Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media."

Transcript

1 FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di una distribuzione statistica possono essere ottenute dalla rappresentazione grafica. Solitamente si considerano i seguenti aspetti: numero di massimi: una distribuzione si dice unimodale se presenta un solo massimo, plurimodale in caso contrario; simmetria: una distribuzione si dice simmetrica (rispetto alla mediana) se le modalità che sono equidistanti dalla mediana hanno la stessa frequenza.

2 Asimmetria di una distribuzione Se una distribuzione non presenta assi di simmetria, si dice asimmetrica. Due tipi di asimmetria: asimmetria positiva: vi è un maggiore addensamento delle osservazioni in corrispondenza dei valori più bassi o, in altre parole, l istogramma si prolunga dalla parte dei valori più grandi. asimmetria negativa: vi è un maggiore addensamento delle osservazioni in corrispondenza dei valori più grandi o, in altre parole, l istogramma si prolunga dalla parte dei valori più bassi. Salvo casi particolari, per una distribuzione continua valgono le seguenti relazioni: ( ) ( ) ( ) M X = M X = Moda X : simmetria e ( ) ( ) ( ) M X < M X < Moda X : asimmetria negativa e ( ) ( ) ( ) Moda X < M X < M X asimmetria positiva e

3 LE MISURE DI VARIABILITÀ (VAR. QUANTITATIVE) Il problema Supponiamo di voler confrontare gli enti locali di due regioni, A e B, sulla base dei valori assunti dall entità delle entrate proprie. Per semplicità supponiamo che sia di A che di B facciano parte solo EL: regione A regione B 500, , 00 media aritm.= 500 media aritm.= 500 Il valore medio assunto dalle entrate è uguale nelle regioni, ma la situazione in termini di disuguaglianza tra gli enti è molto diversa da regione a regione!!! Il valor medio non è sufficiente da solo a descrivere la distribuzione dei dati abbiamo bisogno di un indicatore statistico che fornisca una misura sintetica della diversità tra le entrate 3

4 Complichiamo un po l esempio impiegando un numero più elevato di dati e ricorriamo ad un istogramma: DISTR A DISTR B ni ni Totale 577 Le due distr. hanno la stessa media aritmetica = 0,59!!! tuttavia la DIST B è maggiormente dispersa DISTR A DISTR B 4

5 L attitudine di un carattere quantitativo X ad assumere valori differenti tra le unità componenti un insieme statistico è chiamata variabilità. Un fenomeno che mostra assenza di variabilità risulta, per lo statistico, poco interessante La variabilità costituisce una caratteristica dei collettivi statistici e può essere descritta mediante indicatori che godano di particolari proprietà: una misura di variabilità deve annullarsi quando, e solo quando, tutte le unità del collettivo presentano il medesimo stato di grandezza del carattere una misura di variabilità deve assumere valori crescenti all aumentare della variabilità. Il concetto di variabilità è strettamente legato all indice di variabilità utilizzato e pertanto non è corretto mettere a confronto misure di variabilità ottenute con indici diversi. 5

6 Due categorie di misure di variabilità (più una) Possiamo distinguere due categorie di misure di variabilità: indici che misurano la variabilità del carattere mediante una sintesi delle misure della diversità tra ogni termine della distribuzione ed una media (indici di variabilità basati sullo scostamento da una media); indici che misurano la variabilità del carattere misurando la diversità fra due particolari termini della distribuzione o fra due quantili (intervalli di variabilità); A queste due categorie se ne aggiunge una terza (che non studieremo in dettaglio) indici che misurano la variabilità del carattere mediante una sintesi delle misure della diversità di tutti i termini della distribuzione fra loro, cioè della diversità esistente fra le modalità di tutte le possibili coppie di unità della distribuzione 6

7 Indici di variabilità basati sullo scostamento da una media Varianza La varianza è definita come la media (aritmetica) degli scarti al quadrato dalla media aritmetica. Con riferimento ad un protocollo elementare, cioè ad un insieme di valori,,..., n : n V ( X ) = σ ( ) = i n i= Formula semplificata: σ n = i i= n Perché le differenze al quadrato? Il quadrato esalta le differenze più elevate e rende le differenze sempre positive (altrimenti si annullerebbero) 7

8 Esempio regione A regione B 500, , 00 = 500 = 500 σ = ( 500 ) + ( 500 ) = 0 σ = ( ) + ( ) = Calcolo della varianza utilizzando la formula calcolatoria Reddito mensile di 4 individui:, 3,, 5 Media aritmetica: Media dei quadrati: ( ) M ( X ) = =.75 4 M X ( ) ( ) = = 9.75 Varianza: V ( X ) = 9.75 (.75) =.9 4 8

9 Se le n osservazioni sono classificate in una distribuzione di frequenze secondo le k modalità puntuali di un carattere discreto, la varianza è: K V ( ) = σ = ( ) n = ( ) f n K j j j j j= j= La formula semplificata per il calcolo della varianza diventa: σ = K j n j = M ( X ) j= n Se le modalità sono raggruppate in classi occorrerà sostituire alla singola modalità j un valore rappresentativo della j-esima classe ˆ j (usualmente il valore centrale della classe). NB La varianza è espressa nel quadrato dell unità di misura di X. Si tratta quindi di una misura dimensionata il cui valore dipende oltre che dalla variabilità, dall ordine di grandezza del fenomeno e dall unità di misura della variabile X. 9

10 Esempio Calcolo della varianza in una distribuzione per classi di valori applicando la formula semplificata Consideriamo la distribuzione della spesa mensile pro-capite riferita ad un collettivo di 48 individui: classi di spesa ( 00 euro) ˆ j n j ˆ j n j ˆ j ˆ j n j > Totale Medie 9,07,76 Poiché le modalità sono raggruppate in classi, abbiamo calcolato un valore rappresentativo della classe ˆ j (il valore centrale). 0

11 Media dei quadrati K j n j =, 76 n = j La media aritmetica, calcolata sulla base degli stessi valori X rappresentativi della classe, è pari a 9,07. Avremo quindi che σ K j n j n j= = =,76 9, 07 = 30, 48 Ovviamente, al posto della formula calcolatoria, avremmo potuto applicare la definizione. Come nel calcolo della media aritmetica, aver raggruppato le modalità in classi comporta una certa approssimazione nel calcolo della varianza. (il calcolo effettuato sul protocollo elementare avrebbe portato ad un risultato leggermente diverso).

12 Una proprietà della varianza. Se Y = ax + b allora ( ) = ( + ) = ( ) V Y V ax b a V X In particolare, quindi: Se Y = ax allora V Y = V ax = a V X ( ) ( ) ( ) Se Y = X + b allora V ( Y ) = V ( X + b) = V ( X ) Esempio Uso della proprietà della varianza (e della media aritmetica) per cambiamenti nella scala di misurazione Supponiamo di voler individuare media e varianza della spesa mensile pro-capite espressa in Lire anziché in euro. Poiché euro = 936,7 lire, potremmo moltiplicare tutti i dati per 936,7 e ripetere il procedimento sopra illustrato. Tuttavia, nel caso avessimo già calcolato media e varianza in euro (come nel nostro caso) possiamo sfruttare le proprietà di media e varianza ed evitare di effettuare di nuovo tutti i calcoli. Sia Y=936,7 X

13 Avremo che: M(Y) = 936,7 M(X) = 936,7 9,07 =7563,5 V(Y) = 936,7 V(X) = 936,7 30,48 = =48947 Scarto quadratico medio (deviazione standard) È la radice quadrata della varianza: S( X ) = σ = σ E espresso nella stessa unità di misura di X ed è l errore che si commette, in media, sostituendo ai dati la media aritmetica L importanza dello scarto quadratico medio come misura di variabilità si evince anche dalle seguenti relazioni proprie di distribuzioni unimodali ed approssimativamente simmetriche: l intervallo [ σ, σ ] 6 l intervallo [ σ, σ ] l intervallo [ 3σ, 3σ ] + comprende circa il 67% delle osservazioni; + comprende circa il 95% delle osservazioni; + comprende approssimativamente tutte le osservazioni. 3

14 Standardizzazione di una variabile quantitativa Lo scarto quadratico medio è inoltre utilizzato per operare una trasformazione lineare ai dati originari, detta standardizzazione. I valori standardizzati z,z,...,z n corrispondenti alle n osservazioni,,..., n di un carattere quantitativo X, sono definiti come: z i = i σ La distribuzione degli scarti standardizzati origina una variabile Z per cui risulta: M Z = 0 per la proprietà della media aritmetica b) V( Z ) = in quanto: a) ( ) ( ) V Z n n n ( zi z ) zi ( i ) i= i= i= σ n n σ n σ = = = = Gli scarti ridotti sono numeri puri poiché esprimono lo scarto assoluto in unità di scarto quadratico medio. 4

15 Devianza Il numeratore della varianza è detto devianza: n ( i ) i ( ) Dev( X ) = = n = nv X i= i= n La devianza è una quantità additiva. Infatti, se l insieme delle n unità statistiche viene suddiviso in G gruppi, indicati con {, i =,..., n },,, {, i,..., n } i ig = con G G n = n (g=,,g identifica il gruppo - i=,,n g identifica l unità entro il gruppo g) la somma dei quadrati degli scarti delle n determinazioni di X dalla loro media aritmetica si scompone in due addendi: la somma delle G devianze calcolate all interno di ogni gruppo (dev. Entro), la devianza delle G medie aritmetiche di gruppo (indicate con, per g =,..., G) attorno a (dev. Tra) g = g g 5

16 G n g G ( ) = ( ) + ( ) Dev X n ig g g g g = i= g = Dev relativa al gruppo g Dev tra i gruppi Somma delle Dev dei gruppi = Dev entro Esempio Il capo del personale di un azienda suggerisce ai vertici dell azienda stessa di assumere alla catena di montaggio solo uomini in quanto, a suo parere, sono più veloci delle donne nell effettuare l operazione loro assegnata. E vera l affermazione del capo del personale? 6

17 Esperimento scientifico Con riferimento a 0 maschi e 0 femmine si misura il numero medio giornaliero di pezzi prodotti X Maschi Femmine Per prima cosa calcoliamo le medie: M = ( ) = F = ( ) = = 9. M F 7

18 Calcoliamo la devianza tra G ( ) ( ) Dev X = n = TRA g g g= ( ) ( ) = = 360 Calcoliamo la devianza entro. La devianza entro ognuno dei due gruppi è pari a: n g ig ng g, i= otteniamo che: Dev( X ) Dev( X ) 0 e quindi DevENTRO X ( ig g ) M = 4747 = ( ) = = 995 g= i= Infine: Dev( X ) = Dev ( X ) + Dev ( X ) = 556 TRA ENTRO F 8

19 Dev(X) % Entro % Tra 360 4% Totale % Solo il 4% della variabilità totale del numero di pezzi prodotti dipende dalla differenza in media tra i due sessi è abbastanza inverosimile che gli uomini siano più veloci delle donne nel lavorare a quella catena di montaggio!!! Commenti Abbiamo visto come la scomposizione della devianza nelle sue componenti tra ed entro possa essere utile per studiare se i gruppi che formano una popolazione sono effettivamente diversi rispetto ai caratteri considerati nell analisi Abbiamo tratto alcune conclusioni basandoci su argomenti informali (è abbastanza plausibile che, i risultati tendono a ). In questo caso le conclusioni sono abbastanza chiare ma è evidente la necessità di un modo di ragionare più formale e oggettivo Rimane infatti aperta la domanda: quanto è verosimile che un diverso campione di 40 operai ci avrebbe condotti alle stesse conclusioni? 9

20 Altri indici di variabilità basati sullo scostamento da una media Scostamento semplice dalla media aritmetica in una distribuzione di frequenze Scostamento semplice dalla mediana in una distribuzione di frequenze n S ( X ) = n i = k S ( X ) = n j j n j = n S ( X ) = M ( X ) Me i e n i = k S ( X ) = M ( X ) n Me j e j n j = i Nota: S ( X ) S ( X ) Me 0

21 Intervalli di variabilità Campo di variazione e differenza interquartile,,..., n di osservazioni del carattere X, il campo di variazione, R, è definito dalla differenza tra il più grande ( n) ed il più piccolo ( ) dei valori osservati Dato l insieme { } R = ( n) ( ) problema: è un indice che, in presenza di valori anomali, assume valori poco sensati,,..., n di osservazioni del carattere X, la differenza interquartile W è definita come la differenza tra il terzo ed il primo quartile: Dato l insieme { } W = Q ( X ) Q ( X ) 3 campo di variabilità riferito al 50% delle unità centrali

22 Indicatori adimensionali di variabilità Problema Si consideri la spesa pro-capite mensile di 3 individui aventi reddito mens. pari a 000 euro (situazione A) e quella riferita a 3 individui che hanno reddito pari a 3000 euro (B): redd. A spesa: 300, 50, 400 σ, A=6,36 redd. B spesa: 900, 750, 00 σ, B=87,08 La spesa è maggiormente variabile con riferimento agli individui del collettivo A o del collettivo B? Non è possibile avvalersi degli indicatori fin qui trattati per confrontare la variabilità di caratteri diversi, o quella di un medesimo carattere espresso in metriche differenti o quella di caratteri caratterizzati da ordini di grandezza differenti. sono necessari indicatori adimensionali della variabilità.

23 Coefficiente di variazione E' dato dal rapporto tra lo scarto quadratico medio e la media aritmetica. σ CV ( X ) = (spesso è moltiplicato per 00) Il coefficiente di variazione è normalmente utilizzato solo quando tutti i valori della distribuzione sono positivi. Infatti, per caratteri che assumono valori negativi e positivi, la media aritmetica non rappresenta l ordine di grandezza effettivo. Le misure adimensionali della variabilità sono particolarmente utili per confrontare la variabilità di distribuzioni diverse. Con riferimento ai dati precedenti: Media Varianza Scarto Spesa A ,36 Spesa B ,08 sembra che la variabilità sia più elevata in B, ma CV A = 9,69 e CV B = 9,69!?! gli ordini medi di grandezza tra i due gruppi sono molto diversi e ciò influenza anche i valori dei rispettivi scarti quadratici medi (lo s.q.m. non è adimensionale) è necessario standardizzare rispetto al diverso livello medio del fenomeno 3

24 Esempio Una compagnia di assicurazioni ha la necessità di valutare se la variabilità del numero annuale di incidenti stradali per milioni di miglia-veicolo nello stato del New Meico è maggiore o minore rispetto a quella degli interi Stati Uniti (periodo ): New Meico USA

25 Calcolando media aritmetica e varianza per le due serie di dati otteniamo che: New Meico US σ Se vogliamo stabilire quale delle due serie è maggiormente variabile, non possiamo confrontare direttamente le varianze: dobbiamo standardizzare rispetto al diverso livello medio del fenomeno. New Meico US σ CV In termini di CV la variabilità delle due serie è molto simile. E possibile concludere che la maggior varianza della serie relativa al solo New Meico dipende dal più alto numero medio di incidenti per miglio/veicolo in questo stato rispetto agli interi USA. 5

26 Una particolare rappresentazione grafica: i Bo plots Rappresentazione che si avvale di valori medi e di indici di variabilità. Utile nella comparazione tra le caratteristiche di due o più collettivi E caratterizzato da tre elementi principali. Una linea o un punto che indicano la posizione di una media della distribuzione.. Un rettangolo la cui altezza indica la variabilità dei valori prossimi alla media. 3. Due segmenti che partono dai lati maggiori del rettangolo e i cui estremi sono determinati in base ai valori estremi della distribuzione. Configurazioni tipiche dei Bo plot Tipo : Tipo :. Mediana. Differenza interquartile 3. Minimo e massimo. Media aritmetica. ± σ 3. ±.96 σ 6

27 Esempio Utilizziamo i Bo plot per confrontare la distribuzione del numero annuale di incidenti stradali per milioni di miglia-veicolo nello stato del New Meico e negli interi Stati Uniti per il periodo : I Bo plot di tipo sono in generale più informativi di quelli di tipo, che contengono un ipotesi di disposizione simmetrica delle osservazioni intorno alla media, consideriamo quindi in questa sede il tipo di bo plot più utilizzato, che è quello che ha come media la mediana. Per disegnare i Bo plot del tipo dobbiamo calcolare minimi e massimi, mediana, primo e terzo quartile: NM US Minimo I quartile Mediana III quartile Massimo

28 Bo plot tipo 6 4 Bo Plot ( Incidenti stradali NM e US) Commenti: è evidente che nel New Meico il numero di incidenti per anno è tendenzialmente più alto che in tutti gli Stati Uniti; NM US n.b.: la base del rettangolo è arbitraria Median 5%-75% Min-Ma i dati del New Meico sono più variabili; c è asimmetria positiva, ovvero, in entrambi i collettivi, i valori massimi tendono ad essere più lontani dalla mediana rispetto ai minimi; 8

29 Dati incidenti stradali (ordinati in modo crescente) New Meico USA

30 Teorema di Chebychev Quali informazioni una media e un indice di variabilità forniscono congiuntamente su una distribuzione incognita? Supponiamo di conoscere per un certo carattere quantitativo X solo la media e lo scarto quadratico medio. Non disponiamo, cioè, delle singole osservazioni {,,..., } n. Il teorema afferma, a grandi linee, che la frequenza relativa delle unità che presentano valori esterni ad un intervallo simmetrico rispetto alla media non può essere superiore ad una certa quantità, cioè: ( kσ ) f i k Chiaramente l importanza del teorema cessa quando si conosce la distribuzione del carattere. In tal caso possiamo determinare con esattezza la frequenza delle unità esterne o interne a un determinato intervallo. 30

31 Esempio La spesa media familiare mensile di un certo collettivo è pari a, (in milioni di lire) con deviazione standard pari a 0, (mil.). Qual è la frequenza rel. delle famiglie che hanno un consumo superiore o inferiore a volte la dev. standard più la media? Spesa superiore a,+*0,=,6 spesa inferiore a,-*0,=0,8 <= ¼ = 0,5 La quota di famiglie che consuma più di,6 o meno di 0,8 è inferiore o uguale al 5% del totale delle famiglie. 3

32 LE MISURE DI ETEROGENEITÀ (VAR. QUALITATIVE) Consideriamo un fenomeno qualitativo rilevato su scala nominale, con k modalità. Si def. Eterogeneità del carattere il grado di diversità che esiste fra le modalità di un carattere qualitativo. In una distribuzione di frequenza: Si ha eterogeneità nulla quando tutte le unità presentano la medesima modalità del fenomeno in oggetto: f j = per un certo j f j =0 per ogni altro j Si ha eterogeneità massima quando tutte le unità sono ripartite uniformemente tra le k odalità del carattere: f j =/k per ogni j 3

33 Indice di eterogeneità di Gini E il complemento ad della somma dei quadrati delle frequenze relative: G k = f 0 G ( k ) / k j= j Esempio Consideriamo la distribuzione per titolo di studio in due paesi dell Unione Europea. In quale dei due paesi c è maggiore eterogeneità rispetto a tale variabile? f j f j titolo di studio Paese A Paese B Paese A Paese B Analfabeta lic.elementare lic.media inf diploma o superiore Tot G A =-0.408=0.589 G B = =

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 2.1 Statistica descrittiva (Richiami) Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre Archivio Statistico delle Imprese Attive (ASIA) L archivio è costituito dalle unità economiche che

Dettagli

Esercizi di riepilogo Statistica III canale, anno 2008

Esercizi di riepilogo Statistica III canale, anno 2008 Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)

Dettagli

Esame di Statistica Prof.ssa Paola Zuccolotto

Esame di Statistica Prof.ssa Paola Zuccolotto Esame di Statistica Prof.ssa Paola Zuccolotto Tema 1 indicare cognome, nome e numero di matricola su tutti i fogli; utilizzare i fogli protocollo per effettuare i calcoli, indicando tutti i passaggi necessari

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Esercitazioni del corso di Statistica - III canale Prof. Mortera e Vicard a.a. 2010/2011

Esercitazioni del corso di Statistica - III canale Prof. Mortera e Vicard a.a. 2010/2011 Esercitazioni del corso di Statistica - III canale Prof. Mortera e Vicard a.a. 2010/2011 Esercizi di statistica descrittiva 1. Secondo i dati ISTAT 1997 sull occupazione, la Lombardia e il Veneto presentano

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di indicatori sintetici che individuano, con un singolo valore, proprieta` statistiche di un campione/popolazione rispetto

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

RAPPRESENTAZIONE DEI DATI

RAPPRESENTAZIONE DEI DATI Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone

Dettagli

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Statistica, CLEA p. 1/68 Anno Accademico 2014-2015 Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Monia Lupparelli monia.lupparelli@unibo.it http://www2.stat.unibo.it/lupparelli

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

INDICI DI TENDENZA CENTRALE

INDICI DI TENDENZA CENTRALE INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13 Statistica corso base Canale N Z prof. Francesco Maria Sanna Prova scritta del 8/1/2013 Prove scritte di esame a.a. 2012-13 Esercizio 1 (5 punti). Nella seguente tabella è riportata la distribuzione delle

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 INTRODUZIONE 1.0 PREVENZIONE CONTRO INDIVIDUAZIONE. L'approccio tradizionale nella fabbricazione dei prodotti consiste nel controllo

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Analisi dei dati. Statistica descrittiva

Analisi dei dati. Statistica descrittiva Analisi dei dati DATI GREZZI SINTESI DELLE OSSERVAZIONI ELABORAZIONE DATI Statistica descrittiva Si occupa dell analisi di un certo fenomeno relativo a un certo gruppo di soggetti (popolazione) sulla base

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Valori medi e misure della tendenza centrale

Valori medi e misure della tendenza centrale TERZA UNITA Valori medi e misure della tendenza centrale Una delle maggiori cause di confusione presso l uomo della strada nonché di diffidenza verso la statistica, considerata più un arte che una scienza,

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

PROGRAMMA FT-Graph-2

PROGRAMMA FT-Graph-2 PROGRAMMA FT-Graph-2 PROGRAMMA DI SVILUPPO GRAFICO CON STAMPA Elaborazione grafica con selezione dei dati. Si possono graficare e stampare tutti i file relativi alle apparecchiature della ECONORMA S.a.s.

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercizi di statistica descrittiva 1. Secondo i dati ISTAT 1997 sull occupazione, la Lombardia e il Veneto presentano le seguenti distribuzione

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli