I NUMERI PERFETTI DISPARI. (proposta di dimostrazione della loro inesistenza)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I NUMERI PERFETTI DISPARI. (proposta di dimostrazione della loro inesistenza)"

Transcript

1 I NUMERI PERFETTI DISPARI (proposta di dimostrazione della loro inesistenza) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto Abstract In this paper we show the inexistence of odd perfect numbers Riassunto In questo articolo proponiamo una nostra dimostrazione dell inesistenza dei numeri perfetti dispari, in base al principio dell abbondanza o della difettività di tutti i numeri naturali, inquadrabili nelle forme 6k + a, con a da 0 a 5 (ricordando che le forme aritmetiche dei numeri primi (tranne il 2 e il 3 iniziali) sono 6k -1 e 6k +1, che forniscono numeri difettivi, mentre la forma 6k fornisce soltanto numeri abbondanti, avendo essi molti fattori e quindi molti divisori propri

2 In un precedente lavoro sui numeri lievemente eccedenti (Rif.1) abbiamo visto come i numeri lievemente eccedenti in pratica non esistono: il problema dei numeri perfetti dispari può essere esaminato in questo contesto, tramite le forme numeriche 6k + a con a da 0 a 5. Riportiamo, da questo lavoro, alcune tabelle sull argomento, e poi aggiungeremo la tabella riguardanti i numeri multipli di 3 come possibile alternativa (poichè le forme 6k + 1 forniscono tutti numeri dispari difettivi, come i numeri primi, loro prodotti e loro potenze) e dimostrando come anche l unica alternativa che fornisce numeri dispari sono i numeri multipli dispari di 3, di forma 6k -3, anche questi difettivi e quindi non in grado di fornire numeri perfetti, con abbondanza σ(n)/n =1, come per i soli numeri pari, e di forma 6k -2 (tranne il numero perfetto 6 iniziale). Ne consegue infine che i numeri perfetti possibili sono soltanto quelli pari che già conosciamo, e quindi non esistono, ne possono esistere, numeri perfetti dispari (infatti non ne sono mai stai trovati, proprio per i motivi matematici connessi con l abbondanza e la difettività, che mostreremo in questo lavoro). 2

3 Da Rif. 1: E che i tutti i numeri perfetti, in rosso (tranne il solo 6 iniziale sono di forma 6k -2 TABELLA 2 k 6k-4 6k-3 6k-2 6k-1 6k 6k Una nostra scoperta è la forma 6k-2 di tutti i numeri perfetti ad eccezione del numero perfetto iniziale 6, poiché di forma 6k, per k = 1, poiché 6*1 = 6. 3

4 Infatti: 6*5-2 = 28 6*83-2 = E così via. La nostra dimostrazione è la seguente: Poiché essendo il prodotto (2^n*2^(n+1 ) di una potenza dispari di 2 per una potenza pari di 2, ed essendo le potenze pari di forma 6k-2 (per esempio 4=2^2 =6-2, 16 =2^4=18-2 ecc.) e le potenze dispari di forma 6k +2, per es. 8 =2^3 =6 + 2, 32=2^5= , abbiamo che (6k+2) * (6k -2) = 36k*k -26k +26k -2 = 6k - 2, essendo la somma dei tre termini precedenti un multiplo k di 6) Esempio, per 28 = 4*7 = (6-2)* (6+2-1) = = 28 Tabella 6k + a, con evidenziati in rosso i numeri abbondanti 4

5 TABELLA 4 k 6k-4 6k-3 6k-2 6k-1 6k 6k Come si vede, tutti i numeri abbondanti sono multipli di 6 (avendo più fattori di tutti gli altri), e in più qualche numero di forma 6k -4 (per es. 20 e 80) e 6k -2 (per es. 40 e 70) e il primo numero abbondante dispari (995, di forma 6k-1, numero lievemente difettivo ) 5

6 Numero difettivo Da Wikipedia, l'enciclopedia libera. Un numero difettivo è un numero naturale maggiore della somma dei suoi divisori propri. Per esempio, 10 è un numero difettivo perché è superiore alla somma dei suoi divisori: (1+2+5)=8. Tutti i numeri primi e le loro potenze sono numeri difettivi. Tutti i divisori propri dei numeri difettivi e dei numeri perfetti sono a loro volta numeri difettivi. Sequenza OESIS A A Deficient numbers: numbers n such that sigma(n) < 2n. (Formerly M0514) 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86 (list; graph; refs; listen; history; text; internal format) 78 Individuati in rosso nella solita tabella, tranne l 1 iniziale: 6

7 TABELLA 6 k 6k-4 6k-3 6k-2 6k-1 6k 6k E qui veniamo al dunque. Come vediamo nella suddetta Tabella 6, in tutte le colonne (6k-3, 6k-1 e 6k +1) che contengono i numeri dispari, tutti i numeri dispari sono difettivi, e quindi non possono avere abbondanza 1 (rapporto s(n) /n) richiesta dai numeri perfetti). Tale possibilità è riservata soltanto ai numeri pari di forma 6k - 2, vedi TABELLA 2, poiché sono i numeri con la 7

8 difettività minore rispetto a tutti gli altri numeri pari, prossima a 1, e quindi raramente può toccare il valore 1, generando così un numero perfetto pari. Da un altro lavoro precedente, sulla funzione s(n) (Rif. 2), riportiamo altre tabelle utili al nostro scopo: Tabella 7 n 6k Abbondanza =s(n)/n 6 6*1 12/6 = *2 28/12 = 2, *3 39/18 = 2, *4 60/24 = 2,5 30 6*5 72/30= 2,4 36 6*6 91/36 = 2, *7 96/42 = 2, *8 124/48 = 2, *9 120/54 = 2, *10 168/60 = 2,8 Come si nota facilmente l abbondanza è massima per i valori di n = 6k TABELLA 8 per la funzione s(n) per i numeri dispari di forma 6k -3 (multipli dispari di 3; i multipli pari di 3 sono di forma 6k e quindi con abbondanza massima come da precedente tabella) 8

9 Numeri n di forma 6k -3 Divisori Somma divisori propri σ(n) Rapporto s(n)/n = abbondanza 3 1 1/3 0, ,3 4/9 0, ,3,5 9/15 0, ,3,7 11/21 0, ,3,9 13/27 0, ,3,11 15/33 0, ,3,13 17/39 0, ,3,5,9,15 33/45 0, ,3,17 21/51 0, ,3,19 23/57 0, ,3,7,21 32/63 0,50 32 Abbondanza <1 (difettività) Come si vede, l abbondanza è sempre molto bassa, quasi sempre minore di 0,5 (raramente superiore, come per n = 45, che ha due fattori primi 3 e 5, 9

10 il che fa aumentare leggermente il numero dei divisori e quindi anche la loro somma, e quindi anche l abbondanza, e cosi pure per n = 63, con fattori primi 3 e 7). Questo mostra come l abbondanza di n = 6k-3 è sempre lontana da 1, e quindi non può mai generare numeri perfetti dispari e multipli dispari di 3. Lo stesso dicasi per i numeri primi, i loro prodotti e le loro potenze, tutti numeri di forma 6k -1 e 6k +1, tutti numeri difettivi e quindi con abbondanza sempre minore di 1, e quindi non possono dare neanche loro numeri perfetti dispari. Rimane l alternativa dei numeri pari, come infatti avviene, ed esclusivamente per i numeri pari di forma 6k-2 (tranne che per il 6 iniziale, di forma 6*1=6, unica eccezione)), anche come da nostra dimostrazione accennata in questo lavoro. I numeri pari di forma 6k e 6k +2 sono quindi esclusi dalla formazione di numeri perfetti. Ecco perché i numeri perfetti dispari non esistono, e ne possono esistere. C.V.D. Vediamo ora, per verifica, i numeri di forma 6k -2 e la loro abbondanza, prossima a 1 10

11 TABELLA 9 6k 6k-2 divisori s(n) Somma divisori s(n)/n = Abbondanza ,2 3 3/4 0, ,2,5 8 8/10 0, ,2,4, /16 0, ,2, /22 0, ,2,4,7, / = numero perfetto ,2, /34 0,58 Come previsto, l abbondanza per i numeri 6k -2 è più grande e più prossima a 1 rispetto agli altri numeri pari di forma 6k - 4 o 6k +2, ed il valore 1 si verifica solo quando il numero perfetto è anche di forma canonica 2 n (2 n+1-1) Conclusioni Come abbiamo visto, escludendo i numeri dispari (di forma 6k-1, 6k +1 e 6k -3, tutti più o meno tutti difettivi, specialmente questi ultimi) ed i numeri pari di forma 6k, abbondanti, e 6k - 4 e 6k +2 (difettivi), 11

12 rimangono soltanto numeri pari di forma 6k -2 (vedi TABELLA 2) a poter originare i sia pur rarissimi numeri perfetti pari. Di conseguenza, i numeri perfetti dispari non esistono ne possono esistere, ed il relativo problema matematico può considerarsi ora risolto del tutto in senso negativo. Riferimenti 1) Sui numeri lievemente eccedenti come problema matematico ancora irrisolto (con nota sui numeri lievemente difettivi, ecc. e le forme 6k + a con a da 0 a 5) Gruppo B.Riemann Francesco Di Noto, Michele Nardelli 2) La funzione σ(n), sul sito LA FUNZIONE σ(n), LE FORME 6k + 1 E LA RH1 Gruppo Eratostene 12

ESISTENZA DI INFINITI NUMERI PRIMI REGOLARI. Francesco Di Noto, Michele Nardelli. In this paper we describe about the regular prime

ESISTENZA DI INFINITI NUMERI PRIMI REGOLARI. Francesco Di Noto, Michele Nardelli. In this paper we describe about the regular prime ESISTENZA DI INFINITI NUMERI PRIMI REGOLARI Gruppo B. Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle loro connessioni

Dettagli

I numeri semiprimi e i numeri RSA. come loro sottoinsieme

I numeri semiprimi e i numeri RSA. come loro sottoinsieme I numeri semiprimi e i numeri RSA come loro sottoinsieme Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between semi-primes numbers and RSA numbers. Riassunto In questo

Dettagli

Problema dell impacchettamento. (caso particolare del cubo)

Problema dell impacchettamento. (caso particolare del cubo) Problema dell impacchettamento (caso particolare del cubo) Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show an our idea about total packing in a cubic space Riassunto

Dettagli

FORMULE PER TROVARE NUMERI PRIMI

FORMULE PER TROVARE NUMERI PRIMI FORMULE PER TROVARE NUMERI PRIMI Ing. Pier Francesco Roggero, Dott. Michele Nardelli, Francesco Di Noto Abstract In this paper we examine in detail a class of special prime numbers. Pagina 2 di 28 Index:

Dettagli

I doppi di Fibonacci ( 2F(n) ) in fisica e. nel calcolo delle probabilità

I doppi di Fibonacci ( 2F(n) ) in fisica e. nel calcolo delle probabilità I doppi di Fibonacci ( 2F(n) ) in fisica e nel calcolo delle probabilità Gruppo B.Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro

Dettagli

CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA

CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA (Oltre che con la legge di Benford e la legge di Poisson) Ing. Pier Franz Roggero, Dott. Michele

Dettagli

DAI NUMERI PRIMI AL BOSONE DI HIGGS TRAMITE LE SIMMETRIE

DAI NUMERI PRIMI AL BOSONE DI HIGGS TRAMITE LE SIMMETRIE DAI NUMERI PRIMI AL BOSONE DI HIGGS TRAMITE LE SIMMETRIE (numeri primi-numeri di Lie-gruppi eccezionali di Lie-simmetrieteorie di stringa-e8xe8-bosone di Higgs) Gruppo B. RIEMANN * Francesco Di Noto, Michele

Dettagli

NUOVO NUMERO PRIMO DI MERSENNE (NOSTRA PREVISIONE ATTENDIBILE. e nuova previsione per il. 50 numero primo di Mersenne) -

NUOVO NUMERO PRIMO DI MERSENNE (NOSTRA PREVISIONE ATTENDIBILE. e nuova previsione per il. 50 numero primo di Mersenne) - NUOVO NUMERO PRIMO DI MERSENNE (NOSTRA PREVISIONE ATTENDIBILE e nuova previsione per il 50 numero primo di Mersenne) - Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract In

Dettagli

INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI

INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI Gruppo Riemann* Nardelli Michele, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle loro connessioni

Dettagli

Connessioni tra i numeri di Bernoulli, di Eulero e di Fibonacci

Connessioni tra i numeri di Bernoulli, di Eulero e di Fibonacci Connessioni tra i numeri di Bernoulli, di Eulero e di Fibonacci Francesco Di Noto, Michele Nardelli Un approccio diverso al percorso che va da Bernoulli alla funzione zeta e poi anche alla teoria di stringa,

Dettagli

Ing. Pier Francesco Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto

Ing. Pier Francesco Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto TRAPPOLE PER NUMERI PRIMI Ing. Pier Francesco Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: In this paper we focus attention on a new primality test, based on forms p = 4n+1 and p=

Dettagli

Congettura su un possibile spettrometro matematico. probabilistico per velocizzare la fattorizzazione

Congettura su un possibile spettrometro matematico. probabilistico per velocizzare la fattorizzazione Congettura su un possibile spettrometro matematico probabilistico per velocizzare la fattorizzazione Gruppo Eratostene Abstract In this paper we show our conjecture about mathematical spettroscopy able

Dettagli

Perché e come usare Derive nell insegnamento della matematica

Perché e come usare Derive nell insegnamento della matematica 0 0 Perché e come usare Derive nell insegnamento della matematica Carmelo Di Stefano Riassunto Da diversi anni viene suggerito di usare i software nell insegnamento della matematica. Spesso però l insegnante

Dettagli

I numeri perfetti. TFA A Università di Roma Sapienza. A cura di: Eleonora Mattiuzzo e Sara Falasca

I numeri perfetti. TFA A Università di Roma Sapienza. A cura di: Eleonora Mattiuzzo e Sara Falasca I numeri perfetti TFA A059 2014-15 Università di Roma Sapienza A cura di: Eleonora Mattiuzzo e Sara Falasca Ancora si comme fra la gente più imperfecti e tristi che buoni e perfecti si trovano e li buoni

Dettagli

Semiprimi e fattorizzazione col modulo

Semiprimi e fattorizzazione col modulo Semiprimi e fattorizzazione col modulo ing. R. Turco, prof. Maria Colonnese Sommario Nel seguito viene esaminato un Teorema ed una tecnica di fattorizzazione per numeri semiprimi di qualsiasi dimensione;

Dettagli

Alcuni tipi di numeri primi o connessi ai numeri primi: permutabili, gemelli, cugini, sexy, numeri perfetti, esagonali centrati, persiani

Alcuni tipi di numeri primi o connessi ai numeri primi: permutabili, gemelli, cugini, sexy, numeri perfetti, esagonali centrati, persiani Alcuni tipi di numeri primi o connessi ai numeri primi: permutabili, gemelli, cugini, sexy, numeri perfetti, esagonali centrati, persiani Gruppo B. Riemann * amichevoli, cubani Francesco Di Noto, Michele

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN

I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN Gruppo B. Riemann * I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle

Dettagli

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE)

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) Gruppo B. Riemann Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between Padovan

Dettagli

Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani.

Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani. I NUMERI PRIMI 1 Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani. [ ] I numeri primi sono gli elementi essenziali della teoria dei numeri. Tratto da L enigma

Dettagli

Gruppo B. Riemann * Michele Nardelli, Francesco Di Noto Abstract

Gruppo B. Riemann * Michele Nardelli, Francesco Di Noto Abstract Dai numeri primi alla realtà fisica attraverso i numeri primi, i numeri di Fibonacci, i numeri di Lie (e relative simmetrie), le partizioni di numeri, la funzione zeta, l ipotesi di Riemann, e le teorie

Dettagli

POPOLAZIONE MONDIALE

POPOLAZIONE MONDIALE Pagina 1 di 11 POPOLAZIONE MONDIALE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: In this paper we show an estimate of the actual world population and the total number

Dettagli

Recente notizia sulla scoperta di un. numero primo di 17 milioni di cifre

Recente notizia sulla scoperta di un. numero primo di 17 milioni di cifre Recente notizia sulla scoperta di un numero primo di 17 milioni di cifre Francesco Di Noto, Michele Nardelli, Pier Francesco Roggero Abstract News about discovery of a prime numbers with 17 milions of

Dettagli

Ricorsività (o ricorrenza) nelle somme di numeri particolari successivi (caso generale a, b)

Ricorsività (o ricorrenza) nelle somme di numeri particolari successivi (caso generale a, b) Ricorsività (o ricorrenza) nelle somme di numeri particolari successivi (caso generale a, b) casi particolari a=b=1 (numeri di Fibonacci, F, e a=b=2 (le dimensioni coinvolte nelle teorie di stringa, 2F)

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è.

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. VALORE ASSOLUTO Definizione a a, a, se a se a 0 0 Esempi.. 7 7. 9 9 4. x x, x, se x se x Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. Utilizzando

Dettagli

Il principio di Induzione Matematica

Il principio di Induzione Matematica Il principio di Induzione Matematica prf.ssa Giovanna Corsi 11 luglio 2004 Il principio di induzione matematica è un metodo dimostrativo che fa esplicito riferimento ai numeri naturali.... Il riferimento

Dettagli

TEOREMA FONDAMENTALE DEI NUMERI PRIMI

TEOREMA FONDAMENTALE DEI NUMERI PRIMI TEOREMA FONDAMENTALE DEI NUMERI PRIMI Filippo Giordano/2009-Mistretta (ME) dal libro di Filippo Giordano "La ragione dei primi" in vetrina sul sito internet www.ilmiolibro.it " Enunciato: Sia n un numero

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Ancora sui criteri di divisibilità di Marco Bono

Ancora sui criteri di divisibilità di Marco Bono Ancora sui criteri di divisibilità di Talvolta può essere utile conoscere i divisori di un numero senza effettuare le divisioni, anche se la diffusione delle calcolatrici elettroniche, sotto varie forme,

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

Seconda gara matematica ( ) Soluzioni

Seconda gara matematica ( ) Soluzioni Seconda gara matematica (9..00) Soluzioni 1. Dato un parallelepipedo solido cioè senza buchi al suo interno formato da 180 cubetti e avente spigoli di lunghezza a, b, c, il numero N di cubetti visibili

Dettagli

Liceo Galilei - ROMA 27 maggio 2010

Liceo Galilei - ROMA 27 maggio 2010 Liceo Galilei - ROMA 27 maggio 2010 L. Lamberti Dipartimento di Matematica La Sapienza L. Lamberti Dipartimento di Matematica La Sapienza 27 maggio 2010 L. Lamberti Dipartimento di Matematica La Sapienza

Dettagli

Ragionamento numerico, critico-numerico e numerico-deduttivo

Ragionamento numerico, critico-numerico e numerico-deduttivo Capitolo 2 Ragionamento numerico, critico-numerico e numerico-deduttivo 1. I test di ragionamento critico-numerico Per rendere più agevole la lettura di una distribuzione di dati, raggrupparne sezioni

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Tavola dei divisori - da 1 a 100

Tavola dei divisori - da 1 a 100 Tavola dei divisori - da 1 a 100 1 1 1 1 0 difettivo 2 1, 2 2 3 1 difettivo, primo 3 1, 3 2 4 1 difettivo, primo 4 1, 2, 4 3 7 3 difettivo 5 1, 5 2 6 1 difettivo, primo 6 1, 2, 3, 6 4 12 6 perfetto 7 1,

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

3 Il problema dell impacchettamento come problema

3 Il problema dell impacchettamento come problema 3 Il problema dell impacchettamento come problema NP - Le partizioni di numeri e i Taxicab come possibili esempi di soluzione Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this

Dettagli

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0 1 ESERCIZI 1 Esercizi 1.1 Fibonacci1 Dimostrare che F 2 i = F n F n+1. Dimostrazione. Per induzione su n. Per n = 1 si ha F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. n+1

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

La scomposizione in fattori primi

La scomposizione in fattori primi La scomposizione in fattori primi In matematica la fattorizzazione è la riduzione in fattori: fattorizzare un numero n significa trovare un insieme di numeri {a0, a1, a2, a3 } tali che il loro prodotto

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

Equazioni goniometriche elementari

Equazioni goniometriche elementari Equazioni goniometriche elementari In questa dispensa vengono esaminate le equazioni goniometriche elementari; ad esse si riconducono molti tipi di equazioni goniometriche. A partire da esempi, viene illustrato

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

FUNZIONI SUI NUMERI INTERI - CURIOSITÀ E APPLICAZIONI

FUNZIONI SUI NUMERI INTERI - CURIOSITÀ E APPLICAZIONI FUNZIONI SUI NUMERI INTERI - CURIOSITÀ E APPLICAZIONI Stefano Borgogni stfbrg@rocketmail.com SUNTO Questo studio intende esaminare alcune funzioni matematiche che prendono in considerazione i soli numeri

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

Fattorizzazione di interi e crittografia

Fattorizzazione di interi e crittografia Fattorizzazione di interi e crittografia Anna Barbieri Università degli Studi di Udine Corso di Laurea in Matematica (Fattorizzazione e crittografia) 14 Maggio 2012 1 / 46 Il teorema fondamentale dell

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

Numeri Aritmetica e Numerazione

Numeri Aritmetica e Numerazione Numeri Aritmetica e Numerazione Insiemi Numerici Gli Insiemi Numerici nel diagramma di di Eulero - Venn Enumerazione Numeri Naturali Numeri Composti Numeri Primi I primi 1000 Numeri Primi Numeri Interi

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

TEOREMA FONDAMENTALE DEI NUMERI PRIMI

TEOREMA FONDAMENTALE DEI NUMERI PRIMI TEOREMA FONDAMENTALE DEI NUMERI PRIMI Filippo Giordano/2009-Mistretta (ME) dal libro di Filippo Giordano "Origine e funzione dei numeri primi" in vetrina sul sito internet www.ilmiolibro.it Enunciato Sia

Dettagli

SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una

SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una 1 a GARA MATEMATICA CITTÀ DI PADOVA 2 Aprile 2016 SOLUZIONI 1.- Sia n un numero intero. È vero che se la penultima cifra di n 2 è dispari allora l ultima è 6? Possiamo supporre n positivo. Sia : n = 100c

Dettagli

CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero

CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI π, Φ ed e Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show some connections between π, Φ and e Riassunto In questo

Dettagli

Nuove connessioni aritmetiche tra i numeri magici degli elementi chimici più stabili, i livelli energetici nei gas nobili ed i numeri di Fibonacci

Nuove connessioni aritmetiche tra i numeri magici degli elementi chimici più stabili, i livelli energetici nei gas nobili ed i numeri di Fibonacci Nuove connessioni aritmetiche tra i numeri magici degli elementi chimici più stabili, i livelli energetici nei gas nobili ed i numeri di Fibonacci Francesco Di Noto, Michele Nardelli Abstract In this paper

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

DATI DI INGRESSO, DI PERCORSO E DI USCITA. CDS in Scienze e Tecnologie per i Media

DATI DI INGRESSO, DI PERCORSO E DI USCITA. CDS in Scienze e Tecnologie per i Media DATI DI INGRESSO, DI PERCORSO E DI USCITA CDS in Scienze e Tecnologie per i Media I dati (tranne i risultati del test di orientamento iniziale) sono ripresi da AlmaLaurea, quindi si riferiscono a questionari

Dettagli

Congettura di Goldbach: Se N è un numero intero, pari e maggiore di 2, allora si possono trovare numeri primi P e Q con N = P + Q

Congettura di Goldbach: Se N è un numero intero, pari e maggiore di 2, allora si possono trovare numeri primi P e Q con N = P + Q Congettura di Goldbach: Se N è un numero intero, pari e maggiore di 2, allora si possono trovare numeri primi P e Q con N = P + Q Fu proposta da Christian Goldbach ad Eulero nel 1742, ed è tuttora indimostrata.

Dettagli

Divisibilità: definizioni e criteri

Divisibilità: definizioni e criteri cbnd Antonio Guermani Scheda n 1 Nome Data Divisibilità: definizioni e criteri Il numero 69 7 è divisibile per 3 se al posto Ha un solo divisore Tra i multipli di 58 i due più grandi nessun numero naturale

Dettagli

La curva di domanda individuale

La curva di domanda individuale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo La curva di domanda individuale Facoltà di Scienze della Comunicazione Università di Teramo Da che dipende la scelta Riprendiamo il

Dettagli

Appendice A Grafici elementari

Appendice A Grafici elementari UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza Appendice A Grafici elementari In questa appendice espongo alcune tecniche utili per ottenere grafici di funzioni che sono semplici trasformazioni

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

Equazioni di grado superiore al II

Equazioni di grado superiore al II Equaioni di grado superiore al II Equaioni binomie Un equaione binomia è un equaione che, ridotta a forma normale, è del tipo a n + b 0. Per risolvere una tale equaione, volendo cercare anche le soluioni

Dettagli

Il quadrato di binomio, assieme allaa differenza dei quadrati che vedremo in seguito, è uno dei più importanti prodotti notevoli.

Il quadrato di binomio, assieme allaa differenza dei quadrati che vedremo in seguito, è uno dei più importanti prodotti notevoli. PRODOTTI NOTEVOLI I prodotti notevoli sono identità matematiche molto utilizzate nella risoluzione di espressioni algebriche letterali in quanto permettono uno svolgimento rapido dei calcoli, inoltre si

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

LICEO SCIENTIFICO STATALE A. VOLTA PROGRAMMA DI MATEMATICA CLASSE 1 SEZ.B A.S

LICEO SCIENTIFICO STATALE A. VOLTA PROGRAMMA DI MATEMATICA CLASSE 1 SEZ.B A.S LICEO SCIENTIFICO STATALE A. VOLTA PROGRAMMA DI MATEMATICA CLASSE 1 SEZ.B A.S. 2014-2015 Testi: M.Bergamini-A.Trifone-G.Barozzi Algebra.Blu con Statistica vol.1, ed.zanichelli M.Bergamini-A.Trifone-G.Barozzi

Dettagli

LA FUNZIONE PHI (Φ) DI EULERO

LA FUNZIONE PHI (Φ) DI EULERO LA FUNZIONE PHI (Φ) DI EULERO (per matematici che imparano a camminare) Introduzione. Fui sempre affascinato dai numeri periodici: ricordo persino quando e come incontrai il primo di essi, anche se non

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE

LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Pagina 1 di 21 LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract:

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

R. Cusani, F. Cuomo: Telecomunicazioni - DataLinkLayer: Gestione degli errori, Aprile 2010

R. Cusani, F. Cuomo: Telecomunicazioni - DataLinkLayer: Gestione degli errori, Aprile 2010 1 11. Data link layer: codici di rilevazione di errore, gestione degli errori La rilevazione di errore Un codice a rilevazione di errore ha lo scopo di permettere al ricevente di determinare se vi sono

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Il ragionamento diagnostico

Il ragionamento diagnostico Il ragionamento diagnostico 1 l accertamento della condizione patologica viene eseguito All'inizio del decorso clinico, per una prima diagnosi In qualsiasi punto del decorso clinico, per conoscere lo stato

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Teoria dei Numeri Cenni storici

Teoria dei Numeri Cenni storici Teoria dei Numeri Cenni storici 15 febbraio 2016, Trento Persone Pitagora (600 a.c) Euclide (300 a.c) Diofante (250 d.c) Fermat ( 1601 1665) Teoria dei numeri. Eulero (1707 1783) Lagrange (1736 1813) Legendre

Dettagli

Albori dell'aritmetica - Cosa sono i numeri primi

Albori dell'aritmetica - Cosa sono i numeri primi Albori dell'aritmetica - Cosa sono i numeri primi - Un numero primo è un numero naturale maggiore di 1 che sia divisibile solamente per 1 e per se stesso; un numero maggiore di 1 che abbia più di due divisori

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

Anno scolastico Sperimentazione didattica Consolidamento delle competenze di Italiano e Matematica

Anno scolastico Sperimentazione didattica Consolidamento delle competenze di Italiano e Matematica Anno scolastico - Sperimentazione didattica Consolidamento delle competenze di Italiano e Matematica Lavoro della docente Funzione Strumentale Area Prof.ssa Teresa Venuto PROGRAMMA BIMESTRALE I MEDIA.

Dettagli

DOCENTE F. S. MAIESE CARMELA

DOCENTE F. S. MAIESE CARMELA RISULTATI DELLE PROVE INVALSI SCUOLA PRIMARIA a.s. 2014/2015 DOCENTE F. S. MAIESE CARMELA CONFRONTO DEI PUNTEGGI MEDI DELLA NOSTRA SCUOLA CON LA MEDIA REGIONALE E LA MEDIA NAZIONALE RISULTATI PERCENTUALI

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

La fattorizzazione e la phi di Eulero

La fattorizzazione e la phi di Eulero La fattorizzazione e la phi di Eulero Di Cristiano Armellini, cristiano.armellini@alice.it Supponiamo di voler trovare i fattori p, q del numero intero n (anche molto grande). Dalla Teoria dei numeri sappiamo

Dettagli

Matlab. Istruzioni condizionali, cicli for e cicli while.

Matlab. Istruzioni condizionali, cicli for e cicli while. Matlab. Istruzioni condizionali, cicli for e cicli while. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 17 marzo 2016 Alvise Sommariva Introduzione 1/ 18 Introduzione Il

Dettagli

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indicatori di Posizione e di Variabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indici Sintetici Consentono il passaggio da una pluralità

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. ..3. Prodotti notevoli Per quanto visto in precedenza, in generale per moltiplicare un polinomio di m termini per uno di n termini devono effettuarsi m n moltiplicazioni, così per esempio per moltiplicare

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Moltiplicazione e divisione tra numeri interi: algoritmi e circuiti slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello Operazioni aritmetiche e logiche Abbiamo visto che le ALU sono in grado

Dettagli

Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle

Dettagli

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

2. Paradosso #1. Cominciamo col paradosso il più difficile, mentre che siamo ancora svegli.

2. Paradosso #1. Cominciamo col paradosso il più difficile, mentre che siamo ancora svegli. 1. Cercherò alla fine di questa presentazione di rispondere alla domanda: qual è il cuore della matematica? Ma prima è necessario discutere la natura della matematica. E voglio concentrare su un aspetto

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

L UNIVERSO SCONOSCIUTO DEI NUMERI GEMELLI ED ALCUNE GENERALIZZAZIONI AD ESSI CONNESSE

L UNIVERSO SCONOSCIUTO DEI NUMERI GEMELLI ED ALCUNE GENERALIZZAZIONI AD ESSI CONNESSE L UNIVERSO SCONOSCIUTO DEI NUMERI GEMELLI ED ALCUNE GENERALIZZAZIONI AD ESSI CONNESSE di Franco Eugeni 1 ed Angela Ghiraldini 2 Dipartimento di Scienze della Comunicazione Università di Teramo E noto come

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA BILANCIO DEI VINCOLI ED ANALISI CINEMATICA ESERCIZIO 1 Data la struttura piana rappresentata in Figura 1, sono richieste: - la classificazione della struttura in base alla condizione di vincolo; - la classificazione

Dettagli

Calcolo algebrico e polinomi 1 / 48

Calcolo algebrico e polinomi 1 / 48 Calcolo algebrico e polinomi 1 / 48 2 / 48 Introduzione In questa lezione esporremo i principali concetti relativi al calcolo algebrico elementare e ai polinomi. In particolare, illustreremo: Prodotti

Dettagli

Algebra di Boole: minimizzazione di funzioni booleane

Algebra di Boole: minimizzazione di funzioni booleane Corso di Calcolatori Elettronici I A.A. 200-20 Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Forme Ridotte p Vantaggi

Dettagli