ) ( ) a x y ab x y + b x b y. 0N) ( ) ( ) a x y ab x y + b x b y. Compiti estivi classe prima 0 - ALGEBRA - P. \8

4 MCD e mcm fra polinomi da scomporre in fattori. A) 5 + 9b 0 b 9b 5 0x 0y 6bx + 6 by. M.C.D. = ( b 5 ) m.c.m. = ( b 5) ( b + 5) ( y x ) B) a a + a + a x + ax + x. ( ) ( ) M.C.D. = a + a + m.c.m. = x a a + a + C) x 6 x x 8 x 6x + x 8. ( ) ( ) ( ) ( ) M.C.D. = x m.c.m. = x + x x + x + D) 8 x x 7x + x 9x + 7x 7. ( ) ( ) ( ) ( ) M.C.D. = x m.c.m. = x + x x + 9 x FRAZIONI ALGEBRICHE Condizioni di esistenza e semplificazioni. A) 6x y 0 x y z b + b b. b b 5xz b 6 0ab B) a b c a + a 5b a. a a 7a c a a x C) a a x + ax x. y + x xy ( x y ) ( x + y ) ( + ) ( + ) a x a x x ( a x ) x y xa y 8xy D) x a y + x ay + x y y xy x. y x ay y x + y x x + y E) a x y + a a x y a x y + a x a ab b axy + a a b. a b x a b Compiti estivi classe prima 0 - ALGEBRA - P. \8

5 Somme di frazioni algebriche e semplificazioni risultati. x + 5 x x + 7 x 7x + 6 A) x x + x + x 6 x + x 6 B) x + x + x x x + x x x x C) D) 0 + x xy x y y 5y x xy x y xy x y + [] x y x xy + y x xy + y x + x xy xy x x y 8y y ( x y ) E) x + F) x x + 5 x + x x x x a a + a a a a a a + 6 Espressioni con frazioni algebriche le operazioni. A) B) b b 5 : b b b b b b b b b ( b ) ( b + ) a a a a + b b a a + : : b b b a b [] a b ab a ab a a b a + b b + a b a b a b ab ab a b a b + + C) ( ) R ( a + b ) Problemi 5A) Esprimi la lunghezza b della base del rettangolo in funzione di a, x e A, dove A è l area della zona ombreggiata. A + x b = a 5B) Indicata con A l area del trapezio, esprimi la lunghezza b della base minore in funzione di a, h, e A. b = A ah h Compiti estivi classe prima 0 - ALGEBRA - P. 5\8

6 EQUAZIONI DI PRIMO GRADO Equazioni numeriche intere di primo grado. 6A) 8 ( x + ) = 6x, [ x = ] 6B) 6 ( x + ) = x, [ x = ] 5 6x + x = x + 8 x 6C) ( ) ( ) x = x + = x = 8 8 6D) x ( x ) = E) x 6x x ( x ) x = 5 6F) x ( x ) ( x ) ( x) + = x = Equazioni indeterminate e impossibili. 8 7A) x x + x + + = + [impossibile] x 8 x + x + 7B) + = [indeterminata] x 5 7C) + = + x [indeterminata] 5 5 7D) ( x 5) 6 + = 5 + x [impossibile] 5 5 Risolvere con la regola dell'annullamento. + 7 = A) x ( x ) ( x ) = 0 0 8B) x ( x ) ( x ) x 5 + x = x x + + x 8C) ( ) ( ) ( ) 5 x + x = x x + x 8D) ( ) ( ) ( ) Compiti estivi classe prima 0 - ALGEBRA - P. 6\8

7 Equazioni numeriche fratte di primo grado. 9A) x + x + 6 x x + = + x + x + x + x + 6 9B) x + = x x x x + 5 x ( x + 5) x = 6 [ x = ] 9C) ( 8x ) x + 8x + x = + x + 5 x x x + x = 8 9D) x x + x + = + x + x x + x [ x = ] + x 9E) + = + x + 5 6x + 9x + 0 x + [ x = ] x 7 5 9F) = + x 5 x x 7x + 5 [ x = ] Problemi da risolvere con equazioni di primo grado. 0A) Marco e Paolo giocano alla roulette: Marco ha a disposizione 5 e Paolo 5. Alla fine della serata Marco possiede il triplo di quanto possiede Paolo. Quale somma ha perso Paolo? [ 5] 0B) Il rettangolo ABCD viene trasformato in quadrato, diminuendo di 5 cm la lunghezza dell altezza e aggiungendo cm alla lunghezza della base. Calcola il perimetro del rettangolo, sapendo che la lunghezza dell altezza è doppia di quella della base. [ cm] 0C) Una corda lunga 58 cm viene divisa in tre parti. Sapendo che la seconda è lunga cm più del doppio della prima, e che la terza è lunga cm più del doppio della seconda, quanto misurano le tre parti? [7 cm 6 cm 5 cm] 0D) Un trapezio isoscele di area 9 cm ha l altezza lunga cm. Sapendo che la base minore è lunga il quadruplo del lato obliquo e che la base maggiore supera di cm il triplo dello stesso lato obliquo, determina il perimetro del trapezio. [56 cm] 0E) La somma di numeratore e denominatore di una frazione è sommando 7 a entrambi si ottiene 5. 0 denominatore. [8 ] Calcola numeratore e Compiti estivi classe prima 0 - ALGEBRA - P. 7\8

8 0F) Una somma di 000 euro viene divisa fra A, B e C. A riceve 500 euro in più di B e B riceve volte la quota di C. Calcolare le tre quote [000,500,500] 0G) Il fatturato di una azienda nel 009 è aumentato del 0% rispetto al 008. Nel 00 il fatturato è ancora aumentato rispetto all'anno precedente del 5%. Sapendo che il fatturato nel biennio è aumentato di euro, calcolare il fatturato nell'anno 00. [5.000] 0F) Il quoziente tra l'età di una persona fra 0 anni e l'età che ella aveva 0 anni è pari a 7. Determinare l'età. 0G) Diminuendo di 5 cm il lato di un quadrato la sua area diminuisce di 5cmq. Calcola la misura del lato. [5cm] 0H) Determinare i lati di un triangolo isoscele, di perimetro 96cm, sapendo che ciascuno dei due lati uguali supera di 0cm i / della base [,6,6] 0I) In un triangolo rettangolo la base supera di cm il lato ed il rapporto fra il perimetro ed il lato è 6/5. Calcolare perimetro ed area del triangolo. [cm, 8cmq] 0L) Il perimetro di un triangolo isoscele è 6cm ed il lato supera di 5cm i 5/8 della base. Determinare le misure dei lati e dell'altezza relativa alla base. [ Con teorema di Pitagora... cm,0cm,0cm,6cm] Modalità di lavoro: Distribuire il carico degli esercizi nel corso del tempo. Svolgere gli esercizi partendo dai più semplici. Integrare gli esercizi con altri dello stesso tipo presenti nel testo adottato oppure in altre fonti, in base alle necessità e\o difficoltà individuali. Gli esercizi proposti, quali parte del percorso di algebra svolto durante l'anno scolastico, hanno il fine: ) mantenere gli studenti a dei livelli adeguati e di potenziarli in vista dell'avvio del nuovo anno scolastico )Preparare al recupero del debito di settembre. Quanto sopra sottoscritto dagli alunni rappresentanti. Compiti estivi classe prima 0 - ALGEBRA - P. 8\8

GLI INSIEMI NUMERICI. 1. Calcola il valore dell espressione applicando le proprietà delle potenze.

GLI INSIEMI NUMERICI. 1. Calcola il valore dell espressione applicando le proprietà delle potenze. GLI INSIEMI NUMERICI. Calcola il valore dell espressione applicando le proprietà delle potenze. 5 9 6 : 5 5 5 8 7 5 4 : : ( 4 ) : 4 8 4 5 ( ) 7 7 0, + 0, 0,8 : + 0,7 + : 4,8+ 8 7 0. Calcola il valore della

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 1.6 esercizi 17 Esercizio 25. Determina MCD e mcm fra i seguenti polinomi: 8a 2 + 16ab + 8b 2 4a 4 4a 2 b 2 12a 2 + 12ab Soluzione. Scomponiamo in fattori i tre polinomi: 8a 2 + 16ab + 8b 2 = 8(a 2 + 2ab

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe A clac B E F G H lisl Docenti: Gerace, Ricci, Battuello, Fecchio, Ferrero Disciplina: MATEMATICA Tutti gli studenti

Dettagli

3 3 3 : 3 3 : 3. 2) Fra le seguenti espressioni indica, motivando la risposta, i monomi:

3 3 3 : 3 3 : 3. 2) Fra le seguenti espressioni indica, motivando la risposta, i monomi: COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 0/ ) Calcola le seguenti espressioni: 0 : 8 : : 7 9 5 5 5 7 0 5 9 b) 6 66 :6 :6 :6 : : : : 5 : : 6 0 7 c) d) 7 : 9 6 7 8 5 : 7 8 e),5,6 0,5

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

PROGRAMMA A.S. 2014/2015

PROGRAMMA A.S. 2014/2015 MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi

Dettagli

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 2016/17 1) Calcola le seguenti espressioni: + = = { : 3 3 } :( =

COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 2016/17 1) Calcola le seguenti espressioni: + = = { : 3 3 } :( = COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 06/7 ) Calcola le seguenti espressioni: 5 7 { } 7 0 8 5 5 5 : 5 :( 5 5 5 ) 5 : 5 : ( 5 ) ( ) 5 + b) 5 ( 6 ) :( 7 ) : ( ) 6 : ( ) ( 6 ) + + +

Dettagli

ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA

ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ANNO SCOLASTICO 2016/2017 MATEMATICA CLASSE I SEZ. Az PROGRAMMA SVOLTO DALL INSEGNANTE Prof. Alessandro Di Marco Testo adottato: MATEMATICA.VERDE 1 LD 1.

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 ALGEBRA Ripasso programma di prima. Capitolo 5 - I monomi e i polinomi La divisione fra polinomi La divisione di un polinomio per un monomio.

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s /14

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s /14 Pagina 1 di 6 DISCIPLINA: MATEMATICA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 1 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 I numeri Naturali, Interi e Razionali

Dettagli

Per gli alunni promossi a giugno delle classi 1^ B D E

Per gli alunni promossi a giugno delle classi 1^ B D E Per gli alunni promossi a giugno delle classi 1^ B D E Dopo un accurato ripasso, eseguire gli esercizi indicati a ciascun link: http://online.scuola.zanichelli.it/bergaminiblu/matematica-blu/volume-1/esercizi1/

Dettagli

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza)

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza) LICEO CLASSICO STATALE Vittorio Emanuele II di Jesi ANNO SCOLASTICO 2011/2012 LAVORO ESTIVO Materia di insegnamento Indirizzo Classe Matematica Liceo socio psico pedagogico Terza, sez. E / F Equazioni

Dettagli

COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM

COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM E meglio non concentrare lo svolgimento degli esercizi in un solo periodo (inizio o fine delle vacanze) ma cercare di distribuire il lavoro

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO

ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA A.S.: 0/05 Classe Sezione Indirizzo: IV B Classico Disciplina: MATEMATICA E INFORMATICA ( h) Docente: Fabiola Frezza PROGRAMMA SVOLTO MODULO/UNITÀ

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico

Dettagli

Programma svolto di Matematica

Programma svolto di Matematica Classe 1 A OD Programma svolto di Matematica ALGEBRA INSIEMI NUMERICI Strutture numeriche. Numeri naturali. Operazioni, proprietà. Espressioni aritmetiche. Multipli e divisori di un numero naturale. Numeri

Dettagli

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 1DS. Insegnante Prof.ssa Miriam Ciavarella. Disciplina MATEMATICA

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 1DS. Insegnante Prof.ssa Miriam Ciavarella. Disciplina MATEMATICA PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2016-2017 CLASSE 1DS Insegnante Prof.ssa Miriam Ciavarella Disciplina MATEMATICA PROGRAMMA SVOLTO ALGEBRA Numeri naturali: ordinamento e operazioni proprietà

Dettagli

Utilizzare le tecniche e le procedure del calcolo per risolvere espressioni numeriche

Utilizzare le tecniche e le procedure del calcolo per risolvere espressioni numeriche PROGRAMMAZIONE MATEMATICA 2010-2011 CLASSE 1D prof. Giuseppe Giacomuzzi Competenze Abilità capacità Competenze Abilità capacità Utilizzare le tecniche e le procedure del calcolo per risolvere espressioni

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: settembre Strategie didattiche: Per abituare gli allievi

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2. 70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

Programma di matematica classe I sez. B a.s

Programma di matematica classe I sez. B a.s Programma di matematica classe I sez. B a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALS MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: tutto l anno Strategie didattiche: Per abituare gli allievi

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 2014

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 2014 Pagina 1 di 5 DISCIPLINA: MATEMATICA CLASSE: 1^ FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture 1 I numeri Addizione moltiplicazione, Naturali, Interi e sottrazione, divisione,

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 05-0 Classe: B, E, F, G, I, L,M Docente: Battuello, Bosco, Fecchio, Ferrero, Gerace, Menaldo Disciplina Matematica Ripassare

Dettagli

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A. Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.! Divisione tra polinomi ( 2.2 del testo)! La regola di Ruffini ( 2.3 del testo)! I prodotti notevoli ( 2.3

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI

Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni

Dettagli

IIIIS VIIA SIILVESTRII 301 Pllesso «ALESSANDRO VOLTA» Programma di MATEMATICA Classe 1aL Indirizzo LICEO DELLE SCIENZE APPLICATE Anno

IIIIS VIIA SIILVESTRII 301 Pllesso «ALESSANDRO VOLTA» Programma di MATEMATICA Classe 1aL Indirizzo LICEO DELLE SCIENZE APPLICATE Anno IIIIS VIIA SIILVESTRII 301 Pllesso «ALESSANDRO VOLTA» Programma di MATEMATICA Classe 1aL Indirizzo LICEO DELLE SCIENZE APPLICATE Anno Scolastico 2014-2015 (3 pagine) ALGEBRA 1. I NUMERI NATURALI E I NUMERI

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

I.I.S. G. Brotzu Quartu S. Elena

I.I.S. G. Brotzu Quartu S. Elena I.I.S. G. Brotzu Classe : 1 C Libro di testo: Bergamini-Trifone-Barozzi Manuale di algebra Vol 1 e Manuale di geometria Gli insiemi e la loro rappresentazione. Sottoinsieme, insieme delle parti, intersezione

Dettagli

Sezione 9.9. Esercizi 189

Sezione 9.9. Esercizi 189 Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

PROGRAMMA SVOLTO E COMPITI ESTIVI

PROGRAMMA SVOLTO E COMPITI ESTIVI Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Problemi di secondo grado con argomento geometrico (aree e perimetri)

Problemi di secondo grado con argomento geometrico (aree e perimetri) Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la

Dettagli

PROGRAMMAZIONE COORDINATA TEMPORALMENTE. DISCIPLINA: Matematica

PROGRAMMAZIONE COORDINATA TEMPORALMENTE. DISCIPLINA: Matematica PROGRAMMAZIONE COORDINATA TEMPORALMENTE DISCIPLINA: Matematica Monte ore annuo 132 Libri di Testo Autori: MASSIMO BERGAMINI - GRAZIELLA BAROZZI Titolo: Algebra multimediale.blu con Statistica 1 Editore

Dettagli

PROGRAMMAZIONE DIDATTICA MODULARE Anno Scolastico 2017/2018

PROGRAMMAZIONE DIDATTICA MODULARE Anno Scolastico 2017/2018 00159 ROMA - via Galla Placidia, 63 - Tel 064381465 Fax 064382118 RMTD545007 RMTL395001 RMPSVP500H PROGRAMMAZIONE DIDATTICA MODULARE Anno Scolastico 2017/2018 MATERIA MATEMATICA CLASSE I DOCENTE Francesca

Dettagli

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag ) Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere

Dettagli

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Geometria Equivalenza e misura delle aree Trapezio. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul trapezio completi di soluzioni Area Measurement - Area of a Trapezoid

Dettagli

PROBLEMI DI SECONDO GRADO: ESEMPI

PROBLEMI DI SECONDO GRADO: ESEMPI PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,

Dettagli

Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam

Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam ALGEBRA Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam Teoria degli insiemi - insiemi e loro rappresentazioni; - sottoinsiemi propri

Dettagli

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca

Dettagli

Test sui teoremi di Euclide e di Pitagora

Test sui teoremi di Euclide e di Pitagora Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate

Dettagli

(Prof.ssa Dessì Annalisa)

(Prof.ssa Dessì Annalisa) LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L

Dettagli

; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7

; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7 COMPITI PER LE VACANZE ESTIVE ARITMETICA-GEOMETRIA Anno scolastico 016/17 Classe D I seguenti esercizi vanno svolti su un apposito quaderno con l indicazione del capitolo e del numero dell esercizio, o

Dettagli

LICEO LINGUISTICO STATALE J. M. KEYNES

LICEO LINGUISTICO STATALE J. M. KEYNES LICEO LINGUISTICO STATALE J. M. KEYNES PROGRAMMA SVOLTO ANNO SCOLASTICO 206/207 DOCENTE DISCIPLINA CLASSE MARIA GRAZIA GOZZA MATEMATICA 3^ F LICEO LINGUISTICO Ripasso: Operazioni con le frazioni algebriche,

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco Classe 1G Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. Bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978-88-08-53467-5 Capitolo 1 Insiemi

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015 Liceo Scientifico Statale Albert Einstein Insegnante : Saccaro Arianna Programma di Matematica 1E a.s 2014/2015 I NUMERALI NATURALI E I NUMERI INTERI: Che cosa sono i numeri naturali Le quattro operazioni

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Programmazione classi prime

Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Programmazione classi prime Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Programmazione classi prime Programmazione di Matematica Titolo Modulo 1 Abilità di base Modulo 2 Insiemi, relazioni e funzioni Modulo

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

CLASSE 1 M Costruzioni, ambiente e territorio A.S.2016/17

CLASSE 1 M Costruzioni, ambiente e territorio A.S.2016/17 CLASSE M Costruzioni, ambiente e territorio A.S./7 INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO DEVONO STUDIARE TUTTE LE UNITA DIATTICHE AFFRONTATE NEL CORSO DELL

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D

ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D DOCENTE: CALISE LIBERA TESTI ADOTTATI: ELEMENTI DI ALGEBRA

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Liceo Scientifico Statale ALBERT EINSTEIN Milano

Liceo Scientifico Statale ALBERT EINSTEIN Milano Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;

Dettagli

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni

Dettagli

I SISTEMI DI EQUAZIONI DI PRIMO GRADO

I SISTEMI DI EQUAZIONI DI PRIMO GRADO I SISTEMI I EQUAZIONI I PRIMO GRAO Sistemi di primo grado con due o più equazioni in due o più incognite Numerici Letterali Interi Frazionari Interi Frazionari OBIETTIVI Le attività proposte in questa

Dettagli

5) 1 2 essendo x1 e x2 due

5) 1 2 essendo x1 e x2 due SCOMPOSIZIONE IN FATTORI 1) Raccoglimento a fattore comune ( Applicabile ad un polinomio di un numero qualunque di termini purchè i termini presentino almeno una lettera o un numero che si ripete in tutti)

Dettagli

CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI

CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI CLASSE II A LICEO LINGUISTICO A.S. 2015/2016 Prof.ssa ANNA CARLONI OBIETTIVI la scomposizione dei polinomi le frazioni algebriche X X X scomposizione in fattori dei Scomporre a fattor comune polinomi Calcolare

Dettagli

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle..

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. IL Calcolo letterale (o algebrico). (teoria pag. 29 31;esercizi pag. 100 103, es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti.

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti. Esercizi per le vacanze estive classe 2^C Svolgere nell ordine tutti gli esercizi indicati su fogli a quadretti con buchi. Gli esercizi andranno consegnati all insegnante al rientro dalle vacanze e saranno

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA

OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA Revisione dei contenuti in data 21 aprile 2015 OBIETTIVI GENERALI Imparare a lavorare in classe (saper ascoltare insegnante e compagni, intervenire con ordine e nei momenti opportuni). Concepire il lavoro

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

Espressioni algebriche: espressioni razionali

Espressioni algebriche: espressioni razionali Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:

Dettagli

LICEO SCIENTIFICO STATALE

LICEO SCIENTIFICO STATALE LICEO SCIENTIFICO STATALE GALILEO GALILEI PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico 2012/2013 MATERIA : Matematica

Dettagli

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe 2H

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe 2H Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe H ALUNNO CLASSE ESEGUI TUTTI GLI ESECIZI SU UN FOGLIO POTOCOLLO O UN QUADENO. Ulteriore ripasso e recupero anche

Dettagli

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo A cura del dipartimento di Matematica e Fisica Dell Istituto Anno 01-01 ESERCIZIARIO di MATEMATICA ITAS TRENTIN Lonigo INDICE

Dettagli

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.

Dettagli

PIANO DI STUDIO DELLA DISCIPLINA

PIANO DI STUDIO DELLA DISCIPLINA PIANO DI STUDIO DELLA DISCIPLINA PIANO DI STUDIO DELLA DISCIPLINA PIANO DELLE UDA II ANNO Anno scolastico 2011/2012 UDA COMPETENZE della UDA ABILITA UDA CONOSCENZE UDA DISCIPLINA DI RIFERIM. DISCIPLINE

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

Polinomi Prodotti notevoli. Esempi di polinomi

Polinomi Prodotti notevoli. Esempi di polinomi Pagina 1 Polinomi Definizione: Dicesi polinomio la somma algebrica di due o più monomi. I monomi si dicono i termini del polinomio. Un polinomio formato da due termini dicesi binomio, da tre termini trinomio,

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli