se è chiara e corretta l analogia, diventano allora leciti i seguenti interrogativi:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "se è chiara e corretta l analogia, diventano allora leciti i seguenti interrogativi:"

Transcript

1 1. E SE FOSSIMO IN ERRORE? ALCUNE CONSIDERAZIONI SU L ANALISI DI STRUTTURE INTELAIATE SOGGETTE A SCUOTIMENTO SISMICO. Gli attuali metodi di analisi di una struttura soggetta ad azione sismica, come è noto, sono tutti basati sul comportamento dinamico dell oscillatore semplice ad uno o più gradi di libertà. L oscillatore, soggetto ad una accelerazione prescelta come quella di progetto, vibra secondo la rigidezza propria e le masse che ad esso sono applicate: Teoria delle Vibrazioni. L attuale normativa, così come quelle precedenti, chiede di far riferimento alla teoria delle vibrazioni per analizzare le strutture sollecitate dal vento e quelle sollecitate dal sisma. Operando un confronto fra una struttura colpita dal vento e la stessa colpita dal sisma ci rendiamo conto che l unica cosa che cambia nell attuale applicazione della norma nell analisi di calcolo, è l accelerazione di progetto da cui poi si ricavano le forze sollecitanti la struttura; i due sistemi in realtà sono totalmente differenti: - le forze del vento colpiscono la struttura e la deformano in un modo che possiamo considerare coerente con la deformata che infine verrà fuori dal modello di calcolo: le forze possono essere considerate concentrate e applicate ai vari piani così come analogamente vengono considerate le forze in un analisi di tipo dinamico, ma non solo, esse possono essere considerate, in una frazione di tempo dt, tutte staticamente e contemporaneamente applicate alla struttura: le tensioni indotte viaggiano quindi dal punto di applicazione della forza fino alle fondazioni; ciò è corretto poiché la folata colpisce contemporaneamente tutte le parti considerate esposte; - l azione sismica non è applicata con pressioni su un lato o l altro della struttura ma con spostamenti impressi in modo repentino di intensità sempre variabile al piede, ossia in un punto singolare; è il terreno che muove la struttura con delle vere e proprie frustate impresse alla base di intensità sempre variabile; le tensioni quindi viaggiano dalle fondazioni, dove è applicato lo spostamento, ai vari piani dove, in base alla rigidezza dei ritti e dei traversi, vengono eccitate le masse che quindi cominciano ad oscillare: sono le tensioni indotte attraverso le rigidezze che eccitano le masse e non le forze direttamente applicate alla struttura nello stesso punto in cui sono le masse come nel caso del vento; non penso quindi sia sbagliato affermare che le rigidezze condizionano il modello di calcolo, poiché le tensioni viaggiano dal piede alla sommità come i filetti fluidi in un fiume in piena che può rompere gli argini in un punto qualunque ed inaspettato dipendente dalle condizioni degli stessi; una volta che il fiume ha rotto gli argini la massa d acqua prende un altra strada ed a valle ne arriva poca o niente in dipendenza del nuovo bacino venutosi a creare; se è chiara e corretta l analogia, diventano allora leciti i seguenti interrogativi: - è corretto usare lo stesso modello per descrivere due azioni ( o forse sarebbe meglio dire due situazioni) assolutamente differenti già in partenza, poiché differenti sono la modalità di applicazione del carico ed il tipo di carico stesso? - che succede alla struttura durante la prima fase: quella di trasmissione del moto? - una cosa sono le forze applicate orizzontalmente alla struttura, ben altra cosa è uno spostamento impresso al piede: è corretto analizzare questo ultimo ricorrendo ad una semplice analisi del comportamento vibrazionale della struttura?

2 2 - siamo davvero sicuri che nel caso di analisi sismica non sia necessario analizzare il fenomeno adottando più modelli di comportamento? Vediamo meglio: - il vento colpisce la struttura e la fa sbandare; in un tempo DT la struttura subisce una specifica deformata che, probabilmente è coerente con quella del primo modo di vibrare, la folata si riduce di intensità per poi riproporsi dopo un tempo T con intensità diversa ma con una deformata relativa sempre coerente con la precedente e con lo schema di applicazione del carico (come il tuffatore sul trampolino); sarà possibile individuare un periodo, una accelerazione e una frequenza che descriveranno con coerenza il tipo di sollecitazione cui la struttura è soggetta nel tempo; la verifica del periodo proprio della struttura individua quanta distanza c è fra lo stato eccitante la struttura e la sua risonanza; - il sisma non colpisce la struttura ai vari piani, prima di eccitarla non la deforma immediatamente con un andamento coerente con quello del primo modo ipotizzato: il sisma colpisce la struttura allo stesso modo in cui il giocoliere fa slittare la tovaglia al di sotto di un bicchiere pieno d acqua vincendo la forza d attrito indotta dal peso del bicchiere sulla tovaglia e l energia di posizione del bicchiere pieno d acqua che, ovviamente, tende a permanere nel suo stato di quiete; anche ogni singola parte dell edifico tende a permanere nel suo stato di quiete, a maggior ragione quelle parti dove sono concentrate le masse come i vari piani di un sistema intelaiato. Se l edificio non è dotato di ruote e il sisma non riesce a rompere il legame d attrito al piede, i plinti si muoveranno col terreno (se ha caratteristiche uguali in ogni punto al di sotto della struttura) tutti della stessa quantità, siano essi base di setti molto rigidi o di pilastrini molto deformabili; tutto quello che è al di sopra è ancora fermo, ma la struttura ha già subito una notevole sollecitazione commisurata all entità dello spostamento impresso, all altezza del primo interpiano, e alla rigidezza di ogni singolo ritto; passiamo oltre: ogni singolo ritto possiamo immaginarlo come un somarello con in groppa una determinata quantità di carico; i somarelli non hanno però tutti la stessa forza, quello più forte tira più carico e più velocemente, quello più debole tira meno carico e più lentamente, ovviamente la forza di ogni somarello è la capacità portante a taglio di ogni singolo ritto che da un lato ha lo spostamento indotto dal plinto, dall altro la massa che gli compete del primo livello che tende con la sua energia di posizione a rimanere nel suo stato di quiete. Ovviamente il somarello più forte e veloce finirà inevitabilmente per trascinare il più debole e lento; ma non solo, il somarello più forte finirà inevitabilmente per trascinare anche il carico del somerello più debole: questo sta a significare che il vincolo costituito dalla massa (energia di posizione) di competenza del più forte diventa maggiore mentre quello di competenza del più debole si riduce ancora di più. Ma continuiamo a parlare solo di spostamenti per non perdere di vista il punto da dove siamo partiti. Il ritto più rigido tende a trasferire tutto lo spostamento impresso ad esso, immediatamente, così come lo spostamento è stato impresso alla base dal sisma, e quanto più è rigido il ritto, tanto più è immediatamente uguale lo spostamento in testa rispetto a quello al piede, in questa fase esso chiama in gioco tutta la sua potenza tagliante funzione della sua rigidezza; il ritto più esile, invece, tende a non trasferire in testa altrettanto immediatamente lo spostamento impresso al piede, deformandosi, impiega più tempo, ma anche questo ultimo impegna tutta la sua rigidezza (sempre relativamente al medesimo spostamento impresso); questo giochetto fra i ritti genera una serie di tensioni nell orizzontamento del primo livello con trazioni e compressioni secondo la conformazione e distribuzione in pianta dei ritti.

3 Immaginiamo ora che sopra i ritti del primo orizzontamento ci sia, connesso rigidamente ad essi, un gigantesco blocco di acciaio, quindi infinitamente rigido ed enormemente pesante; l energia posizionale di tale blocco è certamente enorme (ci vorranno una infinità di somarelli), per vincere la quale saranno necessari ritti altrettanto infinitamente rigidi altrimenti il blocco tende a rimanere fermo mentre i ritti sottostanti si muovono; in questo caso limite, la deformata sarà tale da generare tagli d incastro pari a 12EI x Delta/ h^3, il ritto, per eccitare la massa superiore deve disporre di questa resistenza tagliante, se ce l ha e supera l energia di posizione della massa, la eccita e questa comincia a muoversi, altrimenti il ritto si rompe: è un braccio di ferro fra l energia che il ritto è in grado di trasferire alla sovrastruttura e l energia di posizione della sovrastruttura stessa. La situazione appena descritta è quella che ritroviamo anche per ritti molto deformabili connessi a nodi in cui la somma delle rigidezze rotazionali delle altre aste convergenti nel nodo è molto maggiore della rigidezza rotazionale del ritto in esame. Qualunque sia la rigidezza del ritto, esso prova a trasmettere al nodo del primo impalcato le tensioni taglianti e normali generate dallo spostamento impresso al piede; queste tensioni provano ad eccitare il nodo nel tentativo di imprimergli il movimento traslazionale impresso al piede, poiché però il ritto cerca sempre la configurazione di minima energia questo prova ad eccitare il nodo anche dal punto di vista rotazionale; quanto più la somma delle rigidezze rotazionali sarà prossima o addirittura inferiore a quella del ritto interessato, tanto più grande sarà la rotazione che il nodo subirà consentendo al ritto di scaricare quota della deformazione impressagli dallo spostamento alle altre aste riducendo così le sollecitazioni flettenti e taglianti e quindi tanto più piccolo sarà lo spostamento relativo del nodo del primo impalcato interessato. Abbiamo visto che, in realtà, ci troviamo di fronte a due passaggi che potremmo chiamare di rilassamento del ritto: 1) rilassamento traslazionale, 2) rilassamento rotazionale; i due casi appena analizzati fanno intendere che le tensioni nel loro viaggio verso la sommità dell edificio procedano per fasi temporali successive molto piccole ma che in ogni caso portano la struttura a superare fasi di sollecitazione più elevata prima di scaricarsi alla ricerca della configurazione di minima energia. Non penso che tali fasi possano essere trascurate poiché: La struttura, in ogni caso, deve essere capace di superarle entrambe. E evidente che il ritto, per eccitare il nodo alla traslazione e alla rotazione deve anche fare i conti con i carichi presenti sull orizzontamento interessato, in questo caso il primo, che trasferiscono al nodo, attraverso le aste, sollecitazioni flettenti, taglianti e normali (nel piano) che influenzano l energia di posizione del sistema; ma non solo, se i carichi sono disposti direttamente sull asta e sono essi stessi dotati di una non trascurabile rigidezza, come per esempio i tompagni, essi finiranno per influenzare notevolmente la rigidezza rotazionale del nodo e quindi il comportamento dell intero orizzontamento. Solo a questo punto il sisma, attraverso le rigidezze coinvolte dalla distorsione al piede, è riuscito a trasferire energia alle masse presenti sul primo orizzontamento. Rimangono gli altri orizzontamenti. Il ragionamento, ovviamente, verrà ripetuto per i ritti del secondo impalcato il cui spostamento subito al piede sarà quello ricavato precedentemente: anche qui avremo rilassamento traslazionale e rotazionale che comporteranno uno spostamento orizzontale e una rotazione nel nodo coinvolto; è evidente che man mano che saliremo di un piano lo spostamento relativo fra un piano e l altro sarà sempre minore in rapporto alle rigidezze coinvolte. Quando questa operazione sarà stata eseguita per l ultimo nodo del piano più alto saremo in grado di conoscere l energia che la prima frustata indotta dal sisma ha trasmesso alla struttura e che la struttura stessa ha accumulato in termini di ENERGIA POTENZIALE. In questa prima fase, però, molta energia è stata già scaricata durante il processo di rilassamento. SOLO ADESSO LA STRUTTURA ha assunto quella deformata iniziale pseudo coerente col modello matematico correntemente adottato e COMINCIA AD OSCILLARE ma, attenzione, è già in fase di scarico. 3

4 E evidente, a mio avviso, che le fasi intermedie descritte fino ad ora non possono certamente essere trascurate, poiché fanno parte della storia di deformazione della struttura prima dell inizio del moto, non solo, le sollecitazioni che si raggiungono non sono certamente trascurabili, anzi. Se non ci fossero altre deformazioni impresse al piede, la struttura, oscillando, restituirebbe l energia accumulata nella prima fase fino a fermarsi (come ENERGIA CINETICA) e non ci creerebbe altre preoccupazioni poiché si troverebbe nella fase di scarico. Un omino affacciato sulla terrazza dell ultimo piano del nostro edificio costruito ad El Centro, durante il famoso terremoto avrebbe creduto che l edificio sotto i suoi piedi stesse muovendosi, nel primo secondo, di una quantità più o meno prossima ai 10,00 cm (tale è stato misurato lo spostamento al suolo al primo secondo), in realtà era il terreno ai piedi dell edificio che si spostava mentre la terrazza su cui poggiava i piedi tentava con tutte le forze di rimanere ferma; in quel primo secondo l edificio si è potuto rilassare non si sa fino a che punto e l edificio in testa si potrà essere spostato di una quantità certamente inferiore; tanto inferiore era la quantità dello spostamento tanto maggiore è stata la percezione del moto che l omino ha avuto sulla terrazza. La seconda frustata è stata di 20,00 cm ed in senso opposto alla precedente e si è consumata anch essa in un ulteriore secondo. Ho passato molte e molte ore a chiedermi cosa può essere successo alle varie parti di quell edificio intelaiato immediatamente dopo la seconda frustata. L eventuale moto oscillatorio che la struttura ha subito fra la prima e la seconda frustata poco ci interessa poiché, essendo in fase di scarico dell energia accumulata, le tensioni indotte sulle parti della struttura sono state certamente inferiori a quelle indotte durante la fase di applicazione della prima frustata precedentemente descritta; in realtà a noi interessa solo in quale posizione viene a trovarsi la nostra struttura quando riceve la seconda frustata, repentina e immediata quanto la prima. Seguiamo la stessa logica della fase precedente. Prendiamo in esame lo stesso ritto del piano terra e vediamo in quale posizione può trovarsi la sommità del ritto quando il piede viene colpito dalla seconda frustata. La condizione più sfavorevole è quella che vede la sommità nella posizione di massimo spostamento nel verso opposto a quello in cui avviene la seconda frustata poiché la nuova distorsione applicata al piede ha dimensioni massime con un valore molto prossimo a 10+20=30,00 cm; situazione ancora peggiore, a mio avviso, potrebbe essere quella in cui il massimo spostamento non si è ancora compiuto ma sta per compiersi, la posizione sta arrivando al massimo e il nodo deve ancora rilassare alla rotazione quando viene colpito dalla seconda frustata; in questa situazione la distorsione nuova, agendo in senso opposto, provoca un accumulo di energia rotazionale al nodo molto maggiore poiché il ritto per andare nella nuova obbligata posizione indotta dal sisma deve distorcersi in modo molto gravoso; questa distorsione e le forze indotte da essa al ritto e quindi, dopo il rilassamento, alle altre aste del nodo, vanno valutate attentamente e verificate con lo stesso criterio usato precedentemente procedendo dal piede fino in sommità. Se la sommità del ritto ha già raggiunto la massima oscillazione e ha già avuto il rilassamento rotazionale quando avviene la seconda frustata, il ritto si trova nel punto di massimo spostamento orizzontale e la preoccupazione è, alla lunga, la risonanza : se lo spostamento distorsivo avviene nel verso dello spostamento già avvenuto esso è di scarico per il ritto e non ci preoccupa, mentre se il verso è opposto gli spostamenti orizzontali si sommano e lo spostamento risultante è certamente molto gravoso poiché il momento in cui colpisce è quello in cui si somma tutta l energia trasmessa e le sollecitazioni indotte dall oscillazione così innescata, se ripetuta, possono moltiplicarsi e arrivare presto a valori insopportabili per la struttura, ammesso che non siano insopportabili già immediatamente dopo la seconda frustata vista l entità degli spostamenti in gioco. Quelle appena descritte sono le due situazioni peggiori che possono interessare la struttura all avvento della seconda frustata. Credo di non commettere un errore facendo osservare che nell attuale computazione delle sollecitazioni indotte dal sisma sulla struttura viene data attenzione solo alla deformata 4

5 5 prodotta dalle accelerazioni di picco e alla valutazione della distanza fra il periodo proprio della struttura e quello del sisma controllando il fenomeno della risonanza descritto precedentemente per secondo, mentre si trascura completamente l aspetto distorsivo di tipo statico che il sisma induce sui ritti al piede e man mano fino in sommità al verificarsi di ogni frustata; tale aspetto, può di fatto provocare condizioni, e quindi sollecitazioni, tali da non poter essere trascurate anche in strutture il cui periodo è lontano dalla risonanza. Ritengo importante far notare che ogni punto della struttura viene chiamato a rispondere con la massima rigidezza indotta dallo spostamento immediatamente impresso non da quello a rilassamento avvenuto come in realtà facciamo oltretutto decurtandolo di aleatori coefficienti. Tali condizioni iniziali, o meglio la valutazione di quello che succede alla struttura all applicazione di questi impulsi casuali fino a che esso si trasmette totalmente all intera struttura potrebbe essere facilmente effettuata facendo ricorso ad un qualunque procedimento di calcolo iterativo anche manuale che procede per cicli successivi di operazioni di piano e di nodo (dove però ogni operazione è significativa nel merito delle sollecitazioni indotte come necessarie ad individuare una fascia di comportamento entro cui la struttura può trovarsi), vincolando allo spostamento orizzontale i vari piani e liberandoli uno ad uno, tranne l ultimo, in sequenza a procedere verso l alto ed infine effettuando l inviluppo delle sollecitazioni massime in ogni punto. A queste condizioni è da aggiungersi quella relativa ad un semirilassamento rotazionale dei nodi per tener conto del fatto che il ritto passa dalla condizione di incastro perfetto a quella di incastro cedevole, valutando attentamente la rigidezza del tompagno in relazione al telaio circoscritto. Tale abbozzata metodologia di calcolo dovrebbe essere ripetuta per la prima frustata e, dopo una valutazione approssimata del periodo proprio, per la seconda frustata ipotizzando una posizione stimata del nodo superiore del ritto del piano terra in modo proporzionale ai due periodi propri a secondo del tipo di struttura in esame. Per tener conto dei movimenti rotazionali in pianta potrebbe bastare operare su un modello spaziale in cui uno dopo l altro vengano liberati piano per piano gli spostamenti traslazionali, ad eccezione dell ultimo che sarà l ultimo a muoversi prima che la struttura cominci ad oscillare per restituire l energia accumulata. Quello che appare come logica conclusione delle considerazioni effettuate è che l analisi del comportamento dinamico della struttura sembra assumere una posizione marginale. Ma proseguiamo con qualche altra considerazione: ritorniamo per un attimo all oscillatore semplice preso come modello teorico di partenza dalle normative in vigore; con l attuale impostazione teorica in caso di analisi sismica, come già detto all inizio, è prescritta l applicazione di una determinata accelerazione alla massa posta all estremità della molla; la massa moltiplicata per l accelerazione genera una forza che poi va a sollecitare la molla e quindi, tramite essa, il vincolo di incastro: qualunque sia la rigidezza della molla la forza applicata considerata non cambia e si trasferisce tal quale al vincolo obbligando il calcolatore ad irrigidire la molla, tutto dipende solo dall entità della massa e dalla accelerazione considerata applicata ad essa direttamente; andiamo verso strutture sempre più rigide; oltretutto non è per niente chiaro come faccia l accelerazione ad arrivare direttamente alla massa in virtù di chissà quale impulso magico; nel caso di sisma, in realtà, l accelerazione o meglio lo spostamento è applicato al vincolo, poi da esso trasferito alla molla e quello che resta passa alla massa: è evidente l incongruenza; viene spontanea sottoporre al giudizio del lettore la seguente considerazione: se la rigidezza della molla tende a infinito lo spostamento è trasferito alla massa tale e quale e di fatto nello stesso momento: ricadiamo nel caso di spostamento applicato alla massa; se invece la rigidezza della molla tende a zero, la molla non è più in grado di eccitare la massa che quindi rimane ferma, il vincolo si sposta, la molla si allunga e si accorcia ma la massa non si

6 6 muove, in questo caso è possibile che la molla possieda una deformabilità tale, rapportata alla resistenza, che consenta ad essa di sopportare il movimento: l edificio si muove sotto la terrazza che invece resta ferma, la canna si muove in mano al pescatore e la sua punta rimane nel medesimo punto, la massa in punta alla molla non viene eccitata e quindi la forza dinamica corrispondente è nulla. DOVE L ATTUALE IMPOSTAZIONE TEORICA DI CALCOLO TIENE DEBITAMENTE CONTO DELLE CONSIDERAZIONI DI CUI SOPRA? In realtà l attuale impostazione risolve il problema dell applicazione ( F = m x a ) del carico senza tener conto della rigidezza della molla applicando il carico in una posizione errata e con una intensità quanto meno discutibile. Osservando le fotografie di edifici intelaiati danneggiati durante i vari terremoti recenti di cui si possiede una discreta serie di dati, sono frequenti le immagini che documentano il così detto meccanismo di piano ; in quasi tutte si nota come l unico piano effettivamente danneggiato è quello che non c è più, schiacciato dai piani sovrastanti; la cosa che mi ha colpito è come mai, se il modello teorico adottato è quello giusto, gli altri piani non presentino neanche una pur piccola lesione (significativa una immagine del sisma de L Aquila di una palazzina di tre piani sedutasi sul piano terra con i sovrastanti due livelli con i tompagni praticamente intatti); se i sovrastanti livelli non presentano alcun segno fessurativo vuol dire che non vi è stata deformazione impressa a quei livelli, quindi non vi è stata eccitazione, quindi non c è stata accelerazione di masse relativa fra gli orizzontamenti, conclusione?: il piano terra ha agito da isolatore, ha visto applicato tutto lo spostamento orizzontale ai ritti del piano terra (non tompagnato) che non hanno avuto la necessaria resistenza per sopportare lo spostamento impresso; forse adottando un differente modello, molto più semplice ed immediato, il difetto si sarebbe evidenziato, ma sarebbe stato altrettanto evidente che la necessità non sarebbe stata quella di irrigidire i ritti, ma, a parità di resistenza, renderli più deformabili ovvero renderli più resistenti a parità di deformabilità, ovvero ancora renderli più deformabili e più resistenti (isolatore perfetto): i piani superiori sarebbero rimasti intatti ugualmente e il piano terra non sarebbe stato schiacciato; in ogni caso è più che evidente che il modello che correntemente adottiamo è assolutamente insufficiente poiché di fatto non descrive correttamente il fenomeno non contemplando l enorme casistica di comportamenti; È FUOR DI DUBBIO CHE L ADOZIONE DI UN CRITERIO DI FASCIA DI MODELLI DI CALCOLO SAREBBE OPPORTUNA ED AUSPICABILE. Altra considerazione conseguente: Un viadotto molto lungo a più corsie stradali può, anzi, deve considerarsi molto rigido nel piano trasversale orizzontale di impalcato, per cui se lo scuotimento sismico avviene in senso trasversale l eventuale e canonica pila incastrata al piede, bella grossa e rigida (immagine terremoto di Kobe), sarà sottoposta ad un taglio in sommità e al piede pari a 12EI x Delta/ h^3 che con I molto elevato e h relativamente basso assume proporzioni enormi che la pila proprio perché grossa non è in grado di sopportare, inevitabile quindi il formarsi delle cerniere plastiche, ma non solo, è probabile che finisca giù dopo la prima frustata senza che abbia minimamente cominciato ad oscillare così come la normativa attuale impone di verificare. In questo caso, per le considerazioni fatte in precedenza, forse sarebbe opportuno fare diverse pile in direzione trasversale, affiancate, con inerzia molto più piccola ed eseguire un analisi di tipo squisitamente statico sull entità delle sollecitazioni prodotte da un spostamento applicato al piede in determinate condizioni di vincolo in sommità; ciò, prima di affrontare una qualunque e probabilmente inutile analisi dinamica. E a questo punto opportuno un altro esempio che aiuta me per primo a vedere il fenomeno in chiave critica:

7 7 Immaginiamo un uomo terribilmente forte, con fasce muscolari dotate di grande capacità e reattività e con un cervello in grado di rispondere a sollecitazioni di precario equilibrio estremamente ripetute e fitte come quelle di un terremoto: L uomo porta sul capo un peso considerevole; c è il sisma mentre l uomo trasporta il peso; egli col movimento delle gambe, con l azione di trazione in compensazione delle fasce muscolari riesce a compensare lo spostamento che il suolo imprime ai suoi piedi e che gli provocano squilibrio; così facendo, se è sufficientemente agile, non rigido, mai rigido, riesce a tenere ferma la massa sulla sua testa impedendo che l accelerazione impressa al piede arrivi ad essa; solo così può riuscire a restare in piedi: provocando una situazione di equilibrio compensato al passo; in questo caso il corpo umano grazie all azione del cervello riesce ad attivare volta per volta i muscoli necessari con la forza necessaria a far mantenere a tutto il sistema tensostruttura uomo la posizione stabile che certamente è di minima energia con la posizione della massa divenendo un sistema unico con essa; il flusso delle tensioni passa dal piede alla caviglia fino in sommità in un viaggio telecomandato di andata e ritorno con gli impulsi nervosi compensando al passo gli squilibri, i dolorini vari, i difetti, i momentanei mancamenti di stabilità e l affaticamento anche con il movimento dei piedi facendo in modo che in ogni istante il baricentro rimanga all interno dell impronta dei piedi. conclusioni: Alla luce di quanto sopra vi sono, a mio avviso, campi totalmente inesplorati poiché non considerati nell attuale trattazione teorica rendendola insidiosa e poco convincente; questi possono essere appresso sinteticamente riassunti: il punto di applicazione del carico è uno spostamento repentino impresso al piede ancor prima di una azione dinamica applicata alle masse; - 2 la storia del flusso di tensioni (come un fiume che scorre) dal piede alla testa dell edificio passante attraverso varie condizioni di vincolo in un processo di rilassamento sempre alla ricerca della configurazione di minima energia fra una frustata e l altra non viene tenuto minimamente in considerazione; - 3 la deformata della struttura va cristallizzata al momento dell avvento di ogni nuova frustata, poiché quello è il vero momento critico; - 4 la coordinata dinamica rotazionale è importante quanto quella traslazionale e nell equazione del moto non è presente; - 5 non possiamo assolutamente parlare di teoria dei piccoli spostamenti e piccole deformazioni; - 6 la massa viene eccitata da una accelerazione che è funzione della rigidezza della sottostruttura e del percorso deformativo, le forze applicate, quindi, sono funzioni variabili al passo, così pure le rigidezze; - 7 la fase dinamica è da considerarsi una fase di scarico per la struttura; fase in cui l energia potenziale accumulata nella fase distorsiva si scarica come energia cinetica, essa quindi è importante solo per la valutazione esatta della frequenza e del periodo e per niente altro; ma non solo, se nella fase di accumulo indotta dalla singola frustata si crea un punto singolare (possibile rottura plastica) questa provoca una modifica del modello vibrazionale con relativo periodo proprio il che porta alla considerazione che ci troviamo davanti ad una infinità di possibilità vibrazionali ogni volta che la struttura viene colpita da una nuova frustata e quindi ad una infinità di modelli; - 8 la fase di accumulo distorsiva al passo è da considerarsi in una computazione separata e diversa da quella di scarico dinamica;

8 8-9 la deformabilità della molla ovvero la sua rigidezza condiziona l accelerazione da applicarsi alla massa e fa capire che la sua deformabilità condiziona favorevolmente il comportamento sismico del sistema al pari di un qualunque isolatore; - 10 l attuale trattazione per dimensionare gli isolatori necessita la valutazione della sovrastruttura poiché è da essa che si pensa arrivino i carichi; se invece si valutano gli isolatori partendo da uno spostamento impresso dal piede la valutazione dinamica della sovrastruttura assume un aspetto marginale probabilmente non necessario Bernardo Re

Appunti di sviluppo di una procedura software per l analisi di Pushover

Appunti di sviluppo di una procedura software per l analisi di Pushover Appunti di sviluppo di una procedura software per l analisi di Pushover Namirial SpA Il presente testo non vuole essere né una trattazione teorica, né un lezione sul tema della valutazione di vulnerabilità

Dettagli

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi Incontro di aggiornamento Edifici antisismici in calcestruzzo armato Aspetti strutturali e geotecnici secondo le NTC08 1 Esame visivo della struttura Orizzonte Hotel, Acireale 16-17 dicembre 2010 Aurelio

Dettagli

Gli edifici in c.a. Prof. Ing. Aurelio Ghersi Dipartimento di Ingegneria Civile ed Ambientale Università di Catania

Gli edifici in c.a. Prof. Ing. Aurelio Ghersi Dipartimento di Ingegneria Civile ed Ambientale Università di Catania Gli edifici in c.a. Prof. Ing. Aurelio Ghersi Dipartimento di Ingegneria Civile ed Ambientale Università di Catania Il controllo della progettazione: i compiti del collaudatore. Forum della Tecnica delle

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture Impostazione della carpenteria Impostazione della carpenteria Definizione dell orditura dei solai e della posizione di travi e pilastri ( La struttura deve essere in grado

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

4. ANALISI SEMPLIFICATA DELL EDIFICIO IN VIA MARTOGLIO UNIVERSITÀ DELL AQUILA G.C. Beolchini 1

4. ANALISI SEMPLIFICATA DELL EDIFICIO IN VIA MARTOGLIO UNIVERSITÀ DELL AQUILA G.C. Beolchini 1 4. ANALISI SEMPLIFICATA DELL EDIFICIO IN VIA MARTOGLIO UNIVERSITÀ DELL AQUILA G.C. Beolchini 1 4.1 Introduzione In questo capitolo sono riportati alcuni risultati, ottenuti con modelli semplificati, delle

Dettagli

LA CATENA DI ASSICURAZIONE E RESISTENTE QUANTO IL SUO ANELLO PIU DEBOLE.

LA CATENA DI ASSICURAZIONE E RESISTENTE QUANTO IL SUO ANELLO PIU DEBOLE. I componenti la catena di assicurazione li possiamo individuare semplicemente negli elementi che insieme concorrono alla sicurezza della cordata, ovviamente in caso di caduta. Gli elementi quali corda,

Dettagli

http://www.infinitoteatrodelcosmo.it/2015/04/08/le-basi-della-relativita-ristretta-o-speciale/

http://www.infinitoteatrodelcosmo.it/2015/04/08/le-basi-della-relativita-ristretta-o-speciale/ Salve a tutti è un po che vedo e leggo su internet discussioni infinite sulla RR e sul paradosso dei gemelli, ma alla fine si gira sempre intorno al problema senza mai risolverlo e capirlo. Io non sono

Dettagli

Associazione ISI Ingegneria Sismica Italiana

Associazione ISI Ingegneria Sismica Italiana Associazione ISI Ingegneria Sismica Italiana Strada Statale Valsesia, 20-13035 Lenta (VC), Tel. (+39) 331 2696084 segreteria@ingegneriasismicaitaliana.it www.ingegneriasismicaitaliana.it Connessioni dissipative

Dettagli

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla: Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della

Dettagli

ISOLATORI SISMICI disaccoppiare

ISOLATORI SISMICI disaccoppiare Un opportuna scelta delle caratteristiche meccaniche degli isolatori consente di disaccoppiare la sovrastruttura dalla sottostruttura nelle oscillazioni che coinvolgono prevalentemente spostamenti orizzontali.

Dettagli

AGIBILITA SISMICA DEGLI EDIFICI PREFABBRIATI

AGIBILITA SISMICA DEGLI EDIFICI PREFABBRIATI AGIBILITA SISMICA DEGLI EDIFICI PREFABBRIATI - MIGLIORAMENTO SISMICO; - VERIFICA GLOBALE DEGLI EDIFICI; - DETTAGLI STRUTTURALI; 01/10/2012 relatore DELDOSSI Ing. Angelo Amm.re DELDOSSI S.R.L. PREMESSA

Dettagli

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI LE FONDAZIONI Generalità sulle fondazioni Fondazioni dirette Plinti isolati Trave rovescia Esecutivi di strutture di fondazione Generalità Le opere di fondazione hanno il compito di trasferire le sollecitazioni

Dettagli

Struttura Portante: problematiche funzionali - Strutture di fondazione - Strutture di contenimento verticale e orizzontale

Struttura Portante: problematiche funzionali - Strutture di fondazione - Strutture di contenimento verticale e orizzontale CORSO DI LAUREA QUINQUENNALE a.a. 2012/13 MATERIALI PER L'ARCHITETTURA Prof. Alberto De Capua Struttura Portante: problematiche funzionali - Strutture di fondazione - Strutture di contenimento verticale

Dettagli

. Resistenza alle azioni orizzontali delle pareti murarie multipiano. Caratteristiche della parete muraria multipiano

. Resistenza alle azioni orizzontali delle pareti murarie multipiano. Caratteristiche della parete muraria multipiano . Resistenza alle azioni orizzontali delle pareti murarie multipiano Un esempio numerico completo Caratteristiche della parete muraria multipiano La Fig. 64 mostra la pianta di un semplice edificio in

Dettagli

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore 8 BILANCIAMENTO Come si è visto al capitolo 7-3.3, quando il baricentro di un rotore non coincide con l asse di rotazione possono insorgere fenomeni vibratori di entità rilevante, talvolta tali, in condizioni

Dettagli

Analisi pushover per edifici in muratura (parametri che ne influenzano i risultati)

Analisi pushover per edifici in muratura (parametri che ne influenzano i risultati) MICHELE VINCI Analisi pushover per edifici in muratura (parametri che ne influenzano i risultati) Articolo 3 Marzo 2014 Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) Software utilizzato:

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile Analisi Statica Lineare Dott. Ing. Simone Beccarini Email: sbeccarini@hotmail.it Analisi statica lineare Cos è il periodo di vibrazione? Il Periodo

Dettagli

INTERVENTI SULLE STRUTTURE

INTERVENTI SULLE STRUTTURE INTERVENTI SULLE STRUTTURE 1 - Intervento di adeguamento. 2 - Intervento di miglioramento. 3 - Riparazione o intervento locale. INTERVENTI SULLE STRUTTURE IN C.A. 8.4.1. Intervento di adeguamento. È fatto

Dettagli

FONDAZIONI SU PALI TRIVELLATI

FONDAZIONI SU PALI TRIVELLATI FONDAZIONI SU PALI TRIVELLATI 1.0 CRITERI DI DIMENSIONAMENTO DEI PALI Il dimensionamento dei pali viene eseguito tenendo conto dei criteri appresso riportati. a) Inizialmente vengono determinati i carichi

Dettagli

esercizio e le verifiche di durabilità.

esercizio e le verifiche di durabilità. Normativa: aspetti generali e di dettaglio FONDAZIONI PER EDIFICI Le scelte progettuali per le opere di fondazione devono essere effettuate t contestualmente e congruentemente con quelle delle strutture

Dettagli

30/05/2012. PDF Lezioni sul sito: www2.unibas.it/ponzo. Mettere figura. Prof. Ing. Felice Carlo Ponzo. Prof. Ing. Felice Carlo Ponzo

30/05/2012. PDF Lezioni sul sito: www2.unibas.it/ponzo. Mettere figura. Prof. Ing. Felice Carlo Ponzo. Prof. Ing. Felice Carlo Ponzo PDF Lezioni sul sito: www2.unibas.it/ponzo Mettere figura 1 Cinematica delle strutture Produzione di profilati e lamiere in acciaieria Trasformazione in elementi strutturali e preassemblaggi Trasporto

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi?

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi? MECCANICA Cinematica 1. Un oggetto che si muove di moto circolare uniforme, descrive una circonferenza di 20 cm di diametro e compie 2 giri al secondo. Qual è la sua accelerazione? 2. Un sasso cade da

Dettagli

Meccanismi di collasso per effetto di solai di copertura spingenti V. Bacco

Meccanismi di collasso per effetto di solai di copertura spingenti V. Bacco Meccanismi di collasso per effetto di solai di copertura spingenti V. Bacco L evento sismico che ha colpito la città de L Aquila ha messo in evidenza le debolezze dei diversi sistemi costruttivi, soprattutto

Dettagli

Percorsi. Percorsi progettuali Softing. Progettare edifici isolati sismicamente

Percorsi. Percorsi progettuali Softing. Progettare edifici isolati sismicamente Percorsi 4 Percorsi progettuali Softing Progettare edifici isolati sismicamente Percorsi Progettare edifici isolati sismicamente giugno 2006 rev. 0 2006, Softing srl. Questo testo è stato redatto a cura

Dettagli

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

11. CONFRONTI TRA MODELLI E CONCLUSIONI D. Liberatore 1, L. Gambarotta 2, G.C. Beolchini 3, L. Binda 4, G. Magenes 5

11. CONFRONTI TRA MODELLI E CONCLUSIONI D. Liberatore 1, L. Gambarotta 2, G.C. Beolchini 3, L. Binda 4, G. Magenes 5 11. CONFRONTI TRA MODELLI E CONCLUSIONI D. Liberatore 1, L. Gambarotta 2, G.C. Beolchini 3, L. Binda 4, G. Magenes 5 La prima fase dell indagine è stata rivolta allo studio delle tipologie edilizie in

Dettagli

CONTROLLARE LE VIBRAZIONI

CONTROLLARE LE VIBRAZIONI Le vibrazioni sono un fenomeno ondulatorio, della stessa natura di quello dei suoni; a differenza di questi, che si propagano nell aria, le vibrazioni diffondono le loro onde nelle strutture solide. Le

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

Strutture prefabbricate: caratteristiche generali Esempi di travi di produzione corrente

Strutture prefabbricate: caratteristiche generali Esempi di travi di produzione corrente !"# Strutture prefabbricate: caratteristiche generali Vantaggi vs. svantaggi Struttura prefabbricata: assemblaggio di elementi (pilastri, travi, tegoli) prodotti in appositi stabilimenti, trasportati in

Dettagli

Pescia, 15 Marzo 2014

Pescia, 15 Marzo 2014 Adeguamento sismico di edificio con struttura portante in cemento armato mediante la tecnologia dell isolamento sismico: il caso dell ex Pretura di Pescia Pescia, 15 Marzo 2014 Prof. Ing. Enrico Mangoni

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Analisi sismica di edifici in muratura e misti

Analisi sismica di edifici in muratura e misti Analisi sismica di edifici in muratura e misti Parte 3 1 1. Verifiche meccanismi locali 2. Interventi locali (cerchiature, catene, rinforzo solai) 3. Collegamento 3Muri Axis VM per calcolo fondazioni ed

Dettagli

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI 1) CREARE UN FILE.DXF IN AUTOCAD NEL QUALE VENGONO RIPORTATE LE PIANTE DEI VARI PIANI DELL EDIFICIO DA ANALIZZARE. RISULTA CONVENIENTE

Dettagli

Piani di input e piani di calcolo reale in FaTA-e

Piani di input e piani di calcolo reale in FaTA-e 0 1 Piani di input e piani di calcolo reali in FaTA-e Dalla versione XX di FaTA-e è presente una nuova implementazione per il calcolo dei baricentri di massa e rigidezza. La nuova procedura consente di

Dettagli

SCHEDA DI VULNERABILITÀ SISMICA

SCHEDA DI VULNERABILITÀ SISMICA Comune di Taranto 10^ Direzione Lavori Pubblici SCHEDA DI VULNERABILITÀ SMICA OGGETTO: Lavori di riqualificazione edilizia ed impiantistica della scuola media C. COLOMBO Via Medaglie D Oro n. 117 - Taranto

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

Università IUAV di Venezia Corso di Consolidamento degli edifici storici A.A. 2012-2013. Prof Paolo Faccio Arch. Elisa Fain IL SISMA

Università IUAV di Venezia Corso di Consolidamento degli edifici storici A.A. 2012-2013. Prof Paolo Faccio Arch. Elisa Fain IL SISMA Università IUAV di Venezia Corso di Consolidamento degli edifici storici A.A. 2012-2013 Prof Paolo Faccio Arch. Elisa Fain IL SISMA Cos è il SISMA La crosta terrestre è in costante movimento (teoria della

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Risposta sismica dei terreni e spettro di risposta normativo

Risposta sismica dei terreni e spettro di risposta normativo Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica Risposta sismica dei terreni e spettro di risposta normativo Prof. Ing. L.Cavaleri L amplificazione locale: gli aspetti matematici u=spostamentoin

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

7 PROGETTAZIONE PER AZIONI SISMICHE

7 PROGETTAZIONE PER AZIONI SISMICHE 7 PROGETTAZIONE PER AZIONI SISMICHE Il presente capitolo disciplina la progettazione e la costruzione delle nuove opere soggette anche all azione sismica. Le sue indicazioni sono da considerare aggiuntive

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Normative sismiche italiane

Normative sismiche italiane pag. 98 Normative sismiche italiane 1783 norme dopo il terremoto della Calabria: muratura intelaiata, limitazione di altezza. Edifici esistenti: riduzione di altezza 1908 norme sismiche locali dopo il

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

FONDAZIONI SUPERFICIALI E PROFONDE PER IMPIANTI FOTOVOLTAICI

FONDAZIONI SUPERFICIALI E PROFONDE PER IMPIANTI FOTOVOLTAICI FONDAZIONI SUPERFICIALI E PROFONDE PER IMPIANTI FOTOVOLTAICI Pagina 1 di 23 introduzione La scelta della tipologia di fondazione da impiegare nell ambito della realizzazione di un impianto fotovoltaico

Dettagli

Verifica sismica degli edifici in muratura attraverso il software di calcolo 3Muri

Verifica sismica degli edifici in muratura attraverso il software di calcolo 3Muri Corso di Laurea Magistrale in Ingegneria civile per la protezione dai rischi naturali D.M. 270 Relazione di fine tirocinio A.A. 2013-2014 Verifica sismica degli edifici in muratura attraverso il software

Dettagli

La ABB SAE ha lasciato definitivamente L ISOLAMENTO DELLE VIBRAZIONI. Gruppi refrigeratori. Climatizzazione

La ABB SAE ha lasciato definitivamente L ISOLAMENTO DELLE VIBRAZIONI. Gruppi refrigeratori. Climatizzazione Gruppi refrigeratori L ISOLAMENTO DELLE VIBRAZIONI Davide Fatigati L installazione di due gruppi refrigeratori sulla copertura di un grande edificio direzionale ha richiesto l adozione di un sistema per

Dettagli

Verifica sismica di dighe a gravità in calcestruzzo

Verifica sismica di dighe a gravità in calcestruzzo Verifica sismica di dighe a gravità in calcestruzzo Keywords: dighe a gravità in calcestruzzo, verifica sismica, metodi semplificati, programmi di calcolo. Autore: L. Furgoni, Relatore: Prof. C. Nuti,

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Interventi di consolidamento utilizzando elementi di nuova costruzione

Interventi di consolidamento utilizzando elementi di nuova costruzione Interventi di consolidamento utilizzando elementi di nuova costruzione 1. Introduzione Il consolidamento degli edifici esistenti è una problematica alla quale possono essere applicate diverse soluzioni.

Dettagli

SCUOLA DI INGEGNERIA. Corso di Laurea Magistrale in Ingegneria Edile. Tesi di Laurea:

SCUOLA DI INGEGNERIA. Corso di Laurea Magistrale in Ingegneria Edile. Tesi di Laurea: SCUOLA DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Edile Anno Accademico 2014/2015 Tesi di Laurea: PROGETTO DI PARZIALE RICOSTRUZIONE E RECUPERO STRUTTURALE DI PALAZZO VITALE AD AQUILONIA (AV)

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA Edifici in muratura portante 2 1 Cosa è ANDILWall? ANDILWall è un software di analisi strutturale che utilizza il motore di calcolo SAM II, sviluppato presso l Università degli Studi di Pavia e presso

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

Monitoraggio METODI DI SPERIMENTAZIONE. Imetodi di sperimentazione possono consistere in metodi di controllo

Monitoraggio METODI DI SPERIMENTAZIONE. Imetodi di sperimentazione possono consistere in metodi di controllo Per monitorare il comportamento strutturale di ponti e viadotti durante l intero ciclo della vita utile, è sempre più frequente il ricorso alla sperimentazione attraverso controlli non distruttivi e prove

Dettagli

CdL in Biotecnologie Biomolecolari e Industriali

CdL in Biotecnologie Biomolecolari e Industriali CdL in Biotecnologie Biomolecolari e Industriali Corso di Matematica e Fisica recupero II prova in itinere di Fisica (9-1-2008) 1) Un sasso di 100 g viene lanciato verso l alto con una velocità iniziale

Dettagli

Le coperture in legno

Le coperture in legno CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Le coperture in legno LA CAPRIATA Tra scienza ed arte del costruire «Il forte intreccio di storia, tecnologia, architettura e cultura materiale,

Dettagli

Test d ingresso. Classe I D PNI Liceo Scientifico F. Enriques Livorno

Test d ingresso. Classe I D PNI Liceo Scientifico F. Enriques Livorno Test d ingresso Classe I D PNI Liceo Scientifico F. Enriques Livorno 1) Un corpo si muove di moto rettilineo a velocità costante su un piano orizzontale che possiamo considerare privo d attrito. Rappresenta

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

RISPOSTA SISMICA DI STRUTTURE ASIMMETRICHE IN PIANTA: UN METODO SEMPLIFICATO

RISPOSTA SISMICA DI STRUTTURE ASIMMETRICHE IN PIANTA: UN METODO SEMPLIFICATO ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA FACOLTÀ DI INGEGNERIA Dipartimento Ingegneria Civile, Ambientale e dei Materiali CORSO DI LAUREA IN INGEGNERIA CIVILE TESI DI LAUREA in Progetto in Zona Sismica

Dettagli

Bassa massa volumica (peso)= basse forze inerziali sismiche (peso del legno= 450 Kg/m³ 30-40 kg/m² ;

Bassa massa volumica (peso)= basse forze inerziali sismiche (peso del legno= 450 Kg/m³ 30-40 kg/m² ; BUON COMPORTAMENTO IN ZONA SISMICA Il legno come materiale e le strutture in legno in generale sono naturalmente dotate di alcune caratteristiche intrinseche che ne rendono non solo adatto ma consigliabile

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

RELAZIONE Ai sensi del Cap. 10.2 delle N.T.C. 2008 ANALISI E VERIFICHE SVOLTE CON L' AUSILIO DI CODICI DI CALCOLO

RELAZIONE Ai sensi del Cap. 10.2 delle N.T.C. 2008 ANALISI E VERIFICHE SVOLTE CON L' AUSILIO DI CODICI DI CALCOLO Comune di Calatabiano Provincia di Catania RELAZIONE Ai sensi del Cap. 10.2 delle N.T.C. 2008 ANALI E VERIFICHE SVOLTE CON L' AULIO DI CODICI DI CALCOLO PROGETTO PER LA MESSA IN CUREZZA DEL MURO DI CONFINE

Dettagli

3.5.20 Strutture orizzontali

3.5.20 Strutture orizzontali 3.5.20 Strutture orizzontali Le strutture orizzontali, destinate alla divisione dei piani possono essere piane o ad arco: costituite cioè da solai o da volte. Fra tutte le strutture esse sono le più delicate

Dettagli

GLI STATI LIMITE DI ESERCIZIO

GLI STATI LIMITE DI ESERCIZIO Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 3274/2003, DGR Basilicata 2000/2003) POTENZA, 2004 GLI STATI LIMITE DI ESERCIZIO Prof. Ing. Angelo MASI DiSGG, Università di

Dettagli

Analisi e consolidamento di colonne e pilastri in muratura

Analisi e consolidamento di colonne e pilastri in muratura CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Analisi e consolidamento di colonne e pilastri in muratura Resistenza a compressione (1) I materiali lapidei naturali ed artificiali raggiungono

Dettagli

PRESCRIZIONI ANTISISMICHE E CRITERI DI CALCOLO: Interazione tra strutture e tamponamenti

PRESCRIZIONI ANTISISMICHE E CRITERI DI CALCOLO: Interazione tra strutture e tamponamenti Convegno CRITICITÀ DELLA PROGETTAZIONE TERMICA E ACUSTICA DEGLI EDIFICI IN RAPPORTO ALLE PRESCRIZIONI STRUTTURALI ANTISISMICHE Saie 2009, Sala Topazio, Sabato 31 ottobre ore 9.00 PRESCRIZIONI ANTISISMICHE

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

1) non deve portare a rottura il terreno sottostante. 2) non deve indurre nel terreno cedimenti eccessivi

1) non deve portare a rottura il terreno sottostante. 2) non deve indurre nel terreno cedimenti eccessivi SICUREZZA e FUNZIONALITÀ delle strutture in elevazione (edificio in c.a., rilevato, etc.) sono garantite anche da alcuni requisiti che il SISTEMA FONDALE deve rispettare. In particolare il carico trasmesso

Dettagli

Equilibrio statico di un corpo esteso

Equilibrio statico di un corpo esteso Equilibrio statico di un corpo esteso Se una particella è in equilibrio statico, cioè se è ferma e resta ferma, la forza risultante che agisce su di essa deve essere nulla. Nel caso di un corpo esteso,

Dettagli

Progressione della cordata Catena e tecniche di assicurazione

Progressione della cordata Catena e tecniche di assicurazione 11 Corso di Alpinismo su Roccia 2013 Scuola permanente di Alpinismo «Cosimo Zappelli» Progressione della cordata Catena e tecniche di assicurazione a cura di Claudio Luperini Stasera parleremo di: _ come

Dettagli

SMORZATORI TORSIONALI TREVI

SMORZATORI TORSIONALI TREVI SMORZATORI TORSIONALI TREVI CONSIDERAZIONI GENERALI Per meglio comprendere l utilità e la funzionalità degli smorzatori torsionali, sempre più utilizzati e perfezionati (soprattutto con la diffusione dei

Dettagli

PAC 3D Modellatore per il calcolo 3D delle paratie

PAC 3D Modellatore per il calcolo 3D delle paratie http://www.aztec.it/prodotto.aspx?cod=aztpac3d PAC 3D Modellatore per il calcolo 3D delle paratie Il calcolo delle paratie viene generalmente condotto nell ipotesi di deformazione piana, supponendo che

Dettagli

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO.. E. Cosenza NORME TECNICHE Costruzioni di calcestruzzo Edoardo Cosenza Dipartimento di Ingegneria Strutturale Università di Napoli Federico II 4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

PORTANZA DELLE FONDAZIONI

PORTANZA DELLE FONDAZIONI 1 N.T.C. 2008, Capitolo 6.4 - OPERE DI FONDAZIONE Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine. Gli stati

Dettagli

Terremoti: sicurezza nei luoghi di lavoro

Terremoti: sicurezza nei luoghi di lavoro Terremoti: sicurezza nei luoghi di lavoro Costruzioni in cemento armato antisismiche - adeguamento patrimonio edilizio industriale esistente Antonella Colombo ASSOBETON Capannori, 23 ottobre 2012 Edifici

Dettagli

7 PROGETTAZIONE PER AZIONI SISMICHE

7 PROGETTAZIONE PER AZIONI SISMICHE 7 PROGETTAZIONE PER AZIONI SISMICHE Il presente capitolo disciplina la progettazione e la costruzione delle nuove opere soggette anche all azione sismica. Le sue indicazioni sono da considerare aggiuntive

Dettagli

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE Università degli Studi di Palermo Facoltà di Ingegneria Dipartimento di Ingegneria Strutturale e Geotecnica TRAVI SU SUOO AA WINKER, INTERAZIONE TERRENO-FONDAZIONE Prof.. Cavaleri Ing. F. Di Trapani TRAVI

Dettagli

Il ritorno di interesse per la muratura portante è ulteriormente

Il ritorno di interesse per la muratura portante è ulteriormente Normativa Flavio Mosele*, Lorenzo Bari* Strutture miste e fondazioni negli edifici in muratura portante L entrata in vigore del Dm 14/01/2008, «Norme tecniche per le costruzioni» (Ntc 2008), ha portato

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

6. Analisi statica lineare: esempio di calcolo

6. Analisi statica lineare: esempio di calcolo 6. Analisi statica lineare: esempio di calcolo Si supponga di volere determinare lo schema di carico per il calcolo all SLV delle sollecitazioni in direzione del telaio riportato nella Pfigura 1, con ordinata

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Le travi reticolari sono strutture formate da aste rettilinee, mutuamente collegate

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

IL TUO CORPO NON E STUPIDO! Nonostante se ne parli ancora oggi, il concetto di postura corretta e dello stare dritti è ormai superato.!!

IL TUO CORPO NON E STUPIDO! Nonostante se ne parli ancora oggi, il concetto di postura corretta e dello stare dritti è ormai superato.!! IL TUO CORPO NON E STUPIDO Avrai sicuramente sentito parlare di postura corretta e magari spesso ti sei sentito dire di stare più dritto con la schiena o di non tenere le spalle chiuse. Nonostante se ne

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CONSOLIDAMENTO DI SOLAI LIGNEI

CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CONSOLIDAMENTO DI SOLAI LIGNEI CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CONSOLIDAMENTO DI SOLAI LIGNEI CONSOLIDAMENTO DI SOLAI IN LEGNO (1) Chiodi in numero eccessivo ed allineati: soluzione scorretta. Tavole connesse

Dettagli

Introduzione. Questi due tipi di struttura hanno caratteristiche fondamentali simili tra loro per ciò che riguarda il loro comportamento di base.

Introduzione. Questi due tipi di struttura hanno caratteristiche fondamentali simili tra loro per ciò che riguarda il loro comportamento di base. Introduzione Le funi sospese e gli archi rappresentano tipologie strutturali impiegate fin dai tempi più remoti dall uomo, e da sempre attraggono l immaginazione dei costruttori. Questi due tipi di struttura

Dettagli