La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1"

Transcript

1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore si dto e ri e che sino dti i rezzi e dei eni e. L equzione di ilncio mostr le cominzioni di e che il consumtore uò comrre essendo dti il suo reddito e i rezzi: + = (1) Si osservi l fig del testo, dove e sono irre e izze. L rett rresent l equzione di ilncio. Dll equzione (1) ottenimo: = che rresent un rett con intercett verticle - e inclinzione - L intercett verticle rresent qunte unità del ene il consumtore uò consumre qulor send tutto il suo reddito er cquistre tle ene. vvimente se il consumtore comrsse solo il ene, ne otree cquistre un numero di unità ri = di., ossi il livello rresentto dll intercett orizzontle. L inclinzione dell rett di ilncio rresent il rezzo reltivo di in termini Se il nostro consumtore con il suo vincolo di ilncio e rtendo d un qulsisi suddivisione dei suoi cquisti tr e decidesse di cquistre un unità di in iù, qunte unità di dovree rinuncire? Deve vlere l seguente equzione:. Δ = Δ d cui: Δ = Δ 1 L second rte di queste note è rires dlle disense scritte dvleri Gtti. 1

2 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Δ Δ = dove ssoluti. Δ Δ è un numero negtivo. Per comodità si è soliti considerre i vlori Si dice che l inclinzione dell rett di ilncio, il rezzo reltivo di in termini di, rresent il costo oortunità di in termini di (ossi il numero di unità di lle quli si deve rinuncire er comrre un unità di ). L scelt di equilirio del consumtore l ostulto dell sostituiilità mrginle decrescente fferm che tnto mggiore è, roorzionlmente gli ltri, l quntità di un ene consumt, tnto minore è l quntità degli ltri eni necessri comensre, dl unto di vist dell utilità, l diminuzione di quel ene. Suonimo er semlicità che il consumtore i l ossiilità di scegliere tr due soli eni di consumo. Chimimo sggio mrginle di sostituzione (SMS) del ene col ene il numero di unità di er unità di necessrie comensre l rinunci l consumo di un iccol quntità di. SMS = l SMS è rresentto grficmente dll inclinzione delle curve di indifferenz (si ved l figur sul testo) in ogni unto. L convessità verso il sso delle curve esrime il ftto che qunto iù è scrs l quntità ossedut di un ene () reltivmente ll'ltro ene (), tnto mggiore è l quntità del secondo che il consumtore scmi con un'unità del rimo, mntenendo l stess utilità (e vicevers). Formlmente, tnto iù sso è tnto iù lto è il vlore di Δ Δ Δ Δ e vicevers. chiro che il SMS corrisonde d un numero negtivo. Di nuovo, er comodità si è soliti considerre il suo vlore ssoluto o ddirittur definire il SMS come l oosto dell inclinzione dell curv d indifferenz. Per ogni unto dell rett di ilncio (come er ogni unto del ino) ss un ed un sol curv di indifferenz. l consumtore tenterà di determinre quell cominzione di e che rende mssim l su utilità, dto il vincolo di ilncio rresentto dl suo reddito. 2

3 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L utilità è mssim er quel unto dell rett di ilncio in cui l curv di indifferenz è tngente ll rett stess: in tutti gli ltri unti in cui l curv di indifferenz è secnte, è ossiile umentre l utilità sostndosi verso sinistr o verso destr. Quindi nel rirtire il suo ilncio tr i eni, il consumtore sceglierà l cominzione sull line di ilncio er cui il SMS (in vlore ssoluto) tr i due eni è: SMS = Δ Δ =. ssi il SMS del ene col ene è ugule l rezzo reltivo di in termini di. n ltri termini, in corrisondenz dell scelt ottim, il rorto di scmio tr i due eni che consente l consumtore di mntenere invrit l rori soddisfzione è lo stesso rorto di scmio che esiste sul mercto. 3

4 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Prte 2 Rresentzione nlitic delle referenze e clcolo delle quntità di equilirio 1. Le referenze: cso generle e csi rticolri Le referenze del consumtore determinno l rticolre configurzione dell m d indifferenz. Cso generle Curve d indifferenz convesse, con sggio mrginle di sostituzione decrescente, rresentno il cso iù generle. Anliticmente esistono numerose funzioni di utilità comtiili con il cso generle m, er semlicità, concentreremo l nostr ttenzione sulle sole Co Dougls, come evidenzito in Figur 1. Fig.1: CAS GNRAL M d indifferenz Funzione di utilità (Co Dougls) U(,) = con > 0, > 0 er =1 e =1 U(,) = SMS, = MU = MU MU = Se 1 e 1 > SMS, = (ciò si uò fcilmente dimostrre MU clcolndo le derivte rzili dell U risetto e ). SMS decrescente lungo l curv di indifferenz (l crescere di X e l diminuire di Y) 4

5 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Csi rticolri Perfetti comlementi erfetti comlementi sono eni semre consumti insieme, secondo roorzioni fisse (non necessrimente uguli 1). L Fig. 2 trduce in termini grfici ed nlitici il rinciio sottostnte questo tio di referenze: Fig.2: PRFTT CMPLMNT M d indifferenz Funzione di utilità ( gomito ) U(,) = min {, } = con > 0, > 0 che indicno il contriuto di un unità di e, ll utilità dell individuo e quindi l roorzione in cui e devono essere consumti insieme er contriuire in ugul modo ll utilità dell individuo. Se = =, equzione dell rett uscente dll origine che unisce i vertici dei gomiti SMS, = 0 sul trtto orizzontle sul trtto verticle non definito nei unti ngolosi Perfetti sostituti erfetti sostituti sono eni che il consumtore è disosto sostituire l uno con l tro secondo un rorto fisso (non necessrimente ugule d 1). Ne segue un sggio mrginle di sostituzione costnte e, ertnto, un m d indifferenz costituit d rette rllele, con endenz ri ll oosto dell SMS (cfr. Fig.3). 5

6 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Fig.3: PRFTT SSTTUT M d indifferenz Funzione d utilità (linere) U(,) = + con > 0 e >0 Pendenz / SMS, = MU = MU 2. Ancor su equilirio del consumtore Trovre l equilirio del consumtore vuol dire mettere insieme le informzioni rissunte nelle curve d indifferenz con quelle contenute nel vincolo di ilncio. Come già visto sor, gli individui cercno di mssimizzre l rori utilità sotto il vincolo di ilncio, ovvero di rggiungere l utilità iù lt entro i limiti dettti dl reddito e di rezzi correnti. Come si trduce tutto questo in termini grfici ed nlitici? Grficmente il rolem è semlice: indiendentemente dl tio di referenze in esme si trtt di identificre l curv d indifferenz iù lontn dll origine, tr quelle che toccno il vincolo di ilncio: il unto di conttto è l equilirio del consumtore. Anliticmente isogn restre mggiore ttenzione dl momento che tle unto viene clcolto in modo diverso second che le referenze sino del tio generle, o rientrino nei csi rticolri di erfetti comlementi o erfetti sostituti. smineremo, nelle Figure 4, 5 e 6, queste tre situzioni identificndo - grficmente ed nliticmente - l equilirio del consumtore. Alcuni esemi numerici ci iuternno comrendere, con mggior recisione, le strtegie risolutive, in relzione l tio di referenze in esme. 6

7 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Fig.4: L QULBR NL CAS GNRAL L curv d indifferenz iù estern, tr quelle che toccno il vincolo di ilncio, è l tngente. Per trovre l equilirio imongo, dunque, l condizione di tngenz : Grficmente Anliticmente * SMS, = = + * semio Sendo che un individuo h funzione di utilità del tio U (,) = e che = 10, = 1, = 2, trovre l equilirio del consumtore Dll funzione di utilità cisco che l individuo h referenze di tio Co Dougls e che, dunque, er clcolre l equilirio devo imostre un sistem nlogo quello descritto oco sor, inserendo i dti del rolem: 1 = 2 10 = + 2 = = = = 2 q. * = 5 * = 2.5 7

8 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Fig.5: L QULBR CN PRFTT CMPLMNT L curv d indifferenz iù estern, tr quelle che toccno il vincolo di ilncio, è quell vente il gomito sul unto d intersezione tr il VDB e l rett uscente dll origine. Per trovre l equilirio: Grficmente Anliticmente = (rett uscente dll origine) * = + (vincolo di ilncio) * semio Sendo che un individuo consum semre 1 con 2, ovvero h funzione di utilità del tio U(,) = min {1,(1/2)} e che = 10, = 1, = 2, trovre l equilirio del consumtore. Dll funzione di utilità cisco che l individuo h referenze di tio erfetti comlementi e che, dunque, er clcolre l equilirio devo imostre un sistem nlogo quello descritto oco sor, inserendo i dti del rolem: = 2 10 = + 2 =2 10 = + 4 = 2 10 = 5 q. * = 2 * = 4 8

9 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore Fig.6: L QULBR CN PRFTT SSTTUT Nel cso dei erfetti sostituti, er identificre l curv d indifferenz iù estern, occorre distinguere fr tre situzioni, confrontndo l endenz delle curve d indifferenz (ri ll oosto dell SMS) con quell del vincolo di ilncio (ri ll oosto del rorto tr i rezzi). L nostr nlisi si risolverà, ertnto, nel confronto tr SMS e rorto tr i rezzi : Grficmente Anliticmente SMS, < Le curve d indifferenz sono meno inclinte del vincolo di ilncio. quilirio (0, * ) nell intercett verticle del vincolo di ilncio: l individuo consum solo il ene. S L U Z N SMS, > Le curve d indifferenz sono iù inclinte del vincolo di ilncio. Mmmmmmmmmmmmmmmmmmmmmmm quilirio (*,0) nell intercett orizzontle del vincolo di ilncio: l individuo consum solo il ene. D A N G L nfinite soluzioni SMS, = Le curve d indifferenz hnno l stess inclinzione del vincolo di ilncio che risult, ertnto, sovrosto d un di esse. L individuo è indifferente rigurdo l consumo di un qulsisi niere rtenente l vincolo di ilncio (0<*</ ; 0<*</ ) lddove / e / rresentno risettivmente l intercett orizzontle e verticle del vincolo. N F N T S L U Z N 9

10 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore semio Sendo che un individuo h funzione di utilità del tio U(,) = 2 +3 e che = 10, = 1, = 2, trovre l equilirio del consumtore. Dll funzione di utilità cisco che l individuo h referenze di tio erfetti sostituti e che, dunque, er clcolre l equilirio, devo confrontre SMS e /, sull se dei dti del rolem. SMS, = = 2 SMS, > quilirio nell intercett orizzontle del vincolo di ilncio (10,0) 10

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO CM a.s. /3 PROLEMA DELL TILE DEL CONSMATORE CON IL VINCOLO DEL ILANCIO Il consumatore è colui che acquista beni er destinarli al rorio consumo. Linsieme dei beni che il consumatore acquista rende il nome

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze.

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze. Università degli Studi di erugia Corso di Laurea Magistrale in Scienze della olitica e dell'mministrazione Lezione n. Riasso di microeconomia CONOMI FINNZ ULIC nza Caruso Le referenze Come i consumatori

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Funzione di utilità. Un approfondimento della teoria del consumo. Utilità totale ed Utilità marginale

Funzione di utilità. Un approfondimento della teoria del consumo. Utilità totale ed Utilità marginale Funzione di utilità Un pprofondimento dell teori del consumo Utilità totle ed Utilità mrginle Il consumtore tre enessere dl consumo di eni Supponimo di poter misurre il suo enessere in utils (unità di

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Miscele di aria e vapore d acqua

Miscele di aria e vapore d acqua Brbr Gherri mtr. 4544 Lezione del 20/2/02 or 8:0-0:0 iscele di ri e ore d cqu L esigenz di studire le miscele ri ore deri dll grnde imortnz che esse riestono er il benessere termoigrometrico dell uomo

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2.

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2. Cp. 49 - Debiti verso bnche 49 DEBITI VERSO BANCHE Pssivo SP D.4 Prssi Documento OIC n. 12; Documento OIC n. 19 1 PREMESSA I debiti verso bnche ricomprendono tutti quei debiti in cui l controprte è un

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

CAPITOLO 14 OPERE DI SOSTEGNO

CAPITOLO 14 OPERE DI SOSTEGNO Citolo 14 OPEE DI SOSTEGNO CAPITOLO 14 OPEE DI SOSTEGNO 14.1 Introduzione Esiste un grnde vrietà di strutture utilizzte er sostenere il terreno e/o l cqu si er lvori temornei che er oere definitive. In

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Quarta Esercitazione di Fisica I 1. Problemi Risolti

Quarta Esercitazione di Fisica I 1. Problemi Risolti Qurt Esercitzione di Fisic I 1 Problemi Risolti 1. Sul cruscotto pitto dell mi uto è ppoggito un libro di 1.5 kg il cui coefficiente di ttrito sttico con il pino d'ppoggio è µ = 0.3. mssim velocità secondo

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche.

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche. Prestzioni PONTI TERMICI Normlmente il clcolo delle dispersioni termiche di un edificio viene svolto considerndo che le temperture interne ed esterne sino costnti (Regime Termico tzionrio). Questo signific

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

Il dimensionamento dei carichi termici delle celle frigorifere

Il dimensionamento dei carichi termici delle celle frigorifere Il dimensionmento dei crichi termici delle celle frigorifere Andre Verondini Scoo rincile di un iminto di refrigerzione è quello di mntenere in un cell le condizioni che consentno l conserzione delle derrte

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Elementi di calcolo degli impianti oleodinamici

Elementi di calcolo degli impianti oleodinamici Frnco Qurnt, Crmine Sbtino Elementi di clcolo degli iminti oleodinmici F. Qurnt, C. Sbtino Elementi di clcolo degli iminti oleodinmici 1 di 15 Not introduttiv Lo scoo di qunto esosto nelle gine seguenti

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI Pgin di 7 Rel. ermic soli Fscicolo tecnico per il clcolo delle prestzioni energetiche di soli lstre trliccite ( predlles ) IN ACCORDO ALLA NORMA UNI EN ISO 6946:008 0 07.0.00 Rev. Dt Descrizione Redtto

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

ELEMENTI DI STABILITA

ELEMENTI DI STABILITA tbilità Per stbilità di un nve si intende, in generle, l fcoltà di conservre l su posizione di equilibrio, cioè l su ttitudine resistere lle forze che tendono inclinrl e l cpcità di rddrizzrsi spontnemente

Dettagli

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario 58 Modulo 6 L rccolt bncri e il rpporto di conto corrente I destintri del Modulo sono gli studenti del quinto nno che, dopo ver nlizzto e ppreso le crtteristiche fondmentli dell ttività delle ziende di

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ).

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ). Mettiti ll prov METTITI ALLA PROVA Limiti e continuità b - + c e, c Si dt l funzione f ( ) se $ 0! = * sin, con b,! R, c! R + se 0 Ricv i vlori di, b e c in modo tle che: f() si continu in = 0 ; lim f

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

COMPUTO METRICO ESTIMATIVO

COMPUTO METRICO ESTIMATIVO DIREZIONE DI AREA 3 Orgnizzzione e Risorse SETTORE SEDI, LOGISTICA E INTERVENTI PER LA SICUREZZA SERVIZIO DI INDAGINI PRELIMINARI AL PROGETTO DI RESTAURO DELLE SUPERFICI DECORATE DI ALCUNE SALE DEI PALAZZI

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

STRUMENTI DI MISURA TERMOIGROMETRICI. Esercizio sul dimensionamento termico di un condizionatore d'aria

STRUMENTI DI MISURA TERMOIGROMETRICI. Esercizio sul dimensionamento termico di un condizionatore d'aria Nome: MRCHESI GLORI N mtricol: 465 Dt: 0//00 Ore: 0.0 /.0 STRUMENTI DI MISUR TERMOIGROMETRICI Sommrio: ) Esercizio sul dimensionmento termico di un iziontore d'ri ) Comfort termoigrometrico ) Strumenti

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

Corso di Laurea in Chimica Regolamento Didattico

Corso di Laurea in Chimica Regolamento Didattico Corso di Lure in Chimic Regolmento Didttico Art.. Il Corso di Lure in Chimic h come finlità l formzione di lureti con competenze nei diversi settori dell chimic per qunto rigurd si gli spetti teorici che

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE Università degli studi di Cgliri CORSO ANALISI II A.A. 007/008 Rppresentzione delle CONICHE e QUADRICHE Rppresentzione delle CONICHE Generlità Si definiscono coniche le curve pine risultto dell intersezione

Dettagli

Gioco Interno Tipologie e Norme

Gioco Interno Tipologie e Norme Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile.

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

SAP Business One Top 10

SAP Business One Top 10 SAP Business One Top 10 Dieci motivi per cui le PMI scelgono SAP Business One 1 6 Affidbilità Le PMI riconoscono in SAP un leder su cui poter fre ffidmento. Personlizzzione SAP fornisce soluzioni personlizzte

Dettagli