Capitolo 2 Errori di misura: definizioni e trattamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 2 Errori di misura: definizioni e trattamento"

Transcript

1 Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza M espressa utà U l umero m M / U I realtà, ua msura può essere otteuta due mod dvers: ) msura dretta (vsva o strumetale) ) msura dretta [y f(,., )]

2 .a) Error elle msure drette a) defzoe d scarto, ξ, della msura -esma S defsce scarto, ξ, della msura -esma la dffereza tra l rsultato della msura e la meda della quattà msurata (determata co crter statstc vst al captolo precedete) ξ m < m >,, N b) defzoe d errore (ε) Dffereza tra l valore msurato e l valore vero ( realtà cooscble, poché perturbato dalla msura stessa). Se l valore vero della gradezza è µ, ella msura -esma l errore commesso è ε ε m µ

3 c) defzoe d errore relatvo (r m ) r m ε 00 m (%) Rcordado la defzoe d meda, s verfca mmedatamete che valgoo seguet rsultat < ξ > N ξ 0 N (gà vsto al captolo ) < ε > N ε N < m > µ

4 ) Classfcazoe degl error Se l valore vero d ua gradezza è commettamo l errore ε m µ µ, ella msura -esma Tale errore può dpedere sa dallo strumeto che dal processo d msura, ossa dalla terazoe tra oggetto, strumeto e ambete. I geerale, classfchamo gl error casual e sstematc. a) Errore casuale Errore d valutazoe (dvso della scala dello strumeto d msura) Fluttuazoe d parametr spermetal (temperatura, pressoe ) Dsturb (oscllazo meccache, segal rado spur ) N.B. Soo a meda ulla!

5 b) Errore sstematco Imperfetta taratura degl strumet Imperfetta descrzoe fsca del feomeo (Es.: h ½ gt ) N.B. Gl error sstematc possoo essere corrett quado se e coosce l orge, altrmet o se e può teere coto. La soluzoe, questo caso, cosste el cercare d otteere la stessa formazo co msure d tpo dfferete.

6 3) Parametr che defscoo le caratterstche degl strumet Sesbltà o rsoluzoe Varazoe δ el valore della gradezza da msurare che provoca l mmo spostameto avvertble ell dce dello strumeto (meglo aalogco o dgtale?). U medesmo strumeto (es.: multmetro) ha spesso la possbltà d sceglere tra dverse scale d sesbltà. N.B. I geerale, l rsultato d ua msura forsce u valore m (m-δ, m+δ). Rpetedo volte la stessa msura s ottegoo m,,m rsultat apparteet a tervall, geerale o cocdet. Se m m m, lo strumeto ha sesbltà troppo bassa. Precsoe Valore tpco dello scostameto dal valore medo che caratterzza sere umerose d msure. Ne buo strumet, codzo d msura deal, precsoe e sesbltà cocdoo.

7 Accuratezza Quattà legata allo scostameto tra la meda (su molte msure) de valor msurat e l valore vero. Dpede d solto da error d taratura (es.: termocoppa). Ne buo strumet tale scostameto è more o uguale alla sesbltà. Protezza Iverso del tempo rchesto per ua msura (ua volta ragguta la poszoe d equlbro!!!).

8 4) Relazo tra parametr strumetal e le vare tpologe d errore La sesbltà lmtata troduce u errore d arrotodameto, o d lettura, che possamo geeralmete cosderare errore casuale, coè avete meda ulla. La precsoe lmtata geera fluttuazo d tpo casuale che vegoo messe evdeza da strumet molto sesbl ma poco precs. L accuratezza lmtata geera error sstematc a meda dversa da zero. Se quest ultm error soo prepoderat, l accuratezza dello strumeto vee stmata tramte la meda su N>> msure degl error commess msurado ua gradezza ota µ. N N < ε > ( m µ ) ε N N < ε > L accuratezza relatva, espressa percetuale, vale 00 µ

9 5) Trattameto degl error casual Ache se lo strumeto è be tarato, o cooscamo l errore casuale che abbamo computo ua certa msura. Suppoedo che gl error sstematc sao trascurabl, possamo utlzzare cocett della statstca. La meda <m> costturà ua stma del valore vero < m > m µ Metre l errore quadratco medo vero, defto come < ε > ( m µ ) ε vee stmato medate la devazoe stadard della msura ( m < m > ) ( m) < ε >

10 Per l caso d msure dpedet s possoo rpetere prcpal teorem eucat per mede e varaze: ) se eseguamo su ua gradezza costate el tempo msure co errore sstematco trascurable, la legge de grad umer c asscura che < m > µ ) la devazoe stadard è ua stma corretta della radce quadrata della varaza della msura ( m) 3) la varaza delle mede su msure ha come valore stmato m ( < > µ )

11 Quado s forsce l valore medo d ua msura è cosuetude rappresetarlo come < m > ± La devazoe stadard otteuta da msure d ua gradezza costate avete valore vero µ caratterzza la precsoe della msura. I asseza d error sstematc questa devazoe stadard c forsce ua stma d quato ua sgola msura dffersca da µ. N.B. La gradezza prede l ome d devazoe stadard della meda o errore della meda e può essere dcata co.

12 6) Relazoe tra parametr strumetal e propagazoe degl error Sa Y ua qualsas gradezza fsca per la quale o è dspoble u Y-metro. I og caso, s può acora determare Y e calcolare la precsoe della msura se è ota la dpedeza fuzoale Y f(x,, X ) d Y da altre gradezze fsche X che possoo essere msurate drettamete. Occorre ache che la fuzoe f sa cotua co tutte le sue dervate prme parzal. Il rsultato della msura dretta d og gradezza X può essere espresso ella forma geerale ± dove l sgfcato delle varabl dpede da tpo d msura effettuata.

13 Msure a bassa sesbltà ) è l valore della sgola msura (al lmte, ua sola) rproducble; ) rappreseta la sesbltà dello strumeto utlzzato. I questo caso, l tervallo [ ; + ] cotee co certezza l valore vero della gradezza esame e tutt put all tero dell tervallo soo equprobabl.

14 Msure ad alta sesbltà ) Caso d ua sola msura è l valore della sgola msura; rappreseta l errore della msura, che deve essere oto a pror (ed esempo medate ua valutazoe ragoata) ) Caso d pù msure è l valore della meda, <> ; rappreseta l errore della meda. I questo caso, se la dstrbuzoe degl error è ormale (ved Captolo del calcolo delle probabltà), l tervallo [ 3 ; +3 ] cotee co certezza l valore vero della gradezza esame e l puto e rappreseta l valore pù probable.

15 6. Calcolo della meda e dell errore della meda el caso d msura dretta Il calcolo della meda o comporta geerale alcua dffcoltà; s ha Y f(,, ) Vceversa, esstoo sostazal dffereze el calcolo della precsoe del valore Y e sul sgfcato dell tervallo [ Y ± ] a secoda che dat spermetal provegao tutt da msure ad alta sesbltà, a bassa sesbltà o da ua combazoe qualuque de due cas. N.B. S tratta d ua geeralzzazoe d quato vsto al captolo precedete a proposto delle legg d propagazoe degl error, el seso che ora stamo collegado l certezza sulla msura alle caratterstche dello strumeto d msura stesso.

16 I geerale, defta δ ua pccola varazoe d co δ << possamo svluppare la dpedeza fuzoale d Y sere d Taylor attoro al puto {} Y f δ δ Se le varazo δ rappresetao gl error ε, allora δ Y rappreseta l errore ε Y ella msura dretta d Y: {} Y f ε ε Nel caso cu la dpedeza fuzoale della Y sa esprmble attraverso u prodotto d poteze X A Y α

17 dove A è ua costate moltplcatva e gl espoet α soo umer razoal, s ottee per lo svluppo sere Y A A ε α α ε α ε α α α α α α da cu, dvdedo membro a membro per s ottee l errore relatvo, r Y, per la msura dretta d Y fuzoe degl error relatv r delle msure drette Y r Y r α

18 a) Msure a bassa sesbltà Y La precsoe Y del valore s calcola sosttuedo agl error ε la sesbltà dello strumeto mpegato e prededo l modulo delle dervate parzal (codzoe pù sfavorevole) Y f {} I questo caso, come gà vsto, l tervallo cotee l valore vero e tutt put dell tervallo Y, + soo equprobabl. [ ] Y Y Y Se la dpedeza fuzoale d Y è data da u prodotto d poteze, la precsoe relatva della msura dretta è data da S Y S Y α S dove le S soo le precso relatve delle msure drette.

19 b) Msure ad alta sesbltà I questo caso, gl error ε soo varabl casual (dstrbute ormalmete, ved captolo delle dstrbuzo d probabltà) e così pure s può dre per ε Y che è ua loro combazoe leare. Allora, se è l errore della meda d, l errore della meda d rsulta Y f {} Rguardo al sgfcato dell tervallo Y Y, Y + Y, s può affermare che la dstrbuzoe de valor attoro al valor medo è ormale (gaussaa) se soo ormal le dstrbuzo degl error ε attoro alle varabl dpedet X. Nel caso d u prodotto d poteze s ottee S G α S Y [ ] A partà d fuzoe f e de valor e, s ota che gl error fort dalle legg d propagazoe delle msure a bassa sesbltà soo sstematcamete maggor rspetto a quell fort per le msure ad alta sesbltà. Y

20 6. Combazoe d msure avet dversa precsoe Tutt rsultat delle msure, rpetute elle stesse codzo, d ua gradezza fsca devoo essere cosderat a pror egualmete precs. Cosderamo ora l caso cu s devoo combare asseme msure delle stessa gradezza fsca affette da dversa precsoe. S assume come valore pù attedble l valore medo della sere caratterzzata da maggore precsoe, ma evdetemete l seme d tutt dat a dsposzoe cotee ua quattà d formazoe maggore rspetto a quello d ua sgola sere d msure. Msure d dfferete precsoe s combao co l operazoe d meda pesata.

21 S cosder l caso partcolare cu,, m+ sao rsultat d m+ msure rpetute elle medesme codzo spermetal e sa la varaza della dstrbuzoe. Da quato vsto precedeza s ha m + m + m + Se dalla sere d msure estraamo le due sottosere,, m e m+,, m+ possamo calcolare le relatve mede e precso ' m ' m m m + " m+ " L espressoe geerale della meda può essere rscrtta el modo seguete m m+ + m + m + m+

22 che può essere espressa term della meda delle sottosere m m + ' + m + " e acora, term delle varaze ( ' ) ( ' ) ( ") + ' + ( ") ( ' ) ( ") + " La varaza complessva vee espressa, term delle varaze delle sottosere, come ' " + ( ) ( ) Qud l valore pù attedble della msura vee calcolato seza utlzzare tutt gl m+ rsultat, ma solo le mede e le relatve precso. Le mede vegoo combate learmete attraverso coeffcet versamete proporzoal al quadrato delle relatve precso.

23 Pù geerale, se y ± co,, N soo rsultat d msure d ua stessa gradezza fsca otteute co dversa precsoe (ache da dfferet spermetator o epoche dfferet), l valore pù attedble della gradezza esame è la meda pesata de valor, defta come y p N N p p y dove l peso p della -esma vale p e la precsoe complessva della msura è data da N /

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA RISOLUZIONE ENO 0/005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA L ASSEMBLEA GENERALE, Vsto l artcolo paragrafo v dell

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Parte I (introduzione)

Parte I (introduzione) arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) L ertezza rappreseta geerale dbbo. Il dbbo ra la valdtà del rsltato d a msrazoe vee espresso medate l ertezza d msra. Iertezza d msra arametro,

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha:

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha: RENDITE. Pagamet rateal S defsce redta ua sere qualsas d somme rscuotbl (o pagabl a scadeze dverse, o, pù esattamete, u seme d captal co dspobltà scagloata el tempo. Tal captal soo dett rate della redta

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

SCHEDA DIDATTICA N 5

SCHEDA DIDATTICA N 5 FACOLTA DI INGEGNEIA COSO DI LAUEA IN INGEGNEIA CIVILE COSO DI IDOLOGIA POF. PASQUALE VESACE SCHEDA DIDATTICA N 5 MOMENTI DELLE VAIABILI CASUALI E STIMA DEI PAAMETI A.A. 0-3 Momet delle varabl casual La

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott

Dettagli

Lezioni del Corso di Fondamenti di Metrologia

Lezioni del Corso di Fondamenti di Metrologia Uverstà degl Std d Casso Facoltà d Igegera Lezo del Corso d Fodamet d Metrologa 3. L Icertezza d Msra Uverstà degl Std d Casso Corso d Fodamet d Metrologa Idce. Icertezza d Msra. Propagazoe delle Icertezze

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Appunti: elementi di Statistica

Appunti: elementi di Statistica Uverstà d Ude, Facoltà d Sceze della Forazoe Corso d Laurea Sceze e Tecologe Multedal Corso d Mateatca e Statstca (Gorgo T. Bag) Apput: eleet d Statstca. INTENSITÀ, FREQUENZA ASSOLUTA E RELATIVA.. L aals

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. ESEMPIO 3 I uer dc de prezz e delle produzo Da geao a dcebre prezz de quattro prodott soo auetat del: (,48 ) 4,8% assuedo che le quattà vedute sao quelle d dcebre. I due dc (Laspeyres e Paasche) dao luogo

Dettagli

ammontare del carattere posseduto dalle i unità più povere.

ammontare del carattere posseduto dalle i unità più povere. Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe

Dettagli

Marco Riani - Analisi delle statistiche di vendita 1

Marco Riani - Analisi delle statistiche di vendita 1 ORARIO LEZIONI ANALISI DELLE STATISTICHE DI VENDITA Marco Ra mra@upr.t http://www.ra.t Mercoledì 3 aula Lauree Mercoledì 4 6 aula Lauree Govedì 3 Eserctazoe Semar? LIBRI DI TESTO Teora Ra M., Laur F. 8,

Dettagli

METODOLOGIA SPERIMENTALE IN AGRICOLTURA

METODOLOGIA SPERIMENTALE IN AGRICOLTURA METODOLOGIA SPERIMENTALE IN AGRICOLTURA LABORATORIO DI BIOMETRIA CON R (http://www.r-project.org/) APPUNTI DALLE LEZIONI (bozze Settembre 005) DOCENTE Adrea Oofr Dpartmeto d Sceze Agroambetal e della Produzoe

Dettagli

Appunti di STATISTICA corso di recupero Docente Sciacchitano ANTONIA MARIA

Appunti di STATISTICA corso di recupero Docente Sciacchitano ANTONIA MARIA Apput d STATISTICA corso d recupero Docete Scacchtao ANTONIA MARIA Gl error e le machevolezze d quest apput restao a mo carco.soo grata a coloro che vorrao farm pervere,ella prospettva d ua sstemazoe pù

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

PROBLEMI INVERSI NELLA MECCANICA DEL

PROBLEMI INVERSI NELLA MECCANICA DEL UNIVERSITÀ DELLA CALABRIA DOTTORATO DI RICERCA IN MECCANICA COMPUTAZIONALE XX CICLO SETTORE SCIENTIFICO DISCIPLINARE ICAR-8 PROBLEMI INVERSI NELLA MECCANICA DEL DANNEGGIAMENTO Doato Guseppe Dssertazoe

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato.

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato. La valutazoe de credt dervatves ed ua sua applcazoe a dat d mercato. a cura d Alessadro Matta. La valutazoe d credt dervatves..... Ipotes d base.....2 Strumet sgle-ame....2.3 Strumet mult-ame....4.4 Idc

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

MINICORSO: Controllo Statistico di Processo (parte 2/5) di Andrea Saviano

MINICORSO: Controllo Statistico di Processo (parte 2/5) di Andrea Saviano Parte 2 Mcorso Cotrollo Statstco d Processo d Adrea Savao Walter Adrew Shewhart, ch era costu, premessa Ache le matematco, che combazoe! Probabltà... seza mprevst Il 7 e ½ e altr goch d carte No poamo

Dettagli

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione Obettv Statstca Itroduzoe Scopo d quest lucd è d forre cocett base d statstca utl azeda per: la raccolta de dat, la progettazoe degl espermet, l terpretazoe de rsultat. Spazo d probabltà Spazo d probabltà:

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

RAPPRESENTAZIONE ANALITICA DELLE DISTRIBUZIONI STATISTICHE CON R

RAPPRESENTAZIONE ANALITICA DELLE DISTRIBUZIONI STATISTICHE CON R Rappresetazoe aaltca delle dstrbuzo statstche co R RAPPRESENTAZIONE ANALITICA DELLE DISTRIBUZIONI STATISTICHE CON R Versoe 0.4- febbrao 005 Vto Rcc vto_rcc@yahoo.com E garatto l permesso d copare, dstrbure

Dettagli

Analisi economica e valutazione delle alternative

Analisi economica e valutazione delle alternative Aals ecoomca e valutazoe delle alteratve Ig. Lug Cucca (Ph.D.) Producto Egeerg Research WorkGROUP Dpartmeto d Tecologa Meccaca, Produzoe e Igegera Gestoale Uverstà d Palermo Ageda Elemet d calcolo ecoomco

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA aratoetta Rugger Dpartmeto d Sceze statstche e matematche S.Vaell Uverstà degl stud d Palermo Prefazoe Questa dspesa è stata creata per gl studet della Facoltà d Ecooma d Palermo

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Problema della Ricerca

Problema della Ricerca Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

Autori. Versione 2.0. Giorgio Della Rocca (*) Marco Di Zio (*) Orietta Luzi (*) Giorgia Simeoni (*) (*) ISTAT - Servizio MTS (**) ISTAT - Servizio PSM

Autori. Versione 2.0. Giorgio Della Rocca (*) Marco Di Zio (*) Orietta Luzi (*) Giorgia Simeoni (*) (*) ISTAT - Servizio MTS (**) ISTAT - Servizio PSM IDEA (Idces for Data Edtg Assessmet) - Sstema per la valutazoe degl effett d procedure d cotrollo e correzoe de dat e per l calcolo degl dcator SIDI Versoe 2.0 Autor Gorgo Della Rocca (*) Marco D Zo (*)

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI CORSO DI STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI Idce I PARTE Sezoe I... Probabltà classca. Il problema d Galleo della somma del puteggo d tre dad... 3. Aagramm d parole co lettere rpetute o meo.

Dettagli

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze Esercz d Statstca per gl studet d Sceze Poltche, Uverstà d Freze Esercz svolt da ua selezoe d compt degl Esam scrtt d Statstca del 999 e del 000 VERSIONE PROVVISORIA APRILE 00 A cura d L. Matroe F.Meall

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

Premessa... 1. Equazioni i differenziali lineari

Premessa... 1. Equazioni i differenziali lineari Apput d Cotroll Autoatc Captolo 3 parte I Sste dac lear Preessa... Equazo dfferezal lear... Evoluzoe lbera ed evoluzoe forzata... Uso della trasforazoe d Laplace... 3 Esepo... 7 Osservazo sulla rsposta

Dettagli

«MANLIO ROSSI-DORIA»

«MANLIO ROSSI-DORIA» «MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà

Dettagli

MANUALE DI BEST PRACTICE

MANUALE DI BEST PRACTICE Pag. 1 d 95 per la redazoe d u rapporto d valutazoe d mmobl a garaza delle esposzo credtze Pag. 2 d 95 Idce INTRODUZIONE... 3 TERMINI E DEFINIZIONI... 5 1. VALORE DI MERCATO... 8 2. VALORI DIVERSI DAL

Dettagli

INTRODUZIONE. Manuale di Best Practice Pagina 3 di 79

INTRODUZIONE. Manuale di Best Practice Pagina 3 di 79 MANUALE DI BEST PRACTICE per la redazoe d u rapporto d valutazoe d mmobl a garaza delle esposzo credtze Il presete mauale è d utltà sa per tutt coloro che desderao affrotare l esame d certfcazoe e per

Dettagli

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a Appareh d sollavameto A moto otuo: Nastr trasportator Sollevator a tazze Forze d erza lmtate; trastor d avvameto e arresto poo rlevat A moto dsotuo: Gru a torre Forze d erza rlevat Classfazoe appareh d

Dettagli

Approssimazioni di curve

Approssimazioni di curve Approssmazo d curve e superfc Approssmazo d curve Il terme Computer Grafca comprede ua larga varetà d applcazo che rguardao umerevol aspett della ostra vta. U eleco esemplfcatvo d alcu de camp cu essa

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO

COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO PER LA COSTITUZIONE E LA RIPARTIZIONE DEL FONDO INTERNO DEL 2,00% DELL IMPORTO POSTO A BASE DI GARA DELLE OPERE E DEI LAVORI E DEL 30% DELLA TARIFFA PROFESSIONALE

Dettagli

DIPARTIMENTO DI ECONOMIA

DIPARTIMENTO DI ECONOMIA UNIVERITÀ POLITECNICA DELLE ARCHE DIPARTIENTO DI ECONOIA IL CAP: IL CAO DELL ITALIA GIUEPPE RICCIARDO LAONICA QUADERNO DI RICERCA. 56 arzo 006 Comtato scetfco: Reato Balducc arco Crvell arco Gallegat Alberto

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL Programmazoe No Leare: Algortm Evolutv Ig. Valero Lacaga Programmazoe o leare: metodche rsolutve METODI d PNL INDIRETTI DIRETTI Codzo ecessare Sstema d vcol Algortm I metod drett forscoo soltato codzo

Dettagli

Capitolo 5: Fattorizzazione di interi

Capitolo 5: Fattorizzazione di interi Captolo 5: Fattorzzazoe d ter Trovare fattor d u umero tero grade è ua mpresa assa ardua, e può essere mpossble co le rsorse ogg dspobl. No s cooscoo metod polomal per la fattorzzazoe, come vece accade

Dettagli

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I Aldo Motesao PRINCIPI DI ANALISI ECONOMICA CAP. L ANALISI DELL'EQUILIBRIO GENERALE I L aals dell equlbro parzale, esaata el captolo precedete, è sa u utle troduzoe all aals dell equlbro geerale, sa uo

Dettagli

Le variabili casuali semplici

Le variabili casuali semplici 573 7 Le varabl casual semplc Nel captolo precedete s è prvlegato l eveto e la sua probabltà seza dugare sulle faltà dell espermeto e sulle attvtà coesse alle sue mafestazo. charo però che l espermeto

Dettagli

CHIMICA DEI MATERIALI II SECONDO MODULO

CHIMICA DEI MATERIALI II SECONDO MODULO IMI DEI MTEILI II SED MDUL Prof. Pero Sozza Uverstà Mlao-cocca. Dpartmeto d Sceza de Materal 25 aprle 2006 Dspesa realzzata da Vettgl Marco rfermeto al corso d hmca de Materal II, secodo modulo teuto

Dettagli

Variazione approssimata del valore attuale

Variazione approssimata del valore attuale arazoe approssmaa del valore auale Fabo Bell 0 Abbamo vso le prcpal propreà della durao e dvers mod d calcolarla var esemp, ra cu ol a cedola fssa. Roramo alla relazoe che lega la durao alla sesvà del

Dettagli

0.1 CARATTERISTICHE ESSENZIALI DEL RUMORE

0.1 CARATTERISTICHE ESSENZIALI DEL RUMORE UMOE EETTO Og segale elettrco presete u crcuto oltre a quello desderato s può dere rumore. Ua mportate eccezoe a questa dezoe soo prodott d dstorsoe prodott u crcuto o leare per cu la ostra attezoe è lmtata

Dettagli

Avvertenza. Rendite frazionate

Avvertenza. Rendite frazionate Avverteza Quest lucd soo pesat solo come u auslo per l ascolto della lezoe. No sosttuscoo l lbro d testo Possoo coteere error e svste, che gl studet soo vtat a segalare Redte frazoate L tervallo tra ua

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Criteri di scelta degli investimenti. Materiale didattico per il corso di matematica finanziaria II modulo

Criteri di scelta degli investimenti. Materiale didattico per il corso di matematica finanziaria II modulo Crter d scelta degl estmet Materale ddattco per l corso d matematca azara II modulo Itroduzoe La presete trattazoe s poe come obetto d aalzzare due prcpal crter d scelta degl estmet e de azamet per alutare

Dettagli

L OCCHIO. L OCCHIO: Proprietà Ottiche

L OCCHIO. L OCCHIO: Proprietà Ottiche L OCCHIO La truttura dell cch può esser trvata svarat test, put fdametal per quat rguarda l str teresse: studad l spettr Elettr-Magetc s s trvat due ftrecettr c (per l rss, l blu ed l verde) bastcell (vse

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO. box. Scopo della modellazione black-box. Limitazioni dell approccio black-box

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO. box. Scopo della modellazione black-box. Limitazioni dell approccio black-box IGEGEIA E TECOLOGIE DEI SISTEMI DI COTOLLO bo Prof. Carlo oss DEIS - Uversà d Bologa Tel: 05 09300 emal: cross@des.bo. Scopo della modellazoe black-bo S vole realzzare modello d ssema a parre dalla sola

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Metodi e Modelli di Programmazione Lineare

Metodi e Modelli di Programmazione Lineare Metod e Modell d Programmazoe Leare Massmo Paolu (paolu@dst.uge.t) DIS Uverstà d Geova La Programmazoe Leare (LP) Modello d programmazoe matemata ma f() s.t. X R vettore delle varabl desoal X seme delle

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

CALCOLO ECONOMICO E FINANZIARIO

CALCOLO ECONOMICO E FINANZIARIO CALCOLO ECONOMICO E FINANZIARIO 1. Iteresse e scoto La postcpazoe d ua dspobltà fazara rchede ua certa rcompesa (teresse), vceversa la sua atcpazoe comporta ua dmuzoe dell'mporto orgaro (scoto). Il rsparmatore,

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli