Esercitazioni 2013/14

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni 2013/14"

Transcript

1 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta V verrà accettata con probabilità 3/4 nel caso in cui la ditta W non partecipi alla gara. La probabilità che W partecipi alla gara è 3/4 e se partecipa la probabilità che V ottenga l appalto si riduce a 1/3. (a) Quale è la probabilità che V ottenga l appalto? (b) Se V ottiene l appalto, quale è la probabilità che W non abbia partecipato alla gara? Esercizio 2 Una società di consulenza ingegneristica deve preparare una proposta per un contratto di ricerca. Preparare la proposta costa 5000 e nel caso che essa venga accettata le probabilità di un guadagno potenziale stimato di 50000, 30000, o 0 sono 0.2, 0.5, 0.2 e 0.1 rispettivamente. Se la probabilità che la proposta della società venga accettata è 0.3, quale è il guadagno netto atteso? Esercizio 3 Un produttore di birra afferma che il 10% al massimo delle sue lattine contiene meno birra di quanto dichiarato sull etichetta. Per verificare l affermazione, si scelgono a caso 16 lattine di birra e se ne pesa il contenuto: l affermazione è verificata se meno di 3 lattine contengono meno birra di quanto dichiarato. Determinare la probabilità che quanto dichiarato dal produttore venga confermato se la percentuale reale di lattine che contengono meno birra di quanto dichiarato in etichetta è: (a) 5%, (b) 10%, (c) 15%, (d) 20%. Esercizio 4 La variabile aleatoria X ha densità di probabilità: 0. (a) Calcolare la 0 funzione di distribuzione e farne il grafico. (b) Calcolare la probabilità degli eventi 0 e. (c) Calcolare il valore atteso e la varianza di X. Esercizio 5 In una settimana il numero medio di incidenti lungo un tratto autostradale molto transitato è pari a 3. (a) Se X indica il numero di incidenti per settimana, ricavare il modello probabilistico per X. (b) Ricavare la funzione di distribuzione e farne il grafico. (c) Calcolare la probabilità che ci saranno almeno 2 incidenti la prossima settimana. Esercizio 6 La probabilità di trovare occupata la linea telefonica di una radio locale è (a) Quale è la probabilità di trovare la linea libera al decimo tentativo? (b) Quale è la probabilità che per prendere la linea occorrano più di 5 tentativi? (c) Quale è il numero medio necessario per connettersi? Esercizio 7 Una moneta regolare viene lanciata volte. Mediante la diseguaglianza di Chebyshev, mostrare che la probabilità che la frequenza relativa di teste sia compresa tra e è almeno Esercizio 8 In una città il numero di interruzioni al mese della fornitura di energia elettrica è una variabile casuale con valore atteso 11.6 e deviazione standard 3.3. Se questa distribuzione può essere approssimata con una distribuzione Gaussiana, qual è la probabilità che ci siano almeno 8 interruzioni in un mese? Esercizio 9 Se il 20% dei chip di memoria prodotti da una certa fabbrica sono difettosi, qual è la probabilità che in un lotto di 100 chip selezionati a caso per un controllo: (a) almeno 15 siano difettosi, (b) esattamente 15 siano difettosi. (utilizzare il modello esatto ed il modello approssimato mediante la legge Gaussiana)

2 Esercizio 10 Un carico di 20 registratori digitali ne contiene 5 difettosi. Scegliendone 10 a caso per un controllo, qual è la probabilità che 2 di essi siano difettosi? Esercizio 11 Si ripeta l Esercizio 10 con un lotto di 100 registratori digitali di cui 25 sono difettosi, usando: (a) la legge ipergeometrica, (b) la legge binomiale come approssimazione. Commentare il risultato. Esercizio 12 La densità di probabilità della variabile aleatoria è data da: 0 1, ed è nulla altrove, con a e b coefficienti positivi. (a) Se il valore atteso di X è 3/5, ricavare a e b. (b) Calcolare e disegnare la funzione di distribuzione. Esercizio 13 La variabile aleatoria X ha distribuzione Uniforme in (0, 0.5). (a) Scrivere le espressioni della densità e della distribuzione, facendone un grafico qualitativo. (b) Se ricavare la distribuzione applicando la definizione di funzione di distribuzione di una v.a., fare un grafico qualitativo di. (c) Ricavare applicando il teorema fondamentale e fare un grafico qualitativo di. (d) Calcolare il valore atteso di. Esercizio 14 La variabile aleatoria ha densità. (a) Determinarne la funzione di distribuzione e farne un grafico indicativo, calcolare la probabilità che sia minore di 2. (b) Calcolare il valore atteso, il secondo momento e la varianza di. (c) Se con 1/2 e 1/8, ricavare la funzione di distribuzione di da quella di X, e farne un grafico indicativo. (d) Per ogni realizzazione di X si lancia una moneta, e si definisce la variabile aleatoria Z come segue: se esce testa, se esce croce ; si scriva la densità di Z, se ne faccia un grafico indicativo. (e) Si calcoli la varianza di Z e la probabilità che sia 2. Esercizio 15 Nel tiro con l arco il punteggio sul bersaglio circolare (avente raggio massimo ) è assegnato in modo inversamente proporzionale alla distanza r della freccia dal centro del bersaglio, secondo la legge: 0 r R max y gr 100 Rmax r 0 r Rmax Rmax (a) Se R è una variabile aleatoria distribuita secondo il modello di Rayleigh, con distribuzione: 2 r FR r 1exp U 2 r 2 Indicare di che tipo è la v.a. e fornire un grafico qualitativo di ricavare la probabilità che il punteggio sia maggiore di 90., ricavare la funzione di distribuzione, F y, del punteggio gr F y. (c) Per Rmax 2 m e. (b) m Esercizio 16 La coppia di variabili aleatorie X, ha densità congiunta: f X x,y x y figura) e nulla altrove. (a) Determinare le densità marginali f X x, f valori attesi di X e. (c) Calcolare la correlazione, E X. (d) Dire se X e sono indipendenti. nel dominio D (vedi x ; (b) Calcolare i y 1 D 0 1 x

3 Esercizio 17 (a) Date due variabili aleatorie discrete, con massa di probabilità congiunta,, con, 0,,, valori attesi, e varianze,, scrivere l espressione che permette di calcolare il coefficiente di correlazione. (b) Se, sono due variabili di Bernoulli di stesso valore atteso 0.5, con 1,1 essendo 00.5, calcolare in funzione di e farne il grafico. (c) Ricavare il valore di per cui le variabili sono scorrelate. (d) Ricavare i valori, con, 0,1 per i quali X e sono indipendenti. Esercizio 18 Sono date due variabili aleatorie (X, ), X è un v.a. Gaussiana standard e ax b W, dove a e b sono coefficienti reali e W è una v.a. Gaussiana con valore atteso e deviazione standard, correlata con X secondo il coefficiente di correlazione r XW. (a) Determinare la covarianza tra X e ed il coefficiente di correlazione r X. (b) Facendo un grafico indicativo, mostrare l andamento di r X al variare di nei casi in cui r XW 0 e r XW 1. (c) Commentare il risultato del punto (b). Esercizio 19 Si osservano due quantità aleatorie X e entrambe assumono i valori: 1, 0, +1. Supponendo che la coppia (0,0) abbia probabilità 0.5 e che le altre siano equiprobabili, qual è la probabilità che: (a) 0. (b) 0. Esercizio 20 Sia, una coppia di variabili aleatorie con densità congiunta: 3, , (a) Verificare che si tratta di una funzione di densità congiunta. (b) Calcolare, cioè la densità di condizionata a X. (c) Calcolare la curva di regressione:. Esercizio 21 La vita di un componente ha distribuzione esponenziale con MTBF di 1000 ore. (a) Quale è la probabilità che il componente duri almeno 500 ore? (b) Quale è la probabilità che tra 3 di questi componenti (tra loro indipendenti) almeno uno si guasti durante le prime 1000 ore? (c) Quale è la probabilità che tra quattro di questi componenti (tra loro indipendenti) esattamente due cessino di funzionare correttamente durante le prime 600 ore? Esercizio 22 Siano,,, variabili aleatorie uniformemente distribuite in (0,1) ed indipendenti. Definita la variabile aleatoria (media campionaria), valutare quanto deve essere grande N per avere Esercizio 23 Per un volo di 400 posti, una compagnia aerea accetta prenotazioni in eccesso sapendo che una prenotazione, indipendentemente dalle altre, non viene rispettata con una probabilità del 10 %. (a) Supponendo che siano state accettate 434 prenotazioni, calcolare la probabilità che tutti coloro che si presentano al check in riempiano completamente l aereo. (b) Se la compagnia aerea desidera con una probabilità almeno del 98 % che nessun prenotato rimanga a terra, quante prenotazioni deve accettare?

4 Esercizio 24 Un sottoinsieme è costituito da 3 unità connesse in serie. Le unità sono indipendenti con vita distribuita esponenzialmente con 1. Quanti sottinsiemi si devono connettere in parallelo per avere dopo un ora di funzionamento un affidabilità non inferiore al 99 %? Esercizio 25 Un sistema presenta una frequenza condizionata dei guasti: con 0 dove c e b sono due costanti positive. (a) Ricavare, svolgendo i calcoli, la densità di probabilità della vita del sistema. (b) Ricavare l affidabilità del sistema e farne un grafico. (c) Se 0.5 e 0.25 determinare il valore di t (in unità di tempo) per cui l affidabilità del sistema si ricuce del 50 %. Esercizio 26 La v.a. X ha densità di probabilità: f x xexp Ux. Sia g X dove X 2 x 2 0 x 0 2 g x x 0 x1. 1 x 1 Ricavare è disegnare l andamento di: (a) F x. (b) F y. (c) X f y. Esercizio 27 La v.a. X ha distribuzione Uniforme in 0 e 2 mentre la v.a. ha distribuzione Esponenziale con densità:, calcolare: (a) La funzione di distribuzione, FZ 1Z 3. f y 2exp 2y U y, inoltre X e sono indipendenti. Considerando la variabile aleatoria Z max X, dell evento z, di Z. (b) Ricavare la probabilità Esercizio 28 Un urna contiene inizialmente due palline rosse e due palline nere. Due giocatori, A e B, effettuano delle estrazioni successive con le seguenti regole: se la pallina estratta è nera, la pallina viene messa da parte, se è rossa viene rimessa nell urna insieme a una nuova pallina nera. Il giocatore A vince non appena nell urna ci sono quattro palline nere, B vince non appena nell urna non ci sono più palline nere. Il gioco può essere schematizzato attraverso una catena di Markov. (a) Disegnare il grafo rappresentativo della catena di Markov. (b) Calcolare la matrice delle probabilità di transizione. (c) Calcolare la probabilità che il giocatore A vinca dopo quattro estrazioni. (d) Calcolare la probabilità che il giocatore B vinca dopo quattro estrazioni. (e) Calcolare la probabilità che il giocatore A vinca dopo sei estrazioni. (f) Calcolare la probabilità che il giocatore B vinca dopo sei estrazioni. Esercizio 29 L agenzia bancaria di un piccolo centro urbano dispone di due sportelli e di quattro poltroncine per fare accomodare i cliente in attesa che uno dei due sportelli si liberi. (a) Modellizzare il processo tramite una Catena di Markov con la relativa rappresentazione grafica. (b) Si consideri il caso in cui gli arrivi all agenzia sono Poissoniani con intensità di 0.5 arrivi al minuto e le permanenze agli sportelli hanno una durata distribuita Esponenzialmente con valore atteso di un minuto; supporre che il sistema abbia raggiunto lo stato di equilibrio (bilanciamento dei flussi). (b 1 ) Calcolare la probabilità di non avere nessuno all interno dell agenzia. (b 2 ) Calcolare la probabilità di avere una (ed una sola) persona allo sportello. (c) Indicare a come si modifica il modello precedente se esiste un solo sportello ed il numero di poltroncine è molto grande (modellizzando quindi la coda con una capacità infinita) e fornire la relativa rappresentazione grafica.

5 Esercizio 30 Ad un ufficio postale entrano 4 clienti al minuto; uno sportello riesca a servire un cliente ogni 2 minuti. Supponendo il sistema di tipo Markoviano: (a) Quanti sportelli sono necessari affinché il sistema sia stabile? (b) Se sono aperti 10 sportelli, risulta verificata la condizione di stabilità? Se sì, quale è il tempo medio di attesa globale (compreso il tempo di servizio)? (c) Quanti sportelli sono necessari per ridurre il tempo medio di attesa globale a 6 minuti?

Corso di Probabilità e Statistica

Corso di Probabilità e Statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe sara.poffe@stat.unipd.it A.A.

Dettagli

metodi matematici per l ingegneria prove scritte d esame 1 Indice

metodi matematici per l ingegneria prove scritte d esame 1 Indice metodi matematici per l ingegneria prove scritte d esame Indice. Novembre 4 - Prova in itinere. Luglio 5.. Febbraio 6 4 4. Giugno 6. 5 5. Luglio 6 6 . Novembre 4 - Prova in itinere Esercizio. Una scatola

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Esercizi di probabilità discreta

Esercizi di probabilità discreta Di seguito, potete trovare i testi (con risposta) degli esercizi svolti (o proposti) nel corso di esercitazioni dell insegnamento di Matematica applicata. 1 Esercizi di probabilità discreta Algebra degli

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove Corso di laurea in Ing. Gestionale, a.a. 2001/2002 Prova scritta di Metodi Matematici e Statistici del 25 giugno 2002 Si effettuano n prove ciascuna delle quali consiste nello scegliere una moneta tra

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

Valori caratteristici di distribuzioni

Valori caratteristici di distribuzioni Capitolo 3 Valori caratteristici di distribuzioni 3. Valori attesi di variabili e vettori aleatori In molti casi è possibile descrivere adeguatamente una distribuzione di probabilità con pochi valori di

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Luca Mari, versione 2.3.15 Contenuti La generazione combinatoria di campioni...1 L algebra dei campioni...4 Il calcolo delle frequenze relative dei campioni...5 Indipendenza

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00)

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Richiami di matematica pag. 2 Definizione (moderatamente) formale di variabile aleatoria

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Ilenia Epifani 1 Il contenuto di queste dispense è protetto dalle leggi

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Esercizi 4 (2) È dato su uno spazio campionario Ω = {a, b, c, d, e} dotato della funzione di probabilità seguente:

Esercizi 4 (2) È dato su uno spazio campionario Ω = {a, b, c, d, e} dotato della funzione di probabilità seguente: I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Scienza della Produzione e Trasformazione del Latte Note di Calcolo delle Probabilità e Statistica STEFANO FERRARI Analisi Statistica dei Dati Note di Calcolo

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 6 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, nere, 8 bianche. Si estrae una pallina; calcolare la

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

1 di 6. Usando un modello di probabilità

1 di 6. Usando un modello di probabilità Corso di Statistica, II parte ESERCIZIO 1 Gastone in occasione di una festa a PAPEROPOLI compra 3 biglietti per partecipare all'estrazione a sorte di 3 premi. Sapendo che sono stati venduti 30 biglietti

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

Traccia della soluzione degli esercizi del Capitolo 1

Traccia della soluzione degli esercizi del Capitolo 1 Traccia della soluzione degli esercizi del Capitolo 1 Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini degli eventi A, B, C. 1. Almeno un evento si verifica. 2. Al più un evento si verifica..

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni

COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni immatricolati al primo anno (1), % iscritti al secondo anno (2), al terzo (3) % laureati Note entro di maggio

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 2/03/205 Primo foglio di esercizi Esercizio 0.. Una classe di studenti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vengono esposti in una graduatoria in ordine

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA R. MANFREDI - E. FABBRI - C. GRASSI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA per il triennio della scuola secondaria di secondo grado L CALCOLO DELLE PROBABILITÀ E ELEMENTI DI STATISTICA

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009. Metodo Monte Carlo

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009. Metodo Monte Carlo S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 008/009 Metodo Monte Carlo Laboratorio di Didattica della Matematica Applicata 1 L. Parisi A. Stabile

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità CAPITOLO 12 Calcolo delle Probabilità 12.1 Introduzione al Calcolo delle Probabilità Una storia d amore Luca abita a Lecco, Bianca a Brindisi. Lui è innamorato perso. Anche lei ama lui, ma, ultimamente,

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

La distribuzione binomiale

La distribuzione binomiale La distribuzione binomiale 1. Che cos'è un numero casuale Stiamo per lanciare un dado. Fermiamo la situazione un attimo prima che il dado cada e mostri la faccia superiore. Finché è in aria esso costituisce

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Lezioni di CPS. Fabrizio Caselli

Lezioni di CPS. Fabrizio Caselli Lezioni di CPS Fabrizio Caselli Contents Chapter. Statistica descrittiva 5. Popolazione, campione e caratteri 5 2. Classi e istogrammi 6 3. Indici di posizione o centralità e di dispersione 6 4. Correlazione

Dettagli

1 Breve introduzione alla probabilità elementare: approccio intuitivo

1 Breve introduzione alla probabilità elementare: approccio intuitivo Breve introduzione alla probabilità elementare: approccio intuitivo. È usuale che in molte situazioni che si presentano concretamente ci sia a priori incertezza su ciò che accadrà nel futuro: il calcolo

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

SCHEDA DIDATTICA N 1

SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

LINEAMENTI DI MATEMATICA

LINEAMENTI DI MATEMATICA P. BARONCINI - E. FABBRI - C. GRASSI IGEA Triennio LINEAMENTI DI MATEMATICA per il triennio degli istituti tecnici commerciali IGEA Probabilità e statistica Analisi numerica MODULO d P. Baroncini - E.

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Variabili Casuali Continue e Distribuzione Normale

Variabili Casuali Continue e Distribuzione Normale Variabili Casuali Continue e Distribuzione Normale Nel Capitolo 5 si è definita variabile casuale continua una variabile casuale che può assumere tutti valori compresi fra gli estremi di un intervallo

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Corso di Laurea Triennale in Matematica

Corso di Laurea Triennale in Matematica Università degli Studi di Roma La Sapienza Anno Accademico 2003-2004 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Triennale in Matematica INTRODUZIONE AL CALCOLO DELLE PROBABILITÀ

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

6 (bac 2005, matematica 3 periodi) * 7. (bac 2000, matematica 5 periodi problema obbligatorio 4)

6 (bac 2005, matematica 3 periodi) * 7. (bac 2000, matematica 5 periodi problema obbligatorio 4) Esercizi tratti dai problemi del Bac delle scuole europee (ordinati per difficoltà: dai più semplici, senza asterisco, a quelli di media difficoltà, con 1 asterisco, a quelli difficili, con due asterischi)

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Metodi e Modelli Matematici di Probabilità per la Gestione

Metodi e Modelli Matematici di Probabilità per la Gestione Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta del 30/1/06 Esercizio 1 Una banca ha N correntisti. Indichiamo con N n il numero di correntisti esistenti il giorno n-esimo. Descriviamo

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Il Processo Stocastico Martingala e sue Applicazioni in Finanza

Il Processo Stocastico Martingala e sue Applicazioni in Finanza Il Processo Stocastico Martingala e sue Applicazioni in Finanza Rosa Maria Mininni a.a. 2014-2015 1 Introduzione Scopo principale della presente dispensa é quello di illustrare i concetti matematici fondamentali

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli