CALCOLO COMBINATORIO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CALCOLO COMBINATORIO"

Transcript

1 CALCOLO COMBINATORIO

2 CHE COS E? Il calcolo combinatorio è un particolare ramo della matematica applicata avente come scopo la misurazione del numero di raggruppamenti diversi che si possono comporre prendendo una determinata quantità di elementi in un assegnato insieme, in modo che siano rispettate determinate regole.

3 PROBLEMI 1. In quanti modi diversi 10 ragazzi di una compagnia si possono sedere su 10 poltrone adiacenti libere di un cinema? 2. Quanti numeri di 4 cifre si possono comporre con le cifre 1,2,3,4,5,6? 3. Quanti anagrammi si possono comporre con le lettere della parola TOMA? E con la parola AMA? 4. Quanti terni si possono fare con i 90 numeri del Lotto? 5. In quanti modi diversi 7 caramelle identiche possono essere distribuite tra 4 bambini? E se le caramelle fossero diverse?

4 NOMI DEI RAGGRUPPAMENTI DISPOSIZIONI: quando l ordine degli elementi è importante. PERMUTAZIONI:casi particolari di disposizioni COMBINAZIONI: quando l ordine degli elementi non ha alcuna importanza.

5 I RAGGRUPPAMENTI POSSONO ESSERE: SEMPLICI: quando gli oggetti sono tutti diversi CON RIPETIZIONE: quando gli oggetti vi figurano una o più volte

6 TIPI DI RAGGRUPPAMENTI Disposizioni Combinazioni semplici con ripetizione semplici con ripetizione Permutazioni semplici con oggetti identici

7 IN GENERALE: Si chiamano Disposizioni semplici i raggruppamenti composti da k elementi che si possono formare a partire da un insieme di n elementi, dove tali raggruppamenti differiscono tra loro o per la loro natura o per l ordine

8 PROBLEMA: DATE LE 4 LETTERE A,B,C,D QUANTI SONO I GRUPPI CHE DIFFERISCONO TRA LORO PER ORDINE O NATURA? A B C D B C D A C D A B D A B C AB AC AD BA BC BD CA CB CD DA DB DC Il n di disposizioni semplici di 4 oggetti distinti presi a 2 a 2 è: D 4,2 = 4*3 = 12

9 il n di DISPOSIZIONI SEMPLICI di n oggetti distinti presi k per volta è Dn,k= n(n-1)(n-2).. (n-k+1) con n>(cioè ilprodotto di k numeri naturali decrescenti a partire da n)

10 PROBLEMA: DATE LE 4 LETTERE A,B,C,D QUANTI SONO I GRUPPI CHE DIFFERISCONO TRA LORO PER ORDINE O NATURA CON RIPETIZIONE? A B C D A B C D A B C D A B C D A B C D AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD Il n di disposizioni con ripetizione di 4 oggetti distinti presi a 2 a 2 è: D 4,2 = 4*4= 16

11 IN GENERALE: il n delle DISPOSIZIONI CON RIPETIZIONE di n oggetti distinti presi k per volta è D n,k = n k

12 CHE COSA SONO LE PERMUTAZIONI?

13 Le permutazioni semplici di n oggetti distinti sono tutti i possibili raggruppamenti contenenti la totalità degli n oggetti e che differiscono solo per l ordine. Sono cioè un caso paritoclare di disposizioni D n,k dove n=k P n = D n,n P n = n!

14 PERMUTAZIONI SEMPLICI ESEMPIO: COSTRUIRE E CONTARE GLI ANAGRAMMI (anche privi di senso) DELLA PAROLA APE P E A P E A E P A E P P E A E P A E E A P E A A P E A P P A E P A Il n delle permutazioni di 3 oggetti distinti è: P 3 = D 3,3 = 3*2*1 = 6

15 PERMUTAZIONI CON OGGETTI IDENTICI ESEMPIO: COSTRUIRE E CONTARE GLI ANAGRAMMI (anche privi di senso) DELLA PAROLA ALA A L L A A L A A L A A L A A L A A A A L A A uguali a 2 a 2 A A L A A L L A A L A LE PERMUTAZIONI DI 3 OGGETTI, 2 DEI QUALI IDENTICI, SONO: P 3 (2) = P 3 /2! = 3

16 IN GENERALE: se tra gli n oggetti dati ve ne sono α uguali tra loro, β uguali tra loro il numero delle permutazioni degli n oggetti assegnati risulta: P n (α, β ) = n! α! * β!

17 COME CALCOLARE IL NUMERO DI COMBINAZIONI?

18 COMBINAZIONI SI CHIAMANO COMBINAZIONI TUTTI I RAGGRUPPAMENTI FORMATI DA K OGGETTICHE SI POSSONO FORMARE A PARTIRE DA N ELEMENTI TENENDO CONTO CHE OGNI GRUPPO SI DIFFERENZIA DA UN ALTRO SOLO PER LA NATURA DEGLI ELEMENTI COMPONENTI. L ORDINE DEGLI ELEMENTI NON DEVE ESSERE CONSIDERATO

19 PROBLEMA: DATE LE 4 CIFRE 1,2,3,4 QUANTE SONO LE COPPIE DI NUMERI DISTINTI CHE SI POSSONO FORMARE CHE DIFFERISCONO SOLO PER LA NATURA DEGLI ELEMENTI CHE LI COMPONGONO? ;1-3 ; ; Le combinazioni semplici di 4 oggetti presi a 2 a 2 sono : C 4,2 = D 4,2 / 2 = 4*3 / 2 =6

20 IN GENERALE: il n di COMBINAZIONI SEMPLICI di n oggetti distinti presi k per volta è n C n,k = D n,k / k! = ( ) con n>k k Coefficiente binomiale

21 PROBLEMA: DATE LE 2 LETTERE a,b QUANTE SONO LE COMBINAZIONI CON RIPETIZIONE DI TALI OGGETTI PRESI A 3 A 3? a a a a a b a b b b b b Il n di combinazioni con ripetizione di n oggetti distinti presi a 3 a 3 è : C 2,3 = ( ) = ( ) =

22 n k 1 IN GENERALE: k il n delle COMBINAZIONI CON RIPETIZIONE di n oggetti distinti presi k per volta è C n,k = n k 1 k (cioè è il prodotto di k fattori crescenti a partire da n+k-1, diviso k! )

CALCOLO CALCOL COMBINATORIO COMBINAT

CALCOLO CALCOL COMBINATORIO COMBINAT CALCOLO COMBINATORIO INDICE Che cos è il calcolo combinatorio? Concetto di raggruppamenti semplici e di raggruppamenti con ripetizione Disposizioni Combinazioni Permutazioni PROBLEMI 1. In quanti modi

Dettagli

Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n.

Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. 1 Elementi di Calcolo Combinatorio Def.: Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. ( n 1)... 3 2 1 P n n In quanti modi diversi si possono disporre

Dettagli

Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento

Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Calcolo Combinatorio Prof. A. Albanese Dipartimento di Matematica e Fisica E. De Giorgi - Università del Salento Disposizioni

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Cenni di analisi combinatoria

Cenni di analisi combinatoria Cenni di analisi combinatoria In molti problemi concreti di teoria della probabilità e, in particolare, nell ambito della interpretazione classica occorre calcolare quanti sono gli esiti che compongono

Dettagli

Elementi di Analisi Combinatoria

Elementi di Analisi Combinatoria Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it Lo studio dei vari raggruppamenti

Dettagli

Elementi. di Calcolo Combinatorio. Paola Giacconi

Elementi. di Calcolo Combinatorio. Paola Giacconi Elementi di Calcolo Combinatorio di Paola Giacconi Premessa Con la Meccanica Quantistica Il concetto di probabilità è entrato a fare parte integrante della FISICA e quindi della nostra vita La visione

Dettagli

Combinatoria. Lezione del 12/02/2014. Stage di Parma Progetto Olimpiadi

Combinatoria. Lezione del 12/02/2014. Stage di Parma Progetto Olimpiadi Combinatoria Lezione del 12/02/2014 Stage di Parma Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia

Dettagli

Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi

Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi Combinatoria Lezione del 04/01/2010 Stage di Terni Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia

Dettagli

CALCOLO COMBIN I A N T A O T RIO

CALCOLO COMBIN I A N T A O T RIO CALCOLO COMBINATORIO Disposizioni Si dicono disposizioni di N elementi di classe k tutti quei gruppi che si possono formare prendendo ogni volta k degli N elementi e cambiando ogni volta un elemento o

Dettagli

IL CALCOLO COMBINATORIO:

IL CALCOLO COMBINATORIO: 1 IL CALCOLO COMBINATORIO: l arte di contare Il calcolo combinatorio permette di stabilire, ad esempio, quanti sono gli anagrammi di una parola, in quanti modi si possono sedere dieci amici attorno a un

Dettagli

Capitolo I NOZIONI DI CALCOLO COMBINATORIO. 1. Premessa

Capitolo I NOZIONI DI CALCOLO COMBINATORIO. 1. Premessa Cap. I - Nozioni di calcolo combinatorio 7 Cap. I - Nozioni di calcolo combinatorio 8 Capitolo I NOZIONI DI CALCOLO COMBINATORIO Nel calcolo combinatorio semplice i raggruppamenti possibili possono essere

Dettagli

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno. Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più

Dettagli

LEZIONE 5: CALCOLO COMBINATORIO

LEZIONE 5: CALCOLO COMBINATORIO LEZIONE 5: CALCOLO COMBINATORIO e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 31 Ottobre 2012 Cos è il calcolo combinatorio?

Dettagli

CALCOLO COMBINATORIO E DELLE PROBABILITÀ

CALCOLO COMBINATORIO E DELLE PROBABILITÀ CALCOLO COMBINATORIO E DELLE PROBABILITÀ Progetto Giochi matematici Referente: prof. Antonio Fanelli Mail: fanelli.xy@gmail.com Sito Internet:fanelliant.wordpress.com CALCOLO COMBINATORIO E DELLE PROBABILITÀ

Dettagli

Il diritto penitenziario in canton Berna

Il diritto penitenziario in canton Berna ISSN 1127-8579 Pubblicato dal 21/05/2013 All'indirizzo http://www.diritto.it/docs/35064-il-diritto-penitenziario-in-canton-berna Autore: Baiguera Altieri Andrea Il diritto penitenziario in canton Berna

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Calcolo combinatorio

Calcolo combinatorio Fondamenti di Informatica per la Sicurezza a.a. 2007/08 Calcolo combinatorio Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti

Dettagli

Analizziamo ora alcuni esempi, al fine di acquisire quel un metodo di ragionamento tipico dell intera teoria della probabilità.

Analizziamo ora alcuni esempi, al fine di acquisire quel un metodo di ragionamento tipico dell intera teoria della probabilità. 1 Il calcolo delle probabilità nasce dalla necessità di prevedere l incerto. Inizialmente si sviluppò principalmente per dare risposte a quesiti riguardanti i giochi d azzardo (dadi, carte, ), ove il realizzarsi

Dettagli

Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi

Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi Combinatoria Lezione del 16/12/2009 Stage di Treviso Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio l calcolo combinatorio è il ramo della matematica che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. Fattoriale l prodotto

Dettagli

COMBINATORIA E PROBABILITA

COMBINATORIA E PROBABILITA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO COMBINATORIA E PROBABILITA CALCOLO COMBINATORIO Il Calcolo Combinatorio è lo studio dei

Dettagli

Salto in alto.. Oltre le formule

Salto in alto.. Oltre le formule Salto in alto.. Oltre le formule Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Elisa Salvati Olimpiadi della Matematica Tematiche delle Olimpiadi

Dettagli

Introduzione. 1.Palline e Scatole Distinguibili

Introduzione. 1.Palline e Scatole Distinguibili Introduzione L argomento è semplice, quasi infantile: abbiamo a disposizione un certo numero di palline da disporre in un insieme di scatole e ci chiediamo quanti modi ci sono per farlo. Affronteremo il

Dettagli

PROBABILITÁ e CALCOLO COMBINATORIO

PROBABILITÁ e CALCOLO COMBINATORIO PROBABILITÁ e CALCOLO COMBINATORIO Prof. Enrico Terrone A. S: 2008/09 Probabilità e calcolo combinatorio Abbiamo visto la definizione classica di probabilità: probabilità dell evento = (casi favorevoli)

Dettagli

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) =

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) = Esercizio 7 2 Un esperimento consiste nel lanciare una moneta e nell estrarre una pallina da un urna contenente 4 palline numerate da 1 a 4. Consideriamo gli eventi: A = Esce Testa, B = Si estrae la pallina

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

Differenza in punti percentuali 25,0 20,0 15,0 10,0 5,0 0,0 -5,0 -10,0 -15,0 -20,0. B3_a. A5_f. B3_d. B3_b. A5_i. A5_a. A5_e. A5_h. A5_d. A5_b.

Differenza in punti percentuali 25,0 20,0 15,0 10,0 5,0 0,0 -5,0 -10,0 -15,0 -20,0. B3_a. A5_f. B3_d. B3_b. A5_i. A5_a. A5_e. A5_h. A5_d. A5_b. A1 A2 A3 A4 A5_a A5_b A5_c A5_d A5_e A5_f A5_g A5_h A5_i B1 B2 B3_a B3_b B3_c B3_d B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 C1 C2 C3 C4 C5 C6 Differenza in punti percentuali Media punteggi classe per ambito

Dettagli

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10 RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3

Dettagli

Calcolo delle Probabilità Soluzioni 2. Calcolo combinatorio

Calcolo delle Probabilità Soluzioni 2. Calcolo combinatorio ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

Responsabilidade Civil do Médico no Tocante à Culpa Médica e à Liquidação dos Danos

Responsabilidade Civil do Médico no Tocante à Culpa Médica e à Liquidação dos Danos ISSN 1127-8579 Pubblicato dal 13/10/2011 All'indirizzo http://www.diritto.it/docs/32396-responsabilidade-civil-do-m-dico-no-tocanteculpa-m-dica-e-liquida-o-dos-danos Autore: Aldo Aranha de Castro Responsabilidade

Dettagli

combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere;

combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere; CALCOLO COMBINATORIO Il calcolo combinatorio si occupa di contare i raggruppamenti che si possono fare con n oggetti di un insieme finito, secondo determinate regole. Vediamo di seguito come, a seconda

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Sicurezza dei sistemi e delle reti informatiche Note di Matematica STEFANO FERRARI Fondamenti di informatica per la sicurezza Note di Matematica Pagina 2 di 8

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio Fattoriale: n! = n( n 1)( n 2)...1 1 1 n n = 0 Fattoriale discendente: n( n 1)...( n k + 1) n! (n) k = = ( n k)! 1 1 k n k = 0 Coefficiente binomiale (k n) : n (n) = k n! = k k! k!(

Dettagli

ORDINAMENTO 2001 QUESITO 1 QUESITO 2

ORDINAMENTO 2001 QUESITO 1 QUESITO 2 www.matefilia.it ORDINAMENTO 2001 QUESITO 1 Indicata con f(x) una funzione reale di variabile reale, si sa che f(x) l per x a, essendo l ed a numeri reali. Dire se ciò è sufficiente per concludere che

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 2 ARGOMENTO: Calcolo combinatorio (LEZIONE N 2) ATTIVITA' N 1: In quanti

Dettagli

Il campionamento statistico. prof. C.Guida

Il campionamento statistico. prof. C.Guida Il campionamento statistico prof. C.Guida Per determinare le caratteristiche fondamentali di una popolazione statistica non è sempre necessario analizzare tutta la popolazione, ma risulta sufficiente esaminare

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

Direito do Turismo: Legislação específica aplicada

Direito do Turismo: Legislação específica aplicada ISSN 1127-8579 Pubblicato dal 08/01/2013 All'indirizzo http://www.diritto.it/docs/34465-direito-do-turismo-legisla-o-espec-ficaaplicada Autore: Sola Fernanda Direito do Turismo: Legislação específica aplicada

Dettagli

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k)

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Nel calcolo del numero di modalita' con cui si presenta un evento e' utile talvolta utilizzare le definizioni

Dettagli

ESERCITAZIONI CALCOLO COMBINATORIO

ESERCITAZIONI CALCOLO COMBINATORIO ESERCITAZIONI CALCOLO COMBINATORIO Esercizio 1 (C) La Quinella all ippodromo del luogo consiste nell indicare i cavalli che si classificheranno primo e secondo in una corsa senza riguardo all ordine. Se

Dettagli

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Esempi Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Osservazioni per le matrici quadrate a) Data A M n (K) è possibile definire ricorsivamente

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio I l. Disposizioni semplici, permutazioni semplici, combinazioni semplici In questo numero considereremooggetti in numero finito, di natura qualsiasi e di essi studieremo particolari

Dettagli

ESERCIZI SUL CALCOLO COMBINATORIO

ESERCIZI SUL CALCOLO COMBINATORIO ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica ) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo

Dettagli

Appendice A Richiami di calcolo combinatorio

Appendice A Richiami di calcolo combinatorio Appendice A Richiami di calcolo combinatorio A.1. Dati due insiemi finiti A e B, concarda = m, cardb = n, siha card(a B) =m n. Possiamo anche dire che il numero di scelte possibili di un elemento di A

Dettagli

soluzione in 7 step Es n 221

soluzione in 7 step Es n 221 soluzione in 7 soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm 2 soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO A cosa serve???? Wiki says: Il calcolo combinatorio studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. In altre parole.

Dettagli

Il calcolo combinatorio

Il calcolo combinatorio Il calcolo combinatorio Per "calcolo combinatorio" (C.C.) si intende una branca della matematica che studia i modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l'obiettivo finale

Dettagli

(NUMERAZIONE DAL CATALOGO SASSONE 2002)

(NUMERAZIONE DAL CATALOGO SASSONE 2002) IV EMISSIONE - 1855 / 1863 (NUMERAZIONE DAL CATALOGO SASSONE 2002) Il compito del collezionista che vuole seriamente porre in essere una collezione della IV emissione del Regno di Sardegna, che abbraccia

Dettagli

Pre Test 2008... Matematica

Pre Test 2008... Matematica Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri

Dettagli

Le isometrie Capitolo

Le isometrie Capitolo Le isometrie Capitolo Simmetria centrale e assiale erifica per la classe prima COGNOME............................... NOME............................. Classe.................................... Data...............................

Dettagli

Raggruppamenti. Esercizio 1

Raggruppamenti. Esercizio 1 Raggruppamenti Nelle prossime lezioni ci occuperemo delle basi del calcolo combinatorio. Per semplicità partiremo da un esercizio e poi analizzeremo il caso generale con la definizione e la formula da

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

Cap. OPERE DA LATTONIERE

Cap. OPERE DA LATTONIERE Cap. V OPERE DA LATTONIERE PAG. 1 5.2 OPERE COMPIUTE Prezzi medi praticati dalle ditte del ramo per ordinazioni dirette (di media entità) da parte del committente, escluse assistenze murarie, compresi

Dettagli

Os novos direitos da empregada doméstica

Os novos direitos da empregada doméstica ISSN 1127-8579 Pubblicato dal 12/04/2013 All'indirizzo http://ww.diritto.it/docs/34918-os-novos-direitos-da-empregada-dom-stica Autore: Vólia Bomfim Cassar Os novos direitos da empregada doméstica A B

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15 Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

La proporzione è un uguaglianza tra due rapporti. Es 3:4 =6:8. a:b = c:d

La proporzione è un uguaglianza tra due rapporti. Es 3:4 =6:8. a:b = c:d LE PROPORZIONI La proporzione è un uguaglianza tra due rapporti. Es 3:4 =6:8 In generale una proporzione si indica usando le lettere: a:b=c:d a e c sono antecedenti nei loro rispettivi rapporti così come

Dettagli

è un parallelogrammo Dimostrazione Per dimostrare che AA 1 BB 1 è un parallelogrammo occorre dimostrare che ha i lati opposti paralleli, cioè che:

è un parallelogrammo Dimostrazione Per dimostrare che AA 1 BB 1 è un parallelogrammo occorre dimostrare che ha i lati opposti paralleli, cioè che: PARALLELOGRAMMI E TRAPEZI Problema 2.296.5 Siano date due rette parallele a e b, tagliate da una trasversale r rispettivamente nei punti A e B. Si prendano su a e b, da una stessa parte rispetto ad r,

Dettagli

ALGEBRA. Monomio: In un monomio distinguiamo parte numerica (o coefficiente) e parte letterale. Es.: -7 ax 2 b 3 y. Parte letterale.

ALGEBRA. Monomio: In un monomio distinguiamo parte numerica (o coefficiente) e parte letterale. Es.: -7 ax 2 b 3 y. Parte letterale. ALGEBRA Monomio: un espressione algebrica dove non figurano operazioni (e non segni) di addizione (+) o sottrazione(-); figurano solo moltiplicazioni e potenze. In un monomio distinguiamo parte numerica

Dettagli

I sottoinsiemi di un insieme e il triangolo di Tartaglia

I sottoinsiemi di un insieme e il triangolo di Tartaglia I sottoinsiemi di un insieme e il triangolo di Tartaglia 20 febbraio 205 Introduzione Consideriamo l insieme Luca Goldoni PhD Università di Trento Dipartimento di Informatica Università di Modena Dipartimento

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III

ESERCIZI MATEMATICA GENERALE - Canale III ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

ORDINAMENTO 2005 QUESITO 1

ORDINAMENTO 2005 QUESITO 1 www.matefilia.it ORDINAMENTO 2005 QUESITO 1 Consideriamo il lato AB del decagono regolare inscritto nella circonferenza e indichiamo con AC la bisettrice dell angolo alla base A. Essendo l angolo in O

Dettagli

.. x n k. n 1 x n 2. La differenza fra i due casi precedenti sta nella possibilità di ripetere oppure no una stessa scelta.

.. x n k. n 1 x n 2. La differenza fra i due casi precedenti sta nella possibilità di ripetere oppure no una stessa scelta. Calcolo combinatorio Problema Quante parole di 3 lettere si possono scrivere utilizzando solo le 4 lettere a, b, c, d? Soluzione: scriviamole tutte e poi le contiamo Esercizio 2 Quante sono le parole di

Dettagli

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizioni

Dettagli

Tar Campania, Napoli, n. 873 ISSN Pubblicato dal 11/03/2010

Tar Campania, Napoli, n. 873 ISSN Pubblicato dal 11/03/2010 ISSN 1127-8579 Pubblicato dal 11/03/2010 All'indirizzo http://www.diritto.it/docs/29047-poich-il-provvedimento-prefettizio-impugnatosi-palesa-viziato-per-difetto-di-istruttoria-e-di-motivazione-ne-deriva-l-illegittimit-dellarevoca-dell-affidamento-con-relativa-escussione-della-cau

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

Coefficienti binomiali

Coefficienti binomiali 1. Sottoinsiemi di un insieme Coefficienti binomiali Problema. In quanti modi si possono scegliere 3 oggetti in un insieme di oggetti differenti? In altri termini, quanti sono i sottoinsiemi di 3 elementi

Dettagli

Appunti sullo sviluppo piano di figure solide

Appunti sullo sviluppo piano di figure solide Appunti sullo sviluppo piano di figure solide Indice 1. Cosa è un prisma 2. Prisma retto, parallelepipedo e cubo. 3. Sviluppo piano di un prisma 1. Cosa è un prisma Per effettuare lo sviluppo piano di

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

Histórico e criação do acordo TRIPS/OMC

Histórico e criação do acordo TRIPS/OMC ISSN 1127-8579 Pubblicato dal 12/03/2013 All'indirizzo http://www.diritto.it/docs/34763-hist-rico-e-cria-o-do-acordo-trips-omc Autore: Thiago Gonçalves Paluma Rocha Histórico e criação do acordo TRIPS/OMC

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Cenni di calcolo combinatorio 1 Introduzione Calcolare quanti sono i diversi modi di ordinare un insieme di oggetti è un problema interessante. Quante sigle diverse si possono fare con le tre lettere RST?

Dettagli

Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) Calcolo delle probabilità e calcolo combinatorio (di aolo Urbani maggio 0) efinizioni rova casuale: prova il cui esito è legato al caso. Evento casuale: evento che può verificarsi o meno a seconda del

Dettagli

IL CALCOLO COMBKNATORIO

IL CALCOLO COMBKNATORIO IL CALCOLO COMBKNATORIO Nella vita quotidiana può capitare dì dover rispondere a domande come quelle qui riportate. - Quante parole diverse dì 4 lettere si possono formare avendo a disposizione 10 lettere?

Dettagli

PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA

PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA INTRODUZIONE ALLO STUDIO Nell ambito di un progetto di ricerca dell Università di Cagliari riguardante i prerequisiti teorici matematici di base

Dettagli

ISSN 1127-8579. Pubblicato dal 27/12/2013

ISSN 1127-8579. Pubblicato dal 27/12/2013 ISSN 1127-8579 Pubblicato dal 27/12/2013 All'indirizzo http://www.diritto.it/docs/35807-profili-essenziali-delle-intercettazionitelematiche-dalla-tutela-costituzionale-della-segretezza-ed-inviolabilit-di-qualasisi-formadi-comunicazione-alla-disciplina-ex-art-266-bis-c-p-p

Dettagli

certificazione antimafia : Tribunale Amministrativo Regionale per la Calabria (Sezione Prima) sentenza n. 480 del 2010

certificazione antimafia : Tribunale Amministrativo Regionale per la Calabria (Sezione Prima) sentenza n. 480 del 2010 ISSN 1127-8579 Pubblicato dal 22/04/2010 All'indirizzo http://www.diritto.it/docs/29425-certificazione-antimafia-tribunaleamministrativo-regionale-per-la-calabria-sezione-prima-sentenza-n-480-del-2010

Dettagli

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18 Geometria Rudimenti della Logica e della Matematica Marzo 2013 Geometria Marzo 2013 1 / 18 La geometria tratta delle figure e le forme nello spazio. Letteralmente della misura della terra o più in concreto,

Dettagli

ASSURANCE BROKER S.R.L.

ASSURANCE BROKER S.R.L. ASSURANCE BROKER S.R.L. Sede Legale VIA ZOE FONTANA 220 ROMA (RM) Iscritta al Registro Imprese di ROMA C.F. e n. iscrizione 09649681005 Iscritta al R.E.A. di ROMA al n. 1179490 Capitale Sociale Euro 100.000,00

Dettagli

COMUNE DI SAN BONIFACIO PROVINCIA DI VERONA

COMUNE DI SAN BONIFACIO PROVINCIA DI VERONA PER L ANNO 2012 CON DELIBERAZIONE DI GIUNTA COMUNALE N. 103 DEL 03/10/2012 SONO STATI APPROVATI I VALORI VENALI DELLE AREE FABBRICABILI E DEI FABBRICATI SOTTOPOSTI AD INTERVENTI DI RECUPERO AI FINI I.M.U.,

Dettagli

Modulo 9: Combinatoria III

Modulo 9: Combinatoria III Modulo 9: Combinatoria III Ambo secco su una ruota Un ambo secco si realizza quando si giocano due numeri su una ruota e vengono estratti esattamente quei due numeri su quella ruota. 2 / Bet on Math: un

Dettagli

Binomio di Newton. Pertanto, il numero di sottoinsiemi di S, compreso il sottoinsieme vuoto ; elostessos, è dato da. = 2 n, r. (a + b) n = a r b n r,

Binomio di Newton. Pertanto, il numero di sottoinsiemi di S, compreso il sottoinsieme vuoto ; elostessos, è dato da. = 2 n, r. (a + b) n = a r b n r, Binomio di Newton Osserviamo che, volendo costruire un generico sottoinsieme I S, si deve eseguire una procedura di n passi, con alternative in ogni passo. Infatti, occorre decidere per ciascuno degli

Dettagli

Anno 1. Criteri di uguaglianza dei triangoli

Anno 1. Criteri di uguaglianza dei triangoli Anno 1 Criteri di uguaglianza dei triangoli 1 Introduzione Di fondamentale importanza per la dimostrazione di numerose proprietà dei triangoli sono i criteri di congruenza. Questi si possono utilizzare

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Quanti sono...? Introduzione al Calcolo Combinatorio

Quanti sono...? Introduzione al Calcolo Combinatorio Prof.ssa Garagnani Elisa ISIS Archimede Quanti sono...? Introduzione al Calcolo Combinatorio Per cominciare... aiutati con un grafo ad albero Noti 3 vincitori, in quanti modi diversi possono salire sul

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Le tossicodipendenze in Canton Ticino

Le tossicodipendenze in Canton Ticino ISSN 1127-8579 Pubblicato dal 23/01/2015 All'indirizzo http://www.diritto.it/docs/36796-le-tossicodipendenze-in-canton-ticino Autore: Baiguera Altieri Andrea Le tossicodipendenze in Canton Ticino A B BC

Dettagli