P suolo in P; 2. la distanza d, dall uscita dello

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "P suolo in P; 2. la distanza d, dall uscita dello"

Transcript

1 acolà di Ingegneria Prova Generale di isica I Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α = 60 ο rispeo al piano orizzonale (vedi figura). Lo scivolo consise di un primo rao inclinao di lunghezza l e coefficiene di ario dinamico µ = 0.5 seguio da un rao curvo liscio con uscia orizzonale posa ad alezza h = 4 m dal suolo. Sapendo che lo sciaore esce dallo scivolo con una velocia pari in modulo a v o = 0 m/s, deerminare (rascurando l ario dell aria, e considerando lo sciaore l come un puno maeriale): 1. dopo quano empo p, dall isane in cui lascia lo scivolo, lo sciaore occhera il h P suolo in P;. la disanza d, dall uscia dello d scivolo al puno P in cui lo sciaore occa il suolo; 3. la componene lungo x della velocia (vpx) all isane in cui occa il suolo in P; 4. la componene lungo y della velocia (vpy) all isane in cui occa il suolo in P; 5. il modulo dell angolo Φ rispeo all orizzonale del veore velocia con cui lo sciaore occa il suolo; 6. la variazione di energia meccanica E m dal puno di parenza al puno in cui lascia lo scivolo; 7. l espressione della forza d ario lungo il rao di lunghezza l 8. la lunghezza l del rao inclinao dello scivolo. Rispondere quindi alle segueni domande: 1. Il empo p, dall isane in cui lascia lo scivolo a quello in cui lo sciaore occa il suolo in P, vale: p = 0.34 s B. p = 0.90 s (*) C. p = 1.81 s D. p = 4.77 s. la disanza d, dall uscia dello scivolo, al puno P in cui lo sciaore occa il suolo vale: d = 15.7 m B. d = 5.6 m C. d = 1.8 m D. d = 18.1 m(*) h α

2 3. la componene lungo x della velocia all isane in cui lo sciaore occa il suolo in P vale in valore assoluo: vpx = 0.0 m/s(*) B. vpx = 7.7 m/s C. vpx = 10.0 m/s D. vpx = 5.5 m/s 4. la componene lungo y della velocia all isane in cui lo sciaore occa il suolo in P vale in valore assoluo: vpy = 17.6 m/s B. vpy = 8.85 m/s(*) C. vpy = 1.15 m/s D. vpy = 0.71 m/s 5. il modulo dell angolo Φ rispeo all orizzonale del veore velocia dello sciaore quando queso occa il suolo vale: Φ = 35.5 o B. Φ = 47.7 o C. Φ = 3.9 o (*) D. Φ = 45.0 o 6. la variazione di energia meccanica E m, in valore assoluo, dal puno di parenza al puno in cui lo sciaore lascia lo scivolo vale: E m = 4. kj B. E m = 176 J C. E m = 1.05 kj D. E m =.11 kj(*) 7. il lavoro della forza d ario ha espressione: W ario = -µmgl sinα B. W ario = -µmgl cosα (*) C. W ario = µmgl D. W ario = 0 8. la lunghezza l del rao inclinao dello scivolo vale: l = 39.4 m B. l =.7 m C. l = 4.5 m D. l = 8.7 m(*) Esercizio N. Un cilindro e a riposo su un piano orizzonale privo di ario. Siano la sua massa, R il suo raggio, ed I il suo momeno di inerzia rispeo all asse di simmeria. Un filo inesensibile di massa rascurabile, arroolao inorno alla superficie del cilindro, viene irao, solano per un inervallo di empo, con una forza cosane r orizzonale. rovare, facendo aenzione al fao che il moo non e assoluamene di puro roolameno: - il modulo della velocia v dell asse del cilindro al empo 0 - il modulo della velocia angolare del cilindro al empo 0

3 - il modulo della velocia v dell asse del cilindro al empo > (quando la forza r non c e piu ). - il modulo della velocia angolare del r cilindro al empo > (quando la forza r non c e piu ). R Deerminare il valore di I affinche l energia cineica del cilindro sia equamene divisa ra moo roazionale e moo raslazionale. piano liscio Dire inolre quale dovrebbe essere la disribuzione della massa in funzione della disanza dall asse di simmeria in funzione della disanza dall asse affinche cio si verifichi. 9. il modulo della velocia v dell asse del cilindro al empo 0 ha espressione I B. (*) C. 1 D. I 10. il modulo della velocia angolare del cilindro al empo 0 I R B. 1 R I R C. (*) I D. R 11. il modulo della velocia v dell asse del cilindro al empo > I B. I 1 I + C. 1 D. (*) 1. il modulo della velocia angolare del cilindro al empo > I R B. 1 R

4 R C. (*) I 1 R D. I Affinche l energia cineica del cilindro sia equamene divisa ra moo roazionale e moo raslazionale, il momeno d inerzia I rispeo all asse di simmeria del cilindro deve valere: 4R B. R (*) 1 C. R 3 D. R 14. Affinche l energia cineica del cilindro sia equamene divisa ra moo roazionale e moo raslazionale, la densia di massa del cilindro e : cosane (non dipende dalla disanza dall asse del cilindro) B. varia proporzionalmene alla disanza dall asse del cilindro C. varia in proporzione inversa alla disanza dall asse del cilindro D. e nulla all inerno del cilindro e diversa da zero sulla superficie dello sesso (cilindro vuoo) (*) Alre domande 15. Un auomobile pare da ferma e per 0 s ha un accelerazione lineare di 0.8 m / s nella direzione delle x posiive. Durane queso inervallo di empo, le ruoe, di raggio 0.33 m, non sliano. rovare il modulo dell accelerazione angolare delle ruoe..4 rad/s (*) B rad/s C. 5.6 rad/s D rad/s 16. Un moo reilineo (posizione x, velocià v, accelerazione a) è armonico quando l accelerazione è a. a = cosane b. a = kx con k=cosane (*) c. a = kx con k=cosane a = con k=cosane d. kv 17. Per un puno maeriale in moo con velocià angolare cosane ω lungo una raieoria circolare piana si conservano le segueni grandezze fisiche: a. Il momeno angolare rispeo al cenro della raieoria e l energia cineica (*) b. La quanià di moo e l energia cineica c. Il momeno angolare rispeo al cenro della raieoria e la quanià di moo

5 d. Nessuna 18. Il periodo di oscillazione di un pendolo semplice, che compie piccole oscillazioni rispeo alla sua posizione di equilibrio, non dipende a. dall ampiezza dell oscillazione b. dalla lunghezza del filo c. dalla massa del pendolo (*) d. dall accelerazione di gravià 19. Un auomobile pare da ferma e per 0 s ha un accelerazione lineare di 0.8 m / s nella direzione delle x posiive. Durane queso inervallo di empo, le ruoe non sliano. Il raggio delle ruoe e 0.33 m. Alla fine dell inervallo di 0 s, le ruoe avranno ruoao di una angolo pari, in valore assoluo, a: 484 rad (*) B. 35 rad C. 178 rad D. 57 rad 0. Una slia viaggia a 4 m/s lungo un seniero innevao orizzonale. Il coefficiene di ario dinamico vale µ k = Quano spazio percorre la slia prima di fermarsi? 0.4 m B. 3.5 m C m (*) D m 1. Lungo la curva sopraelevaa disegnaa in figura, supposa circolare e di raggio R = 00 m, in una srada larga 1 m (lao BC del riangolo BAC in figura) e realizzaa in modo ale da avere coefficiene di ario rascurabile, il limie di velocià è di v max = 100 km/h. Calcolare di quano il bordo eserno della srada, lao BA, debba essere rialzao rispeo a quell inerno, affinché l auoveura, procedendo alla massima velocià consenia, non sbandi uscendo fuori srada. h = 4.3m (*) B. h = 5.7 m C. h =.4 m D. h = 1.8 m

6 IGURA 4 B R R O A b θ C. Il eorema di Koenig dell energia cineica per un sisema di puni maeriali afferma che a. L energia cineica oale è sempre nulla b. L energia cineica oale è uguale all energia cineica del C del sisema. c. L energia cineica oale misuraa rispeo ad un sisema di riferimeno inerziale è uguale alla somma dell energia cineica del C del sisema e dell energia cineica oale misuraa rispeo ad un sisema di riferimeno solidale con il C (*) d. L energia cineica oale è uguale all energia cineica oale del sisema rispeo ad un sisema di riferimeno solidale con il C.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento 8. L ENERGIA La parola energia è una parola familiare: gli elerodomesici, i macchinari hanno bisogno di energia per funzionare. Noi sessi, per manenere aive le funzioni viali e per compiere le azioni di

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Esercizi di Cinematica. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Esercizi di Cinematica. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Esercizi di Cinemaica 8 febbraio 9 PIACENTINO - PREITE (Fisica per Scienze Moorie) Le equazioni cinemaiche Moo reilineo uniforme Moo reilineo uniformemene accelerao a cosane ) ( e cosane a a + 8 febbraio

Dettagli

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D IL MOVIMENTO Spazio e empo Sposameno Legge oraria Velocia Moo uniforme Accelerazione Moo uniformemene accelerao Esempi di moi in 2-D Il movimeno pag.1 Spazio e empo Ingredieni fondamenali: Disanza variazione

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

I - Cinematica del punto materiale

I - Cinematica del punto materiale I - Cinemaica del puno maeriale La cinemaica deli oei puniformi descrie il moo dei puni maeriali. La descrizione del moo di oni puno maeriale dee sempre essere faa in relazione ad un paricolare sisema

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

Riassunto di Meccanica

Riassunto di Meccanica Riassuno di Meccanica Cinemaica del puno maeriale 1 Cinemaica del puno: moo nel piano 5 Dinamica del puno: le leggi di Newon 6 Dinamica del puno: Lavoro, energia, momeni 8 Dinamica del puno: Lavoro, energia,

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici CORSO di RECUPERO di FISICA Classi seconde (anno scolasico 015-016) giorno daa Ora inizio Ora fine aula mercoledì 9/06/016 giovedì 30/06/016 maredì 05/07/016 giovedì 07/07/016 08:45 10:15 401 Nel corso

Dettagli

direzione x. [x = 970,89 m ; θ = ]

direzione x. [x = 970,89 m ; θ = ] Prof. Roberto Capone Corso di Fisica e Geologia Mod. FISICA Esempi Prove scritte La velocità angolare di una ruota diminuisce uniformemente da 24000 giri al minuto a 18000 giri al minuto in 10 secondi.

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

La Cinematica. Problemi di Fisica. Moti nel piano

La Cinematica. Problemi di Fisica. Moti nel piano Problemi di Fisica Moi nel piano Menre un auomobile viaggia a velocià cosane M m/s una palla è lanciaa orizzonalmene dal finesrino perpendicolarmene alla direzione di moo della macchina con velocià p 5

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli.

I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli. I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli. Esercizio 1: Un corpo viene lanciato, con una velocità iniziale

Dettagli

Fisica Applicata (FIS/07) Architettura

Fisica Applicata (FIS/07) Architettura Fisica Applicaa (FIS/07) 9CFU Facolà di Ingegneria, Archieura e delle Scienze Moorie 18-marzo-013 Archieura (corso magisrale a ciclo unico quinquennale) Prof. Lanzalone Gaeano Cinemaica del Puno Maeriale

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

Impulso di una forza

Impulso di una forza Uri Nel linguaggio di ui i giorni chiamiamo uro uno sconro fra due oggei. Piu in generale, possiamo definire uri quei fenomeni in cui la inerazione di due o piu corpi per un breve inervallo di empo genera

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE - Campo roane - Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià cosane che ruoa aorno ad un asse con

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Lavorazioni per asportazione di truciolo: usura utensile. Tecnologia Meccanica 1

Lavorazioni per asportazione di truciolo: usura utensile. Tecnologia Meccanica 1 Lavorazioni per asporazione di ruciolo: usura uensile Esercizio 1 In una lavorazione si desidera che la duraa T dell uensile sia di 15 minui. Assumendo per le cosani di Taylor i valori C = 250 e n = 0.122

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Oscillazione Moto di una molla

Oscillazione Moto di una molla Oscillazione oo di una molla Uno dei più imporani esempi di moo armonico semplice (AS) è il moo di una molla. (Una molla ideale è una molla che rispea la Legge di Hooe.) Consideriamo una molla sospesa

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

8 Un carrellino montato su una rotaia a cuscino d aria (tale che

8 Un carrellino montato su una rotaia a cuscino d aria (tale che apiolo La dinamica newoniana VRSO L SM Un blocco di è leao a un alro di che a sua vola è irao da una forza! 7 Una massa è sospesa a una molla. La reazione alla forza di ravià erresre aene sulla massa è

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA Liceo Scienifico Saale G. Galilei DOLO (VE) Sudeni: Manuel Campalo Alessandro Genovese Insegnani: Federica Bero Robero Schiavon ARABOLE IN NATURA Durane i nosri sudi sul moo dei corpi ci siamo imbaui nella

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0 CINEMATICA EX 1 Un puno nello spazio è definio dal veore posizione ˆr() = 3 3 î + ĵ + ˆk dove è il empo. Calcolare: a) velocià e accelerazione isananea, b) velocià veoriale media in un empo compreso fra

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia.

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia. LE ONDE A ui è capiao di osservare ciò che accade se si lancia un sasso nel mare, oppure si scuoe una corda esa. Il fenomeno che osserviamo è comunemene chiamao ONDA. Che cos è un onda? Un onda è una perurbazione

Dettagli

f s m s n f s =f s,max =m s n f d =m d n

f s m s n f s =f s,max =m s n f d =m d n Serway, Jewett Principi di Fisica IV Ed. Capitolo 5 Sperimentalmente: f s m s n Con m s costante di attrito statico; n=modulo della forza normale. L uguaglianza vale quando (in condizioni di moto imminente):

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Per calcolare il tempo di volo considero il moto in direzione x che è un moto uniforme:

Per calcolare il tempo di volo considero il moto in direzione x che è un moto uniforme: Un proieie è anciao con incinazione 65 verso un bersaio B poso su un muro ao h 0 m, ad una disanza 50 m daa posizione di ancio. Cacoare a) i moduo v dea a veocià iniziae che dovrà avere i proieie per copire

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

Facoltà di Ingegneria Prova Scritta di Fisica I 29 Giugno Compito A

Facoltà di Ingegneria Prova Scritta di Fisica I 29 Giugno Compito A acolà di Ingegneria Prova Scria di iica I 9 Giugno 4 - opio Queio n Una biglia di dienioni racurabili è legaa ad un ilo olo oile, lungo L, enuo eo per ezzo di un piolo P iao u di una paree vericale ad

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

2. Una molla è lunga 12 cm e ha la costante elastica di 7,5 N/m. Appendendo alla molla un peso di 0,45 N quale lunghezza raggiunge la molla?

2. Una molla è lunga 12 cm e ha la costante elastica di 7,5 N/m. Appendendo alla molla un peso di 0,45 N quale lunghezza raggiunge la molla? 1. Una molla, appesa a un sostegno e caricata con un peso di 0,96 N, si allunga di 12cm. a. Quanto vale la costante elastica? Appendendo alla molla un peso diverso essa si allunga di 18 cm b. Quanto vale

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

CORSO DI FISICA GENERALE I INGEGNERIA BIOMEDICA

CORSO DI FISICA GENERALE I INGEGNERIA BIOMEDICA Prova scritta del 15.01.14 1 A. Un treno può minimizzare il tempo t tra due stazioni accelerando (a 1 =0.1 m/s 2 ) per un tempo t 1 e poi decelerando (a 2 =-0.5 m/s 2 ) usando i freni per un tempo t 2.

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D AnnunzioD

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D AnnunzioD Corso di IMPIANTI TECNICI per l EDILIZIAl aso di espansione Prof. Paolo ZAZZINI Diparimeno INGEO Universià G. D AnnunioD Annunio Pescara www.lf.unich.i Prof. Paolo ZAZZINI Diparimeno INGEO Universià G.

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta: Esercizi su analisi dimensionale: 1. La legge oraria del moto di una particella e` x(t)=a t 2 +b t 4, dove x e` la posizione della particella e t il tempo. Si determini le dimensioni delle costanti a e

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

studia il moto dei corpi date le forze che agiscono su di essi:

studia il moto dei corpi date le forze che agiscono su di essi: 3-SBAC Fisica 1/16 DINAMICA : studia il moto dei corpi date le forze che agiscono su di essi: Forze r(t) Galileo (1546-1642) metodo sperimentale caduta libera principio relativita pendolo astronomia, telescopio

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 4 marzo 2014 1 Cinematica 1 Un corpo puntiforme, partendo da fermo, si muove per un tempo t 1 = 10 s con accelerazione costante a 1 = g/3, prosegue per t 2 = 15

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 TURNO 1 COMPITO A Un'automobile di massa m=1500 kg viaggia ad una velocità costante v 1 di 35 Km/h. Ad un certo punto inizia ad accelerare

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Esame scritto di Fisica Generale T INGEGNERIA EDILE - RAVENNA prof. M. Villa 19/06/2009 (1)

Esame scritto di Fisica Generale T INGEGNERIA EDILE - RAVENNA prof. M. Villa 19/06/2009 (1) Esame scritto di Fisica Generale T INGEGNERI EDILE - RVENN prof. M. Villa 19/6/29 (1) Esercizio 1: Un sistema meccanico è composto da due blocchi di massa m1 = 6 kg ed m2 = 2 kg giacenti su di un doppio

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Principi della dinamica. Aspetti generali 1. Un aereo di massa 25. 10 3 kg viaggia orizzontalmente ad una velocità

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

Problemi di Fisica La termologia

Problemi di Fisica La termologia Problemi di Fisica a ermologia 2. a emperaura di un meallo, che assorbe una quanià di calore 14352 J aumena da 20 C a 180 C. Sapendo che la sua massa è di 650 g, deermina il valore del suo calore specifico.

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota:

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota: Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Punteggio: Problemi Vero/Falso: +1 risposta corretta, 0 risposta sbagliata

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Il moto a due dimensioni

Il moto a due dimensioni CAPITOLO 3 Il moo a due dimensioni SOMMARIO: 3. MOTO PARABOLICO... 3.. LA CINEMATICA DEL MOTO PARABOLICO... 3.. LA PARABOLA... 5 3..3 LA LEGGE ORARIA CON LA TRIGONOMETRIA... 6 3..4 LA GITTATA... 7 3.

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato.

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato. 3 Cinemaica 3 Cinemaica... 4 3.1 Inroduzione.... 4 3. Moi reilinei.... 44 3.3 Alcuni esempi di grafici orari.... 46 3.4 Moi reilinei: definizione della velocià.... 47 3.5 Regole di derivazione... 53 3.6

Dettagli